metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages m564-m565

(2,3,5,6-Tetra­fluoro­phenolato-κO)(5,10,15,20-tetra­phenyl­porphyrinato)iron(III)

aDepartment of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, USA
*Correspondence e-mail: grichteraddo@ou.edu

(Received 2 August 2013; accepted 20 September 2013; online 28 September 2013)

The title compound, [Fe(C44H28N4)(C6HF4O)], is a porphyrin complex with iron(III) in fivefold coordination with a tetra­fluoro­phenolate group as the axial ligand. The Fe atom and the phenolate ligand are disordered across the porphyrin ring with the two phenolates appearing to be roughly related by a center of symmetry. The occupancies of the two phenolate groups refined to 0.788 (3) for the major component and 0.212 (3) for the minor component. The structure shows extraordinary Fe displacements of 0.488 (4) (major) and 0.673 (4) Å (minor) from the 24-atom mean plane of the porphyrin. The Fe—Np distances range from 2.063 (4) to 2.187 (6) Å and the Fe—O distances are 1.903 (5) Å for major component and 1.87 (2) Å for minor component. The four phenyl groups attached to the porphyrin ring form dihedral angles of 63.4 (4), 49.6 (4), 62.4 (4), and 63.3 (4)° (in increasing numerical order) with the three nearest C atoms of the porphyrin ring. The major and minor component phenolate groups form dihedral angles of 24.9 (4)° and 24.8 (4)°, respectively, with the four porphyrin N atoms. The Fe⋯Fe distance between the two iron(III) atoms of adjacent porphyrin mol­ecules is 6.677 (3) Å. No close inter­molecular inter­action was observed. The crystal studied was twinned by inversion, with a major–minor component ratio of 0.53 (3):0.47 (3).

Related literature

For the function and structure of catalase, see: Nicholls et al. (2001[Nicholls, P., Fita, I. & Loewen, P. C. (2001). Adv. Inorg. Chem. 51, 51-106.]). For the structures of other related ferric phenolate porphyrin derivatives, see: Xu et al. (2013[Xu, N., Powell, D. R. & Richter-Addo, G. B. (2013). Acta Cryst. E69, m530-m531.]); Chaudhary et al. (2010[Chaudhary, A., Patra, R. & Rath, S. P. (2010). Eur. J. Inorg. Chem. pp. 5211-5221.]); Ueyama et al. (1998[Ueyama, N., Nishikawa, N., Yamada, Y., Okamura, T. & Nakamura, A. (1998). Inorg. Chim. Acta, 283, 91-97.]); Kanamori et al. (2005[Kanamori, D., Yamada, Y., Onoda, A., Okamura, T., Adachi, S., Yamamoto, H. & Ueyama, N. (2005). Inorg. Chim. Acta, 358, 331-338.]); Byrn et al. (1993[Byrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480-9497.]). For the preparation of the [(TPP)Fe]2O (TPP is tetraphenylporphyrin) complex, see: Helms et al. (1986[Helms, J. H., ter Haar, L. W., Hatfield, W. E., Harris, D. L., Jayaraj, K., Toney, G. E., Gold, A., Mewborn, T. D. & Pemberton, J. R. (1986). Inorg. Chem. 25, 2334-2337.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C44H28N4)(C6HF4O)]

  • Mr = 833.62

  • Monoclinic, C c

  • a = 22.287 (4) Å

  • b = 12.676 (2) Å

  • c = 13.339 (2) Å

  • β = 98.510 (4)°

  • V = 3727 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 100 K

  • 0.34 × 0.16 × 0.14 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.856, Tmax = 0.937

  • 34669 measured reflections

  • 9209 independent reflections

  • 6448 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.116

  • S = 1.01

  • 9209 reflections

  • 651 parameters

  • 240 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

Metalloporphyrin complexes with phenolate ligands are potential structural models for heme catalase (Chaudhary et al., 2010; Nicholls et al., 2001). Strouse and coworkers have reported the crystal structures of several iron phenoxide porphyrin complexes, showing their ability to accommodate various small molecules in the clathrate lattice (Byrn et al., 1993). In this paper, we report the structure of (5,10,15,20-tetraphenylporphyrinato)(2,3,5,6-tetrafluorophenolato)iron(III).

The Fe and the phenolate ligand were disordered across the porphyrin plane. The occupancy of the Fe and axial phenolate ligand refined to 0.788 (3) and 0.212 (3) for the primed and unprimed atoms, respectively. The molecular structure of (5,10,15,20-tetraphenylporphyrinato)(2,3,5,6-tetrafluorophenolato)iron(III) is shown in Fig. 1. The Fe atom is displaced by 0.488 (4) Å (major) and 0.673 (4) Å (minor) from the 24-atom mean porphyrin plane toward the tetrafluorophenolate anion. The average Fe—Np distances are 2.075 (4) Å (major) and 2.127 (6) Å (minor). These long Fe—Np bonds are consistent with the large displacement of the iron centers. The Fe—O—C bond angles are 122.4 (7)° and 123 (3)° for the major and minor components, respectively. The Fe—O distances of both disordered components (1.903 (5) Å for major and 1.87 (2) Å for minor) are similar to the Fe—O bond distances in other iron phenolate porphyrin complexes reported previously (Xu et al., 2013; Chaudhary et al., 2010; Ueyama et al., 1998, Kanamori et al., 2005; Byrn et al., 1993). The structure is twinned by inversion, with a major:minor component ratio of 0.53 (3):0.47 (3).

Related literature top

For the function and structure of catalase, see: Nicholls et al. (2001). For the structures of other related ferric phenolate porphyrin derivatives, see: Xu et al. (2013); Chaudhary et al. (2010); Ueyama et al. (1998); Kanamori et al. (2005); Byrn et al. (1993). For the preparation of the [(TPP)Fe]2O complex, see: Helms et al. (1986).

Experimental top

To a CH2Cl2 solution (20 ml) of [(TPP)Fe]2O (Helms et al., 1986) (0.025 g, 0.018 mmol) was added 2,3,5,6-tetrafluorophenol (0.045 g, 0.271 mmol) (purchased from Aldrich Chemical Company and used as received) under N2. After stirring for 1 h, the color of the solution changed from green brown to red. The solution was reduced to 2 ml and 10 ml hexane was added. The resulting dark brown precipitate was collected by filtration and dried under vacuum. A suitable rod-shaped crystal was grown by slow evaporation of a CH2Cl2-hexane (1:2) solution of the complex at room temperature under N2.

Refinement top

The iron and the phenolate ligand were disordered across the porphyrin ring. The occupancies of the metal and axial ligand refined to 0.787 (3) and 0.213 (3) for the primed and unprimed atoms. Rigid-body restraints were applied to the displacement parameters of both phenolate disorder components. The hydrogens were located by geometry assuming C—H distances of 0.95 Å, and were refined with a riding model. The hydrogen displacement parameters were set to 1.2 times the isotropic equivalent of the bonded carbon. The structure was twinned by inversion, with a major:minor component ratio of 0.53 (3):0.47 (3).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (TPP)Fe(OC6HF4) with displacement ellipsoids drawn at the 35% probability level. H atoms and the minor disorder component are omitted for clarity.
(2,3,5,6-Tetrafluorophenolato-κO)(5,10,15,20-tetraphenylporphyrinato)iron(III) top
Crystal data top
[Fe(C44H28N4)(C6HF4O)]F(000) = 1708
Mr = 833.62Dx = 1.486 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 22.287 (4) ÅCell parameters from 7386 reflections
b = 12.676 (2) Åθ = 2.3–27.1°
c = 13.339 (2) ŵ = 0.47 mm1
β = 98.510 (4)°T = 100 K
V = 3727 (2) Å3Rod, black
Z = 40.34 × 0.16 × 0.14 mm
Data collection top
Bruker APEX CCD
diffractometer
6448 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.087
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
θmax = 28.4°, θmin = 1.9°
Tmin = 0.856, Tmax = 0.937h = 2929
34669 measured reflectionsk = 1616
9209 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.046P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
9209 reflectionsΔρmax = 0.28 e Å3
651 parametersΔρmin = 0.40 e Å3
240 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.47 (3)
Crystal data top
[Fe(C44H28N4)(C6HF4O)]V = 3727 (2) Å3
Mr = 833.62Z = 4
Monoclinic, CcMo Kα radiation
a = 22.287 (4) ŵ = 0.47 mm1
b = 12.676 (2) ÅT = 100 K
c = 13.339 (2) Å0.34 × 0.16 × 0.14 mm
β = 98.510 (4)°
Data collection top
Bruker APEX CCD
diffractometer
9209 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6448 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.937Rint = 0.087
34669 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.28 e Å3
S = 1.01Δρmin = 0.40 e Å3
9209 reflectionsAbsolute structure: Refined as an inversion twin.
651 parametersAbsolute structure parameter: 0.47 (3)
240 restraints
Special details top

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.51168 (5)0.48729 (6)0.54296 (7)0.0126 (3)0.788 (3)
F10.5831 (2)0.2280 (4)0.6516 (3)0.0324 (10)0.788 (3)
F20.5280 (3)0.0706 (3)0.7383 (4)0.0485 (13)0.788 (3)
F30.4033 (2)0.3187 (5)0.8728 (3)0.0455 (13)0.788 (3)
F40.4609 (2)0.4764 (4)0.7911 (3)0.0293 (10)0.788 (3)
O10.5484 (2)0.4354 (4)0.6714 (4)0.0183 (11)0.788 (3)
Fe1'0.48973 (16)0.5111 (3)0.4615 (3)0.0192 (13)0.212 (3)
F1'0.5413 (8)0.5229 (15)0.2136 (12)0.032 (4)0.212 (3)
F2'0.5950 (9)0.6856 (18)0.1327 (13)0.051 (5)0.212 (3)
F3'0.4701 (11)0.9297 (14)0.2697 (14)0.054 (5)0.212 (3)
F4'0.4163 (9)0.7719 (15)0.3514 (15)0.048 (5)0.212 (3)
O1'0.4521 (10)0.5641 (16)0.3375 (16)0.029 (4)0.212 (3)
N10.4870 (2)0.6413 (3)0.5683 (3)0.0191 (11)
N20.4222 (2)0.4470 (3)0.5455 (3)0.0172 (10)
N30.5164 (2)0.3543 (3)0.4520 (4)0.0211 (11)
N40.58083 (19)0.5504 (3)0.4727 (3)0.0175 (10)
C10.5238 (3)0.7312 (4)0.5686 (4)0.0188 (13)
C20.4945 (3)0.8192 (4)0.6093 (4)0.0218 (13)
H20.50970.88920.61710.026*
C30.4410 (3)0.7838 (4)0.6347 (4)0.0206 (13)
H30.41230.82400.66470.025*
C40.4361 (3)0.6737 (4)0.6076 (4)0.0177 (13)
C50.3861 (2)0.6108 (4)0.6183 (4)0.0174 (12)
C60.3793 (2)0.5052 (4)0.5863 (4)0.0179 (11)
C70.3263 (3)0.4425 (4)0.5904 (4)0.0185 (12)
H70.29040.46430.61530.022*
C80.3366 (3)0.3463 (4)0.5522 (4)0.0177 (12)
H80.30950.28810.54520.021*
C90.3963 (2)0.3488 (4)0.5244 (4)0.0169 (12)
C100.4228 (3)0.2629 (4)0.4820 (4)0.0177 (12)
C110.4796 (3)0.2674 (4)0.4479 (4)0.0185 (12)
C120.5068 (2)0.1798 (4)0.4036 (4)0.0204 (13)
H120.49070.11050.39440.024*
C130.5594 (3)0.2147 (4)0.3775 (4)0.0199 (13)
H130.58700.17460.34490.024*
C140.5665 (3)0.3240 (4)0.4078 (4)0.0179 (12)
C150.6154 (3)0.3882 (4)0.3936 (4)0.0166 (12)
C160.6219 (2)0.4925 (4)0.4257 (4)0.0166 (11)
C170.6735 (3)0.5583 (4)0.4158 (4)0.0186 (12)
H170.70820.53780.38700.022*
C180.6638 (3)0.6535 (4)0.4544 (4)0.0187 (13)
H180.69030.71250.45770.022*
C190.6060 (3)0.6501 (4)0.4899 (4)0.0162 (12)
C200.5796 (3)0.7352 (4)0.5334 (4)0.0178 (12)
C210.3355 (2)0.6582 (4)0.6651 (4)0.0182 (12)
C220.3016 (2)0.7416 (4)0.6170 (4)0.0177 (12)
H220.31230.76990.55610.021*
C230.2526 (3)0.7838 (4)0.6569 (4)0.0229 (14)
H230.23010.84070.62370.027*
C240.2368 (3)0.7417 (5)0.7463 (4)0.0257 (14)
H240.20310.76940.77370.031*
C250.2701 (3)0.6601 (5)0.7946 (4)0.0267 (14)
H250.25920.63200.85550.032*
C260.3194 (3)0.6182 (4)0.7555 (4)0.0207 (13)
H260.34230.56240.79000.025*
C270.3888 (3)0.1617 (4)0.4690 (4)0.0187 (12)
C280.3766 (3)0.1034 (4)0.5531 (4)0.0220 (13)
H280.38960.12890.61980.026*
C290.3454 (3)0.0077 (4)0.5388 (4)0.0227 (14)
H290.33680.03090.59590.027*
C300.3271 (3)0.0312 (4)0.4428 (4)0.0218 (13)
H300.30760.09780.43380.026*
C310.3374 (3)0.0275 (4)0.3597 (4)0.0221 (13)
H310.32340.00230.29320.027*
C320.3679 (2)0.1225 (4)0.3726 (4)0.0194 (13)
H320.37480.16180.31470.023*
C330.6656 (2)0.3419 (4)0.3438 (4)0.0159 (12)
C340.7000 (2)0.2582 (4)0.3883 (4)0.0196 (12)
H340.69030.22810.44920.024*
C350.7478 (3)0.2180 (4)0.3457 (4)0.0229 (14)
H350.77070.16050.37700.027*
C360.7626 (3)0.2614 (5)0.2573 (4)0.0258 (15)
H360.79620.23530.22860.031*
C370.7277 (3)0.3434 (5)0.2114 (4)0.0241 (14)
H370.73730.37270.15020.029*
C380.6791 (3)0.3833 (4)0.2529 (4)0.0206 (13)
H380.65510.43860.21970.025*
C390.6127 (2)0.8381 (4)0.5434 (4)0.0159 (12)
C400.6245 (3)0.8940 (4)0.4597 (4)0.0207 (13)
H400.61210.86580.39390.025*
C410.6540 (2)0.9903 (4)0.4696 (4)0.0225 (13)
H410.66201.02750.41120.027*
C420.6720 (3)1.0323 (4)0.5659 (5)0.0229 (14)
H420.69131.09930.57310.028*
C430.6618 (3)0.9773 (4)0.6502 (4)0.0223 (12)
H430.67461.00550.71590.027*
C440.6325 (3)0.8792 (4)0.6393 (4)0.0204 (13)
H440.62610.84050.69780.024*
C450.5240 (6)0.3592 (9)0.7168 (9)0.0138 (17)0.788 (3)
C460.5390 (4)0.2499 (7)0.7079 (7)0.0218 (16)0.788 (3)
C470.5099 (5)0.1722 (8)0.7515 (8)0.0289 (19)0.788 (3)
C480.4650 (4)0.1910 (8)0.8083 (7)0.0336 (15)0.788 (3)
H480.44560.13530.83860.040*0.788 (3)
C490.4491 (4)0.2959 (8)0.8195 (7)0.0281 (18)0.788 (3)
C500.4784 (6)0.3757 (8)0.7765 (9)0.0175 (18)0.788 (3)
C45'0.473 (3)0.644 (4)0.291 (4)0.030 (6)0.212 (3)
C46'0.517 (3)0.630 (4)0.234 (4)0.032 (9)0.212 (3)
C47'0.5473 (18)0.709 (3)0.191 (3)0.033 (6)0.212 (3)
C48'0.5329 (19)0.811 (4)0.200 (3)0.046 (5)0.212 (3)
H48'0.55260.86570.16830.055*0.212 (3)
C49'0.487 (2)0.833 (4)0.259 (4)0.039 (9)0.212 (3)
C50'0.4568 (19)0.747 (3)0.309 (3)0.031 (7)0.212 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0129 (5)0.0094 (4)0.0163 (5)0.0022 (5)0.0048 (3)0.0001 (5)
F10.034 (3)0.031 (3)0.032 (3)0.010 (2)0.0049 (19)0.0036 (19)
F20.071 (4)0.017 (2)0.051 (3)0.003 (2)0.013 (3)0.0044 (19)
F30.026 (3)0.089 (4)0.023 (2)0.015 (2)0.0084 (18)0.004 (2)
F40.028 (3)0.035 (2)0.026 (2)0.009 (2)0.0065 (19)0.0053 (19)
O10.021 (3)0.017 (2)0.018 (2)0.005 (2)0.0043 (19)0.0018 (19)
Fe1'0.014 (2)0.025 (2)0.020 (2)0.0005 (19)0.0077 (16)0.0024 (17)
F1'0.036 (10)0.038 (6)0.020 (10)0.009 (7)0.005 (7)0.011 (6)
F2'0.046 (10)0.078 (12)0.030 (9)0.003 (8)0.008 (7)0.004 (9)
F3'0.076 (13)0.028 (6)0.055 (12)0.008 (7)0.005 (9)0.003 (6)
F4'0.049 (10)0.042 (10)0.055 (11)0.011 (7)0.012 (8)0.009 (8)
O1'0.035 (10)0.026 (7)0.026 (7)0.008 (7)0.000 (5)0.001 (6)
N10.014 (3)0.015 (2)0.030 (3)0.0036 (19)0.010 (2)0.0033 (19)
N20.017 (2)0.010 (2)0.027 (3)0.0022 (18)0.008 (2)0.0024 (18)
N30.020 (3)0.011 (2)0.035 (3)0.0016 (19)0.013 (2)0.0017 (19)
N40.013 (2)0.014 (2)0.026 (3)0.0004 (18)0.005 (2)0.0007 (18)
C10.018 (3)0.013 (3)0.026 (3)0.002 (2)0.008 (3)0.001 (2)
C20.017 (3)0.020 (3)0.028 (3)0.000 (3)0.004 (3)0.005 (2)
C30.019 (3)0.016 (3)0.028 (3)0.001 (2)0.007 (3)0.006 (2)
C40.016 (3)0.014 (3)0.024 (3)0.001 (2)0.005 (2)0.004 (2)
C50.012 (3)0.017 (3)0.024 (3)0.001 (2)0.006 (2)0.003 (2)
C60.017 (3)0.016 (3)0.022 (3)0.003 (2)0.007 (2)0.001 (2)
C70.014 (3)0.022 (3)0.021 (3)0.001 (2)0.007 (2)0.001 (2)
C80.017 (3)0.017 (3)0.021 (3)0.004 (2)0.009 (2)0.002 (2)
C90.018 (3)0.015 (3)0.020 (3)0.001 (2)0.008 (2)0.001 (2)
C100.018 (3)0.012 (3)0.024 (3)0.004 (2)0.003 (2)0.001 (2)
C110.014 (3)0.010 (3)0.032 (3)0.002 (2)0.006 (3)0.003 (2)
C120.021 (3)0.011 (3)0.030 (3)0.005 (2)0.007 (3)0.002 (2)
C130.019 (3)0.016 (3)0.025 (3)0.002 (2)0.005 (3)0.001 (2)
C140.016 (3)0.015 (3)0.024 (3)0.003 (2)0.008 (2)0.001 (2)
C150.017 (3)0.014 (3)0.019 (3)0.001 (2)0.004 (2)0.001 (2)
C160.014 (3)0.019 (3)0.019 (3)0.003 (2)0.008 (2)0.004 (2)
C170.016 (3)0.019 (3)0.023 (3)0.004 (2)0.010 (2)0.003 (2)
C180.016 (3)0.019 (3)0.021 (3)0.004 (2)0.003 (2)0.003 (2)
C190.014 (3)0.012 (3)0.023 (3)0.006 (2)0.003 (2)0.002 (2)
C200.018 (3)0.014 (3)0.023 (3)0.003 (2)0.008 (2)0.004 (2)
C210.016 (3)0.016 (3)0.024 (3)0.006 (2)0.006 (2)0.005 (2)
C220.016 (3)0.015 (3)0.022 (3)0.007 (2)0.003 (2)0.001 (2)
C230.023 (3)0.019 (3)0.027 (3)0.001 (3)0.000 (3)0.004 (2)
C240.021 (3)0.029 (3)0.028 (3)0.006 (3)0.009 (3)0.017 (3)
C250.028 (4)0.033 (4)0.021 (3)0.007 (3)0.008 (3)0.010 (3)
C260.022 (4)0.020 (3)0.021 (3)0.005 (2)0.004 (3)0.004 (2)
C270.016 (3)0.013 (3)0.028 (3)0.003 (2)0.006 (3)0.003 (2)
C280.019 (3)0.022 (3)0.025 (3)0.005 (2)0.003 (3)0.001 (2)
C290.021 (3)0.016 (3)0.032 (4)0.004 (3)0.008 (3)0.000 (3)
C300.020 (3)0.014 (3)0.032 (3)0.007 (2)0.005 (3)0.002 (2)
C310.021 (3)0.021 (3)0.024 (3)0.004 (3)0.003 (2)0.003 (2)
C320.018 (3)0.019 (3)0.023 (3)0.001 (2)0.009 (2)0.004 (2)
C330.007 (3)0.016 (3)0.024 (3)0.003 (2)0.004 (2)0.006 (2)
C340.021 (3)0.016 (3)0.023 (3)0.001 (2)0.005 (2)0.003 (2)
C350.016 (3)0.018 (3)0.034 (3)0.001 (2)0.004 (3)0.013 (3)
C360.014 (3)0.034 (4)0.031 (4)0.004 (3)0.009 (3)0.017 (3)
C370.026 (4)0.031 (3)0.017 (3)0.010 (3)0.008 (3)0.005 (2)
C380.020 (3)0.020 (3)0.023 (3)0.005 (2)0.005 (3)0.001 (2)
C390.012 (3)0.009 (3)0.028 (3)0.000 (2)0.008 (2)0.001 (2)
C400.020 (3)0.019 (3)0.023 (3)0.001 (2)0.003 (2)0.001 (2)
C410.025 (3)0.017 (3)0.025 (3)0.003 (3)0.004 (2)0.006 (3)
C420.023 (3)0.011 (3)0.035 (4)0.004 (3)0.003 (3)0.001 (2)
C430.019 (3)0.018 (3)0.030 (3)0.002 (3)0.005 (3)0.004 (2)
C440.022 (3)0.016 (3)0.024 (3)0.000 (2)0.004 (3)0.000 (2)
C450.011 (4)0.017 (3)0.012 (4)0.001 (2)0.001 (3)0.001 (2)
C460.023 (4)0.014 (2)0.026 (4)0.001 (3)0.002 (3)0.001 (3)
C470.041 (6)0.019 (2)0.023 (5)0.006 (3)0.008 (4)0.006 (3)
C480.039 (4)0.035 (3)0.024 (4)0.020 (3)0.006 (3)0.008 (3)
C490.022 (4)0.042 (3)0.019 (4)0.014 (3)0.002 (3)0.004 (3)
C500.014 (4)0.025 (3)0.013 (4)0.002 (3)0.002 (3)0.001 (3)
C45'0.039 (13)0.026 (6)0.024 (11)0.006 (6)0.003 (10)0.001 (6)
C46'0.037 (15)0.033 (6)0.024 (17)0.002 (6)0.001 (14)0.009 (6)
C47'0.033 (11)0.044 (6)0.018 (12)0.004 (6)0.008 (9)0.003 (6)
C48'0.048 (7)0.042 (6)0.047 (8)0.006 (5)0.001 (5)0.001 (5)
C49'0.045 (14)0.028 (6)0.040 (19)0.002 (7)0.006 (15)0.002 (7)
C50'0.035 (12)0.026 (6)0.029 (14)0.007 (6)0.005 (11)0.005 (7)
Geometric parameters (Å, º) top
Fe1—O11.903 (5)C20—C391.495 (7)
Fe1—N22.063 (4)C21—C221.398 (7)
Fe1—N12.070 (4)C21—C261.403 (7)
Fe1—N42.078 (4)C22—C231.391 (8)
Fe1—N32.089 (4)C22—H220.9500
F1—C461.351 (10)C23—C241.399 (8)
F2—C471.369 (11)C23—H230.9500
F3—C491.359 (10)C24—C251.377 (8)
F4—C501.356 (12)C24—H240.9500
O1—C451.302 (12)C25—C261.391 (7)
Fe1'—O1'1.87 (2)C25—H250.9500
Fe1'—N42.074 (6)C26—H260.9500
Fe1'—N32.083 (6)C27—C321.392 (7)
Fe1'—N22.163 (6)C27—C281.404 (7)
Fe1'—N12.187 (6)C28—C291.396 (8)
F1'—C46'1.50 (6)C28—H280.9500
F2'—C47'1.44 (4)C29—C301.376 (7)
F3'—C49'1.30 (5)C29—H290.9500
F4'—C50'1.18 (4)C30—C311.382 (8)
O1'—C45'1.31 (5)C30—H300.9500
N1—C41.381 (7)C31—C321.382 (7)
N1—C11.404 (6)C31—H310.9500
N2—C91.384 (6)C32—H320.9500
N2—C61.383 (6)C33—C341.390 (7)
N3—C111.370 (6)C33—C381.394 (7)
N3—C141.392 (7)C34—C351.378 (8)
N4—C191.388 (6)C34—H340.9500
N4—C161.393 (6)C35—C361.384 (8)
C1—C201.393 (8)C35—H350.9500
C1—C21.439 (7)C36—C371.386 (8)
C2—C31.363 (8)C36—H360.9500
C2—H20.9500C37—C381.384 (7)
C3—C41.441 (7)C37—H370.9500
C3—H30.9500C38—H380.9500
C4—C51.394 (7)C39—C401.379 (7)
C5—C61.407 (7)C39—C441.392 (7)
C5—C211.493 (7)C40—C411.384 (7)
C6—C71.432 (7)C40—H400.9500
C7—C81.355 (7)C41—C421.393 (7)
C7—H70.9500C41—H410.9500
C8—C91.432 (7)C42—C431.371 (8)
C8—H80.9500C42—H420.9500
C9—C101.398 (7)C43—C441.402 (7)
C10—C111.408 (8)C43—H430.9500
C10—C271.487 (7)C44—H440.9500
C11—C121.434 (7)C45—C501.396 (15)
C12—C131.347 (7)C45—C461.434 (13)
C12—H120.9500C46—C471.357 (13)
C13—C141.446 (7)C47—C481.361 (13)
C13—H130.9500C48—C491.390 (13)
C14—C151.395 (7)C48—H480.9500
C15—C161.391 (7)C49—C501.374 (13)
C15—C331.502 (7)C45'—C46'1.34 (7)
C16—C171.441 (7)C45'—C50'1.39 (5)
C17—C181.343 (7)C46'—C47'1.38 (6)
C17—H170.9500C47'—C48'1.35 (5)
C18—C191.438 (8)C48'—C49'1.40 (6)
C18—H180.9500C48'—H48'0.9500
C19—C201.395 (7)C49'—C50'1.48 (6)
O1—Fe1—N2100.8 (2)C23—C22—C21121.2 (5)
O1—Fe1—N1105.6 (2)C23—C22—H22119.4
N2—Fe1—N187.14 (17)C21—C22—H22119.4
O1—Fe1—N4106.8 (2)C22—C23—C24119.3 (5)
N2—Fe1—N4152.3 (2)C22—C23—H23120.3
N1—Fe1—N486.76 (16)C24—C23—H23120.3
O1—Fe1—N3101.1 (2)C25—C24—C23120.0 (6)
N2—Fe1—N386.62 (17)C25—C24—H24120.0
N1—Fe1—N3153.3 (2)C23—C24—H24120.0
N4—Fe1—N386.80 (17)C24—C25—C26120.9 (5)
C45—O1—Fe1121.4 (7)C24—C25—H25119.6
O1'—Fe1'—N4106.6 (7)C26—C25—H25119.6
O1'—Fe1'—N3112.6 (7)C25—C26—C21120.1 (5)
N4—Fe1'—N387.0 (2)C25—C26—H26120.0
O1'—Fe1'—N2109.8 (7)C21—C26—H26120.0
N4—Fe1'—N2143.2 (3)C32—C27—C28118.2 (5)
N3—Fe1'—N284.2 (2)C32—C27—C10120.7 (5)
O1'—Fe1'—N1104.7 (7)C28—C27—C10121.1 (5)
N4—Fe1'—N183.9 (2)C29—C28—C27119.9 (5)
N3—Fe1'—N1142.7 (3)C29—C28—H28120.0
N2—Fe1'—N181.8 (2)C27—C28—H28120.0
C45'—O1'—Fe1'123 (3)C30—C29—C28120.8 (5)
C4—N1—C1105.6 (4)C30—C29—H29119.6
C4—N1—Fe1126.6 (3)C28—C29—H29119.6
C1—N1—Fe1126.6 (3)C29—C30—C31119.5 (5)
C4—N1—Fe1'125.2 (4)C29—C30—H30120.3
C1—N1—Fe1'122.8 (3)C31—C30—H30120.3
C9—N2—C6105.5 (4)C32—C31—C30120.4 (5)
C9—N2—Fe1126.6 (3)C32—C31—H31119.8
C6—N2—Fe1126.9 (3)C30—C31—H31119.8
C9—N2—Fe1'122.4 (4)C31—C32—C27121.1 (5)
C6—N2—Fe1'125.3 (3)C31—C32—H32119.4
C11—N3—C14106.0 (4)C27—C32—H32119.4
C11—N3—Fe1'126.5 (4)C34—C33—C38118.8 (5)
C14—N3—Fe1'122.9 (3)C34—C33—C15120.6 (5)
C11—N3—Fe1126.2 (4)C38—C33—C15120.6 (5)
C14—N3—Fe1125.5 (3)C35—C34—C33121.2 (5)
C19—N4—C16106.1 (4)C35—C34—H34119.4
C19—N4—Fe1'126.7 (4)C33—C34—H34119.4
C16—N4—Fe1'122.9 (3)C34—C35—C36120.1 (5)
C19—N4—Fe1125.7 (4)C34—C35—H35120.0
C16—N4—Fe1125.5 (3)C36—C35—H35120.0
C20—C1—N1125.4 (5)C35—C36—C37119.0 (5)
C20—C1—C2125.2 (5)C35—C36—H36120.5
N1—C1—C2109.4 (5)C37—C36—H36120.5
C3—C2—C1107.6 (5)C38—C37—C36121.3 (5)
C3—C2—H2126.2C38—C37—H37119.4
C1—C2—H2126.2C36—C37—H37119.4
C2—C3—C4107.0 (5)C37—C38—C33119.5 (5)
C2—C3—H3126.5C37—C38—H38120.2
C4—C3—H3126.5C33—C38—H38120.2
N1—C4—C5125.6 (5)C40—C39—C44118.7 (5)
N1—C4—C3110.3 (5)C40—C39—C20121.8 (5)
C5—C4—C3124.0 (5)C44—C39—C20119.6 (5)
C4—C5—C6124.4 (5)C39—C40—C41121.4 (5)
C4—C5—C21118.5 (5)C39—C40—H40119.3
C6—C5—C21117.1 (5)C41—C40—H40119.3
N2—C6—C5125.3 (5)C40—C41—C42119.6 (5)
N2—C6—C7110.0 (4)C40—C41—H41120.2
C5—C6—C7124.7 (5)C42—C41—H41120.2
C8—C7—C6107.3 (5)C43—C42—C41120.1 (5)
C8—C7—H7126.3C43—C42—H42119.9
C6—C7—H7126.3C41—C42—H42119.9
C7—C8—C9107.1 (5)C42—C43—C44119.8 (5)
C7—C8—H8126.5C42—C43—H43120.1
C9—C8—H8126.5C44—C43—H43120.1
N2—C9—C10126.4 (5)C39—C44—C43120.4 (5)
N2—C9—C8110.1 (4)C39—C44—H44119.8
C10—C9—C8123.5 (5)C43—C44—H44119.8
C9—C10—C11123.6 (5)O1—C45—C50122.9 (9)
C9—C10—C27118.7 (5)O1—C45—C46124.0 (8)
C11—C10—C27117.7 (5)C50—C45—C46113.0 (9)
N3—C11—C10125.6 (5)C47—C46—F1121.5 (9)
N3—C11—C12110.6 (5)C47—C46—C45122.2 (10)
C10—C11—C12123.8 (5)F1—C46—C45116.3 (8)
C13—C12—C11106.9 (5)C46—C47—C48123.3 (10)
C13—C12—H12126.5C46—C47—F2117.3 (10)
C11—C12—H12126.5C48—C47—F2119.4 (9)
C12—C13—C14107.8 (5)C47—C48—C49116.6 (8)
C12—C13—H13126.1C47—C48—H48121.7
C14—C13—H13126.1C49—C48—H48121.7
N3—C14—C15126.1 (5)F3—C49—C50120.1 (9)
N3—C14—C13108.8 (5)F3—C49—C48118.9 (8)
C15—C14—C13125.2 (5)C50—C49—C48121.0 (9)
C16—C15—C14124.1 (5)F4—C50—C49117.9 (9)
C16—C15—C33117.2 (5)F4—C50—C45118.1 (7)
C14—C15—C33118.7 (5)C49—C50—C45123.9 (10)
C15—C16—N4126.4 (5)O1'—C45'—C46'121 (4)
C15—C16—C17124.7 (5)O1'—C45'—C50'122 (4)
N4—C16—C17108.9 (5)C46'—C45'—C50'117 (5)
C18—C17—C16108.1 (5)C45'—C46'—C47'126 (5)
C18—C17—H17126.0C45'—C46'—F1'123 (4)
C16—C17—H17126.0C47'—C46'—F1'112 (4)
C17—C18—C19107.5 (5)C48'—C47'—C46'122 (4)
C17—C18—H18126.2C48'—C47'—F2'117 (4)
C19—C18—H18126.2C46'—C47'—F2'122 (4)
N4—C19—C20126.0 (5)C47'—C48'—C49'116 (4)
N4—C19—C18109.4 (5)C47'—C48'—H48'122.0
C20—C19—C18124.6 (5)C49'—C48'—H48'122.0
C1—C20—C19124.3 (5)F3'—C49'—C48'120 (5)
C1—C20—C39117.1 (5)F3'—C49'—C50'118 (4)
C19—C20—C39118.5 (5)C48'—C49'—C50'122 (4)
C22—C21—C26118.6 (5)F4'—C50'—C45'125 (4)
C22—C21—C5120.2 (5)F4'—C50'—C49'117 (4)
C26—C21—C5121.2 (5)C45'—C50'—C49'118 (4)
N4—Fe1'—O1'—C45'25 (3)N1—C1—C20—C39178.2 (5)
N3—Fe1'—O1'—C45'119 (3)C2—C1—C20—C393.0 (8)
N2—Fe1'—O1'—C45'149 (3)N4—C19—C20—C11.6 (9)
N1—Fe1'—O1'—C45'63 (3)C18—C19—C20—C1179.4 (5)
C4—N1—C1—C20178.8 (5)N4—C19—C20—C39178.3 (5)
Fe1—N1—C1—C2012.8 (7)C18—C19—C20—C390.7 (8)
Fe1'—N1—C1—C2025.6 (7)C4—C5—C21—C2264.0 (7)
C4—N1—C1—C20.2 (6)C6—C5—C21—C22114.9 (5)
Fe1—N1—C1—C2168.2 (4)C4—C5—C21—C26118.4 (6)
Fe1'—N1—C1—C2153.4 (4)C6—C5—C21—C2662.7 (7)
C20—C1—C2—C3179.7 (5)C26—C21—C22—C230.5 (7)
N1—C1—C2—C30.7 (6)C5—C21—C22—C23177.1 (5)
C1—C2—C3—C41.3 (6)C21—C22—C23—C240.4 (8)
C1—N1—C4—C5177.7 (5)C22—C23—C24—C250.8 (8)
Fe1—N1—C4—C513.9 (8)C23—C24—C25—C260.3 (8)
Fe1'—N1—C4—C525.4 (8)C24—C25—C26—C210.7 (8)
C1—N1—C4—C31.0 (6)C22—C21—C26—C251.1 (8)
Fe1—N1—C4—C3167.4 (4)C5—C21—C26—C25176.6 (5)
Fe1'—N1—C4—C3153.4 (4)C9—C10—C27—C32113.7 (6)
C2—C3—C4—N11.5 (6)C11—C10—C27—C3264.5 (7)
C2—C3—C4—C5177.3 (5)C9—C10—C27—C2866.0 (7)
N1—C4—C5—C62.8 (9)C11—C10—C27—C28115.7 (6)
C3—C4—C5—C6175.8 (5)C32—C27—C28—C291.3 (8)
N1—C4—C5—C21178.4 (5)C10—C27—C28—C29179.0 (5)
C3—C4—C5—C213.0 (8)C27—C28—C29—C300.9 (9)
C9—N2—C6—C5179.5 (5)C28—C29—C30—C312.8 (9)
Fe1—N2—C6—C511.4 (7)C29—C30—C31—C322.5 (9)
Fe1'—N2—C6—C528.3 (7)C30—C31—C32—C270.3 (9)
C9—N2—C6—C70.0 (6)C28—C27—C32—C311.6 (8)
Fe1—N2—C6—C7169.1 (3)C10—C27—C32—C31178.6 (5)
Fe1'—N2—C6—C7151.2 (4)C16—C15—C33—C34116.0 (5)
C4—C5—C6—N24.1 (8)C14—C15—C33—C3462.0 (7)
C21—C5—C6—N2177.1 (5)C16—C15—C33—C3862.9 (7)
C4—C5—C6—C7175.3 (5)C14—C15—C33—C38119.1 (6)
C21—C5—C6—C73.5 (8)C38—C33—C34—C351.8 (8)
N2—C6—C7—C80.1 (6)C15—C33—C34—C35177.1 (5)
C5—C6—C7—C8179.4 (5)C33—C34—C35—C360.4 (8)
C6—C7—C8—C90.1 (6)C34—C35—C36—C371.7 (8)
C6—N2—C9—C10179.9 (5)C35—C36—C37—C380.9 (8)
Fe1—N2—C9—C1011.0 (8)C36—C37—C38—C331.3 (8)
Fe1'—N2—C9—C1027.6 (7)C34—C33—C38—C372.6 (8)
C6—N2—C9—C80.1 (6)C15—C33—C38—C37176.3 (5)
Fe1—N2—C9—C8169.2 (3)C1—C20—C39—C40116.5 (6)
Fe1'—N2—C9—C8152.2 (4)C19—C20—C39—C4063.5 (7)
C7—C8—C9—N20.2 (6)C1—C20—C39—C4463.6 (7)
C7—C8—C9—C10180.0 (5)C19—C20—C39—C44116.4 (6)
N2—C9—C10—C114.5 (9)C44—C39—C40—C411.6 (8)
C8—C9—C10—C11175.3 (5)C20—C39—C40—C41178.5 (5)
N2—C9—C10—C27177.4 (5)C39—C40—C41—C420.4 (8)
C8—C9—C10—C272.8 (8)C40—C41—C42—C431.7 (8)
C14—N3—C11—C10178.4 (5)C41—C42—C43—C440.9 (9)
Fe1'—N3—C11—C1022.3 (8)C40—C39—C44—C432.3 (8)
Fe1—N3—C11—C1018.2 (8)C20—C39—C44—C43177.8 (5)
C14—N3—C11—C121.6 (6)C42—C43—C44—C391.1 (9)
Fe1'—N3—C11—C12157.7 (4)Fe1—O1—C45—C5084.1 (13)
Fe1—N3—C11—C12161.7 (4)Fe1—O1—C45—C4693.5 (12)
C9—C10—C11—N30.6 (9)O1—C45—C46—C47175.9 (10)
C27—C10—C11—N3178.7 (5)C50—C45—C46—C471.9 (15)
C9—C10—C11—C12179.5 (5)O1—C45—C46—F12.6 (16)
C27—C10—C11—C121.4 (8)C50—C45—C46—F1179.6 (9)
N3—C11—C12—C132.0 (6)F1—C46—C47—C48179.6 (8)
C10—C11—C12—C13178.0 (5)C45—C46—C47—C481.2 (15)
C11—C12—C13—C141.5 (6)F1—C46—C47—F21.6 (13)
C11—N3—C14—C15178.6 (5)C45—C46—C47—F2179.9 (9)
Fe1'—N3—C14—C1521.4 (8)C46—C47—C48—C490.7 (14)
Fe1—N3—C14—C1517.9 (8)F2—C47—C48—C49179.5 (8)
C11—N3—C14—C130.6 (6)C47—C48—C49—F3178.0 (8)
Fe1'—N3—C14—C13157.8 (4)C47—C48—C49—C501.2 (12)
Fe1—N3—C14—C13162.9 (4)F3—C49—C50—F41.3 (14)
C12—C13—C14—N30.6 (6)C48—C49—C50—F4179.5 (9)
C12—C13—C14—C15179.9 (5)F3—C49—C50—C45177.0 (11)
N3—C14—C15—C162.5 (9)C48—C49—C50—C452.2 (16)
C13—C14—C15—C16178.4 (5)O1—C45—C50—F42.9 (18)
N3—C14—C15—C33179.6 (5)C46—C45—C50—F4179.3 (10)
C13—C14—C15—C330.5 (8)O1—C45—C50—C49175.4 (11)
C14—C15—C16—N42.5 (8)C46—C45—C50—C492.4 (17)
C33—C15—C16—N4179.5 (5)Fe1'—O1'—C45'—C46'83 (6)
C14—C15—C16—C17177.0 (5)Fe1'—O1'—C45'—C50'90 (6)
C33—C15—C16—C171.0 (7)O1'—C45'—C46'—C47'173 (6)
C19—N4—C16—C15179.5 (5)C50'—C45'—C46'—C47'0 (9)
Fe1'—N4—C16—C1521.5 (7)O1'—C45'—C46'—F1'4 (9)
Fe1—N4—C16—C1518.0 (7)C50'—C45'—C46'—F1'177 (5)
C19—N4—C16—C171.0 (6)C45'—C46'—C47'—C48'3 (9)
Fe1'—N4—C16—C17159.0 (4)F1'—C46'—C47'—C48'180 (4)
Fe1—N4—C16—C17161.5 (3)C45'—C46'—C47'—F2'178 (5)
C15—C16—C17—C18179.7 (5)F1'—C46'—C47'—F2'1 (7)
N4—C16—C17—C180.7 (6)C46'—C47'—C48'—C49'2 (6)
C16—C17—C18—C190.2 (6)F2'—C47'—C48'—C49'179 (3)
C16—N4—C19—C20178.3 (5)C47'—C48'—C49'—F3'179 (4)
Fe1'—N4—C19—C2021.4 (8)C47'—C48'—C49'—C50'1 (6)
Fe1—N4—C19—C2019.3 (8)O1'—C45'—C50'—F4'13 (8)
C16—N4—C19—C180.9 (6)C46'—C45'—C50'—F4'174 (5)
Fe1'—N4—C19—C18157.8 (4)O1'—C45'—C50'—C49'175 (5)
Fe1—N4—C19—C18161.6 (3)C46'—C45'—C50'—C49'2 (8)
C17—C18—C19—N40.4 (6)F3'—C49'—C50'—F4'4 (6)
C17—C18—C19—C20178.7 (5)C48'—C49'—C50'—F4'175 (4)
N1—C1—C20—C191.9 (9)F3'—C49'—C50'—C45'177 (4)
C2—C1—C20—C19177.0 (5)C48'—C49'—C50'—C45'3 (7)

Experimental details

Crystal data
Chemical formula[Fe(C44H28N4)(C6HF4O)]
Mr833.62
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)22.287 (4), 12.676 (2), 13.339 (2)
β (°) 98.510 (4)
V3)3727 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.34 × 0.16 × 0.14
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.856, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
34669, 9209, 6448
Rint0.087
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.116, 1.01
No. of reflections9209
No. of parameters651
No. of restraints240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.40
Absolute structureRefined as an inversion twin.
Absolute structure parameter0.47 (3)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors wish to thank the National Science Foundation (grant CHE-1213674) and the University of Oklahoma for funds to support this research and to acquire the diffractometer and computers used in this work.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationByrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480–9497.  CSD CrossRef CAS Web of Science Google Scholar
First citationChaudhary, A., Patra, R. & Rath, S. P. (2010). Eur. J. Inorg. Chem. pp. 5211–5221.  Web of Science CSD CrossRef Google Scholar
First citationHelms, J. H., ter Haar, L. W., Hatfield, W. E., Harris, D. L., Jayaraj, K., Toney, G. E., Gold, A., Mewborn, T. D. & Pemberton, J. R. (1986). Inorg. Chem. 25, 2334–2337.  CrossRef CAS Web of Science Google Scholar
First citationKanamori, D., Yamada, Y., Onoda, A., Okamura, T., Adachi, S., Yamamoto, H. & Ueyama, N. (2005). Inorg. Chim. Acta, 358, 331–338.  Web of Science CSD CrossRef CAS Google Scholar
First citationNicholls, P., Fita, I. & Loewen, P. C. (2001). Adv. Inorg. Chem. 51, 51–106.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUeyama, N., Nishikawa, N., Yamada, Y., Okamura, T. & Nakamura, A. (1998). Inorg. Chim. Acta, 283, 91–97.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, N., Powell, D. R. & Richter-Addo, G. B. (2013). Acta Cryst. E69, m530–m531.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages m564-m565
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds