organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6-Di­bromo-N-{3-[(4,6-di­bromo-2,3-di­methyl­phenyl)imino]butan-2-yl­­idene}-2,3-di­methyl­aniline

aKey Laboratory of Eco-Environment-Related Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: clinton_du@126.com

(Received 11 July 2013; accepted 26 August 2013; online 4 September 2013)

The title compound, C20H20Br4N2, is a product of the condensation reaction of 4,6-di­bromo-2,3-di­methyl­aniline and butane-2,3-dione. The mol­ecule has a center of symmetry at the mid-point of the central C—C bond. The dihedral angle between the benzene ring and the 1,4-di­aza­butadiene plane is 78.3 (2)°. Niether hydrogen bonding nor aromatic stacking is observed in the crystal structure.

Related literature

For applications of di­imine–metal catalysts, see: Johnson et al. (1995[Johnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414-6415.]). For related structures, see: Gao et al. (2012[Gao, H., Hu, H., Zhu, F. & Wu, Q. (2012). Chem. Commun. 48, 3312-3314.]); Sun et al. (2012[Sun, G. B., Hentschel, J. & Guan, Z. B. (2012). ACS Macro. Lett. 1, 585-588.]); Popeney et al. (2012[Popeney, C. S., Lukowiak, M. C., Böttcher, C., Schade, B., Welker, P., Mangoldt, D., Gunkel, G., Guan, Z. B. & Haag, R. (2012). ACS Macro. Lett. 1, 564-567.]); Shi et al. (2012[Shi, X., Zhao, Y., Gao, H., Zhang, L., Zhu, F. & Wu, Q. (2012). Macromol. Rapid Commun. 33, 374-379.]); Zhang & Ye (2012[Zhang, Z. & Ye, Z. (2012). Chem. Commun. 48, 7940-7942.]); Killian et al. (1996[Killian, C. M., Tempel, D., Johnson, L. K. & Brookhart, M. (1996). J. Am. Chem. Soc. 118, 11664-11665.]); Yuan et al. (2005[Yuan, J. C., Silva, L. C., Gomes, P. T., Campos, J. M., Riberio, M. R., Valerga, P. S., Chien, J. C. W. & Marques, M. M. (2005). Polymer, 46, 2122-2132.], 2011[Yuan, J. C., Mei, T. J., Gomes, P. T., Marques, M. M., Wang, X. H., Liu, Y. F., Miao, C. P. & Xie, X. L. (2011). J. Organomet. Chem. 696, 3251-3256.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20Br4N2

  • Mr = 607.98

  • Monoclinic, P 21 /n

  • a = 5.5582 (6) Å

  • b = 12.8881 (15) Å

  • c = 14.8377 (11) Å

  • β = 98.782 (8)°

  • V = 1050.43 (19) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 9.40 mm−1

  • T = 150 K

  • 0.29 × 0.17 × 0.16 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies. Yarnton, England.]) Tmin = 0.688, Tmax = 1.000

  • 4675 measured reflections

  • 1921 independent reflections

  • 1777 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.135

  • S = 1.11

  • 1921 reflections

  • 121 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −1.04 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies. Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies. Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: OLEX2; software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Since Brookhart and co–workers discovered nickel and palladium(II) aryl–substituted α–diimine catalysts for olefin polymerization (Johnson et al., 1995), late transition metal catalysis has attracted increasing attention due to their high functional group tolerance and their ability to produce branched or dendritic polymer (Gao et al., 2012; Sun et al., 2012; Popeney et al., 2012; Shi et al., 2012; Zhang & Ye, 2012; Killian et al., 1996; Yuan et al., 2005;2011). In this study, we designed and synthesized the title compound as abidentate ligand (Fig. 1).

The title molecule placed in center of symmetry (middle of C6—C6i bond). The dihedral angle between the benzene ring and 1,4–diazabutadiene plane is 78.3 (2)°. Niether hydrogen bonding nor aromatic stacking are observed in the crystal structure.

Related literature top

For applications of diimine–metal catalysts, see: Johnson et al. (1995). For related structures, see: Gao et al. (2012); Sun et al. (2012); Popeney et al. (2012); Shi et al. (2012); Zhang & Ye (2012); Killian et al. (1996); Yuan et al. (2005, 2011).

Experimental top

Formic acid (0.5 ml) was added to a stirred solution of 2,3–butanedione (0.09 g, 1.00 mmol) and 4,6–dibromo–2,3–dimethylaniline (0.61 g, 2.2 mmol) in ethanol (10 ml) (Fig. 2). The mixture was refluxed for 24 h, and then cooled and the precipitate was separated by filtration. The solid was recrystallized from EtOH/CH2Cl2 (v:v = 10:1), washed with cold ethanol and dried under vacuum to give the title compound1. Yield is 0.50 g (82%). Crystals suitable for X–ray structure determination were grown from a cyclohexane/dichloromethane (v:v = 1:2) solution. Anal. Calcd. for C20H20Br4N2: C, 39.51; H, 3.32; Br, 52.57; N, 4.61. Found: C, 39.49; H, 3.31; Br, 52.60 N, 4.60.

Refinement top

All hydrogen atoms were placed in calculated positions with C—H distances of 0.93Å and 0.96Å for aryl and methyl H atoms. They were included in the refinement in a riding model approximation, respectively. The H atoms were assigned Uiso = 1.2Ueq(C) for aryl H and Uiso = 1.5Ueq(C) for methyl H.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis RED (Agilent, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2] Fig. 2. A condensation reaction of 2,3–butanedione and 4,6–dibromo-2,3–dimethylaniline.
4,6-Dibromo-N-{3-[(4,6-dibromo-2,3-dimethylphenyl)imino]butan-2-ylidene}-2,3-dimethylaniline top
Crystal data top
C20H20Br4N2F(000) = 588
Mr = 607.98Dx = 1.922 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 5.5582 (6) ÅCell parameters from 2210 reflections
b = 12.8881 (15) Åθ = 3.4–70.4°
c = 14.8377 (11) ŵ = 9.40 mm1
β = 98.782 (8)°T = 150 K
V = 1050.43 (19) Å3Block, clear light yellow
Z = 20.29 × 0.17 × 0.16 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
1921 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1777 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 16.0733 pixels mm-1θmax = 68.2°, θmin = 4.6°
ω–scansh = 64
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1515
Tmin = 0.688, Tmax = 1.000l = 1717
4675 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0802P)2 + 2.2115P]
where P = (Fo2 + 2Fc2)/3
1921 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
C20H20Br4N2V = 1050.43 (19) Å3
Mr = 607.98Z = 2
Monoclinic, P21/nCu Kα radiation
a = 5.5582 (6) ŵ = 9.40 mm1
b = 12.8881 (15) ÅT = 150 K
c = 14.8377 (11) Å0.29 × 0.17 × 0.16 mm
β = 98.782 (8)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
1921 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1777 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 1.000Rint = 0.029
4675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.11Δρmax = 0.70 e Å3
1921 reflectionsΔρmin = 1.04 e Å3
121 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.84461 (11)0.31214 (5)0.68427 (4)0.0431 (2)
N10.5517 (8)0.5134 (4)0.6182 (3)0.0327 (9)
C20.2754 (9)0.4881 (4)0.8311 (3)0.0269 (9)
C30.6169 (9)0.3862 (4)0.7425 (3)0.0277 (10)
C40.4939 (9)0.4723 (4)0.7012 (3)0.0275 (10)
C50.3261 (10)0.5238 (4)0.7464 (3)0.0296 (10)
C60.4633 (10)0.4739 (4)0.5417 (3)0.0341 (11)
C70.5762 (9)0.3504 (4)0.8271 (3)0.0293 (10)
H70.66160.29390.85480.035*
C10.1862 (10)0.6189 (4)0.7022 (3)0.0341 (11)
H1A0.02000.59990.68130.051*
H1B0.26040.64220.65150.051*
H1C0.19120.67360.74630.051*
C80.2980 (12)0.3814 (5)0.5268 (3)0.0438 (14)
H8A0.14790.40100.48980.066*
H8B0.26540.35600.58450.066*
H8C0.37510.32780.49640.066*
C90.0867 (10)0.5414 (4)0.8773 (4)0.0378 (12)
H9A0.16160.59680.91480.057*
H9B0.01700.49240.91460.057*
H9C0.03880.56910.83210.057*
C100.4039 (9)0.4017 (4)0.8689 (3)0.0277 (10)
Br10.34078 (11)0.34478 (4)0.98167 (3)0.0379 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.0473 (4)0.0546 (4)0.0317 (3)0.0012 (3)0.0199 (3)0.0110 (2)
N10.043 (2)0.043 (2)0.0129 (18)0.0155 (19)0.0064 (16)0.0029 (17)
C20.035 (2)0.030 (2)0.017 (2)0.0044 (19)0.0075 (17)0.0020 (17)
C30.038 (2)0.032 (2)0.015 (2)0.005 (2)0.0109 (17)0.0075 (18)
C40.042 (3)0.032 (2)0.0096 (19)0.012 (2)0.0066 (17)0.0023 (17)
C50.047 (3)0.026 (2)0.015 (2)0.006 (2)0.0046 (19)0.0011 (18)
C60.047 (3)0.044 (3)0.013 (2)0.016 (2)0.0102 (19)0.001 (2)
C70.042 (3)0.025 (2)0.022 (2)0.003 (2)0.007 (2)0.0012 (17)
C10.053 (3)0.029 (2)0.019 (2)0.004 (2)0.001 (2)0.0107 (19)
C80.061 (4)0.058 (3)0.013 (2)0.031 (3)0.007 (2)0.000 (2)
C90.045 (3)0.042 (3)0.029 (3)0.005 (2)0.015 (2)0.003 (2)
C100.044 (3)0.030 (2)0.0102 (18)0.004 (2)0.0077 (17)0.0000 (17)
Br10.0605 (4)0.0407 (4)0.0159 (3)0.0013 (2)0.0171 (2)0.00654 (19)
Geometric parameters (Å, º) top
Br2—C31.895 (5)C7—H70.9300
N1—C41.422 (6)C7—C101.385 (7)
N1—C61.273 (6)C1—H1A0.9600
C2—C51.406 (6)C1—H1B0.9600
C2—C91.504 (7)C1—H1C0.9600
C2—C101.395 (7)C8—H8A0.9600
C3—C41.395 (7)C8—H8B0.9600
C3—C71.388 (6)C8—H8C0.9600
C4—C51.397 (7)C9—H9A0.9600
C5—C11.543 (7)C9—H9B0.9600
C6—C6i1.518 (9)C9—H9C0.9600
C6—C81.501 (7)C10—Br11.908 (4)
C6—N1—C4121.1 (4)C5—C1—H1B109.5
C5—C2—C9120.5 (5)C5—C1—H1C109.5
C10—C2—C5117.4 (4)H1A—C1—H1B109.5
C10—C2—C9122.1 (4)H1A—C1—H1C109.5
C4—C3—Br2121.1 (3)H1B—C1—H1C109.5
C7—C3—Br2117.2 (4)C6—C8—H8A109.5
C7—C3—C4121.6 (4)C6—C8—H8B109.5
C3—C4—N1121.1 (4)C6—C8—H8C109.5
C3—C4—C5119.1 (4)H8A—C8—H8B109.5
C5—C4—N1119.6 (4)H8A—C8—H8C109.5
C2—C5—C1118.9 (5)H8B—C8—H8C109.5
C4—C5—C2120.9 (4)C2—C9—H9A109.5
C4—C5—C1120.2 (4)C2—C9—H9B109.5
N1—C6—C6i115.8 (6)C2—C9—H9C109.5
N1—C6—C8126.4 (4)H9A—C9—H9B109.5
C8—C6—C6i117.8 (5)H9A—C9—H9C109.5
C3—C7—H7121.1H9B—C9—H9C109.5
C10—C7—C3117.8 (5)C2—C10—Br1120.6 (4)
C10—C7—H7121.1C7—C10—C2123.2 (4)
C5—C1—H1A109.5C7—C10—Br1116.2 (4)
Br2—C3—C4—N16.1 (6)C5—C2—C10—C70.1 (7)
Br2—C3—C4—C5179.4 (3)C5—C2—C10—Br1178.0 (4)
Br2—C3—C7—C10177.8 (4)C6—N1—C4—C382.4 (7)
N1—C4—C5—C2176.5 (4)C6—N1—C4—C5103.1 (6)
N1—C4—C5—C15.7 (7)C7—C3—C4—N1174.7 (4)
C3—C4—C5—C21.9 (7)C7—C3—C4—C50.2 (7)
C3—C4—C5—C1179.7 (4)C9—C2—C5—C4177.4 (5)
C3—C7—C10—C21.5 (7)C9—C2—C5—C10.4 (7)
C3—C7—C10—Br1176.5 (4)C9—C2—C10—C7179.1 (5)
C4—N1—C6—C6i179.2 (6)C9—C2—C10—Br11.2 (7)
C4—N1—C6—C81.5 (10)C10—C2—C5—C41.8 (7)
C4—C3—C7—C101.5 (7)C10—C2—C5—C1179.6 (4)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H20Br4N2
Mr607.98
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)5.5582 (6), 12.8881 (15), 14.8377 (11)
β (°) 98.782 (8)
V3)1050.43 (19)
Z2
Radiation typeCu Kα
µ (mm1)9.40
Crystal size (mm)0.29 × 0.17 × 0.16
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.688, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4675, 1921, 1777
Rint0.029
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.135, 1.11
No. of reflections1921
No. of parameters121
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 1.04

Computer programs: CrysAlis PRO (Agilent, 2013), CrysAlis RED (Agilent, 2013), SUPERFLIP (Palatinus & Chapuis, 2007), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We gratefully acknowledge the Natural Science Foundation of China (20702042, 21262028), the Program for Changjiang Scholars and Innovative Research Teams in Universities of the Ministry of Education of China (IRT1177), the Natural Science Foundation of Gansu Province (1208RJZA140) and the NWNU Young Teachers Reseach Improving Program (NWNU–LKQN–10–11) for financial support.

References

First citationAgilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies. Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, H., Hu, H., Zhu, F. & Wu, Q. (2012). Chem. Commun. 48, 3312–3314.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414–6415.  CrossRef CAS Web of Science Google Scholar
First citationKillian, C. M., Tempel, D., Johnson, L. K. & Brookhart, M. (1996). J. Am. Chem. Soc. 118, 11664–11665.  CrossRef CAS Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPopeney, C. S., Lukowiak, M. C., Böttcher, C., Schade, B., Welker, P., Mangoldt, D., Gunkel, G., Guan, Z. B. & Haag, R. (2012). ACS Macro. Lett. 1, 564–567.  Web of Science CrossRef CAS Google Scholar
First citationShi, X., Zhao, Y., Gao, H., Zhang, L., Zhu, F. & Wu, Q. (2012). Macromol. Rapid Commun. 33, 374–379.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSun, G. B., Hentschel, J. & Guan, Z. B. (2012). ACS Macro. Lett. 1, 585–588.  Web of Science CrossRef CAS Google Scholar
First citationYuan, J. C., Mei, T. J., Gomes, P. T., Marques, M. M., Wang, X. H., Liu, Y. F., Miao, C. P. & Xie, X. L. (2011). J. Organomet. Chem. 696, 3251–3256.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, J. C., Silva, L. C., Gomes, P. T., Campos, J. M., Riberio, M. R., Valerga, P. S., Chien, J. C. W. & Marques, M. M. (2005). Polymer, 46, 2122–2132.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Z. & Ye, Z. (2012). Chem. Commun. 48, 7940–7942.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds