organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1543-o1544

Amino­[(1H-benzimidazol-2-yl)amino]­methaniminium 4-methyl­benzene­sulfonate

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Organic Chemistry, Faculty of Science, Institute of Biotechnology, Granada University, Granada E-18071, Spain, eDepartment of Chemistry, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 4 September 2013; accepted 7 September 2013; online 18 September 2013)

The asymmetric unit of the title salt, C8H10N5+·C7H7O3S, consists of two amino­[(1H-benzimidazol-2-yl)amino]­meth­an­im­inium cations and two 4-methyl­benzene­sulfonate anions. The cations are each stabilized by intra­molecular N—H⋯N hydrogen bonds between the free amino groups and the imine N atoms of the benzimidazole units, forming S(6) ring motifs. In the crystal, cations and anions are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular framework. Two strong ππ stacking inter­actions [centroid–centroid distances = 3.4112 (14) and 3.4104 (14) Å] also occur between the centroids of the imidazole rings of like cations.

Related literature

For the synthesis of guanidine-containing compounds, see: Wu et al. (2002[Wu, Y.-Q., Hamilton, S. K., Wilkinson, D. E. & Hamilton, G. S. (2002). J. Org. Chem. 67, 7553-7556.]); Hopkins et al. (2002[Hopkins, T. P., Dener, J. M. & Boldi, A. M. (2002). J. Comb. Chem. 4, 167-174.]); Kilburn et al. (2002[Kilburn, J. P., Lau, J. & Jones, R. C. F. (2002). Tetrahedron, 58, 1739-1743.]); Manimala & Anslyn (2002[Manimala, J. C. & Anslyn, E. V. (2002). Tetrahedron Lett. 43, 565-567.]). For pharmaceutical and chemical applications of guanidines, see: Han et al. (2008[Han, J.-J., Xu, Y.-F., Su, Y.-P., She, X.-P. & Pan, X.-F. (2008). Catal. Commun. 9, 2077-2079.]); Hannon & Anslyn (1993[Hannon, C. L. & Anslyn, E. V. (1993). Bioorg. Chem. Front. 3, 193-255.]); Ekelund et al. (2001[Ekelund, S., Nygren, P. & Larsson, R. (2001). Biochem. Pharmacol. 61, 1183-1193.]); Kovacevic & Maksic (2001[Kovacevic, B. & Maksic, Z. B. (2001). Org. Lett. 3, 1523-1526.]); Costa et al. (1998[Costa, M., Chiusoli, G. P., Taffurelli, D. & Dalmonego, G. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1541-1546.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) and for standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N5+·C7H7O3S

  • Mr = 347.41

  • Monoclinic, P 21 /c

  • a = 12.3821 (4) Å

  • b = 17.8077 (7) Å

  • c = 14.5112 (5) Å

  • β = 90.013 (2)°

  • V = 3199.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.35 × 0.10 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 20618 measured reflections

  • 5679 independent reflections

  • 4108 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.109

  • S = 1.05

  • 5679 reflections

  • 469 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O1i 0.86 (2) 2.11 (2) 2.948 (3) 166 (2)
N3—HN3⋯O6ii 0.86 (2) 1.95 (2) 2.805 (3) 173 (2)
N6—HN6⋯O6iii 0.88 (2) 2.09 (2) 2.944 (3) 164 (2)
N8—HN8⋯O1iv 0.87 (2) 1.93 (2) 2.799 (2) 177 (2)
N4—H4A⋯N2 0.87 (2) 1.97 (2) 2.686 (3) 139 (2)
N4—H4B⋯O3 0.87 (2) 2.06 (2) 2.909 (3) 166 (2)
N5—H5A⋯O5ii 0.89 (2) 1.98 (2) 2.871 (3) 176 (3)
N5—H5B⋯O2 0.88 (2) 1.99 (2) 2.863 (3) 169 (3)
N9—H9A⋯N7 0.86 (2) 1.98 (2) 2.683 (3) 138 (2)
N9—H9B⋯O5v 0.85 (2) 2.06 (2) 2.906 (3) 174 (2)
N10—H10A⋯O4v 0.88 (2) 2.00 (2) 2.863 (3) 167 (3)
N10—H10B⋯O3iv 0.89 (2) 1.99 (2) 2.872 (3) 179 (3)
C7—H7C⋯O4vi 0.98 2.53 3.283 (3) 133
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z+2; (vi) x, y, z-1.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Guanidines are structurally novel molecules reported to exhibit remarkable biological and pharmacological activities, which are affected by the guanidine functionality (Han et al., 2008; Hannon & Anslyn, 1993). Guanidino-containing drugs such as metaiodobenzylguanidine, MIBG, and methylglyoxalbisguanylhydrazone, MGBG, were shown several decades ago to have antitumor properties and have been subjected to intense preclinical and clinical evaluation (Ekelund et al., 2001). Guanidines are also known as useful basic catalysts (Kovacevic & Maksic, 2001; Costa et al., 1998). The synthesis of guanidine derivatives has also attracted continued research interests in recent years, resulting in many new efficient synthetic methods and guanidinylation reagents for different classes of guanidine compounds (Wu et al., 2002; Hopkins et al., 2002; Kilburn et al., 2002; Manimala & Anslyn, 2002). Against this background, we report herein the the synthesis and crystal structure of the title compound.

As seen as in Fig. 1, the asymmetric unit contains two amino(1H-benzimidazol-2-ylamino)methaniminium) cations and two 4-methylbenzenesulfonate anions. The bond lengths in the title compound are within the normal range (Allen et al., 1987).

In the cations, intramolecular N4—H4A···N2 and N9—H9A···N7 hydrogen bonds generate six-membered S(6) rings in each cation (Bernstein et al., 1995). In the crystal, a three-dimensional supramolecular framework is formed via intermolecular N—H···O and C—H···O hydrogen bonds between the cations and anions (Table 1, Fig. 2). Furthermore, two strong π-π stacking interactions [Cg1···Cg1 (-x, 1 - y, -z) = 3.4112 (14) Å and Cg4···Cg4 (1 - x, 1 - y, 2 - z) = 3.4104 (14) Å] also occur between the imidazole rings of like cations (Cg1 and Cg4 are the centroids of the N1/C8/C13/N2/C14 and N6/C23/C28/N7/C29 ring respectively).

Related literature top

For the synthesis of guanidine-containing compounds, see: Wu et al. (2002); Hopkins et al. (2002); Kilburn et al. (2002); Manimala & Anslyn (2002). For pharmaceutical and chemical applications of guanidines, see: Han et al. (2008); Hannon & Anslyn (1993); Ekelund et al. (2001); Kovacevic & Maksic (2001); Costa et al. (1998). For graph-set motifs, see: Bernstein et al. (1995) and for standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of 175 mg (1 mmol) 1-(1H-benzimidazol-2-yl)guanidine and 191 mg (1 mmol) of 4-methylbenzenesulfonyl chloride was heated under reflux in 50 ml ethanol together with few drops of triethylamine for 6 h. The solid product started to be deposited during heating and filtered off after completion. The crude solid was washed with ethanol and recrystallized to afford colourless plates suitable for X-ray difraction (M.p. 539–541 K).

Refinement top

The C-bound H atoms were placed at geometrically idealized positions with C—H = 0.95 and 0.98 Å for aromatic and methyl H-atoms, respectively. The C-bound H-atoms were refined using a riding model with Uiso(H) = 1.2Ueq(Caromatic) and 1.5Ueq(Cmethyl). The N-bound H atoms were located in a difference Fourier map and their positions were refined with distance restraints [N—H = 0.88 (2) Å] and with Uiso(H) = 1.2Ueq(N). The presence of pseudosymmetry in the structure suggests the orthorhombic space group Pbcn, but attempts to refine the structure in this space group resulted in an unsatisfactory model.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the packing and hydrogen bonding (dashed lines) along the a axis of the title compound.
Amino[(1H-benzimidazol-2-yl)amino]methaniminium 4-methylbenzenesulfonate top
Crystal data top
C8H10N5+·C7H7O3SF(000) = 1456
Mr = 347.41Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9624 reflections
a = 12.3821 (4) Åθ = 2.5–25.1°
b = 17.8077 (7) ŵ = 0.23 mm1
c = 14.5112 (5) ÅT = 100 K
β = 90.013 (2)°Plate, colourless
V = 3199.7 (2) Å30.35 × 0.10 × 0.04 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
4108 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.044
Graphite monochromatorθmax = 25.1°, θmin = 2.5°
ϕ and ω scansh = 1414
20618 measured reflectionsk = 1721
5679 independent reflectionsl = 1717
Refinement top
Refinement on F215 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.044 W = 1/[Σ2(FO2) + (0.0495P)2 + 1.3622P]
where P = (FO2 + 2FC2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.33 e Å3
5679 reflectionsΔρmin = 0.38 e Å3
469 parameters
Crystal data top
C8H10N5+·C7H7O3SV = 3199.7 (2) Å3
Mr = 347.41Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.3821 (4) ŵ = 0.23 mm1
b = 17.8077 (7) ÅT = 100 K
c = 14.5112 (5) Å0.35 × 0.10 × 0.04 mm
β = 90.013 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4108 reflections with I > 2σ(I)
20618 measured reflectionsRint = 0.044
5679 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04415 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
5679 reflectionsΔρmin = 0.38 e Å3
469 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.06286 (16)0.53699 (11)0.14245 (14)0.0175 (6)
N20.09357 (15)0.48502 (11)0.09774 (13)0.0169 (6)
N30.03173 (16)0.40955 (11)0.18217 (14)0.0180 (6)
N40.12756 (17)0.34452 (13)0.15854 (15)0.0213 (7)
N50.01669 (17)0.28656 (13)0.22877 (15)0.0228 (7)
C80.00584 (19)0.59345 (14)0.09792 (15)0.0175 (8)
C90.0290 (2)0.66825 (15)0.08044 (17)0.0225 (8)
C100.0487 (2)0.70888 (15)0.03340 (18)0.0267 (9)
C110.1448 (2)0.67604 (14)0.00378 (18)0.0239 (8)
C120.1676 (2)0.60121 (14)0.02124 (16)0.0210 (8)
C130.09108 (19)0.56002 (14)0.06984 (16)0.0169 (7)
C140.00195 (18)0.47560 (13)0.14059 (16)0.0158 (7)
C150.02761 (19)0.34569 (14)0.18891 (16)0.0181 (8)
N60.56311 (16)0.46290 (12)1.14251 (14)0.0176 (7)
N70.40627 (15)0.51515 (11)1.09786 (13)0.0165 (6)
N80.53226 (16)0.59052 (11)1.18216 (14)0.0174 (6)
N90.37236 (17)0.65557 (12)1.15834 (15)0.0206 (7)
N100.51667 (17)0.71349 (13)1.22845 (15)0.0239 (7)
C230.50569 (19)0.40666 (14)1.09794 (16)0.0174 (7)
C240.5292 (2)0.33155 (14)1.08030 (18)0.0230 (8)
C250.4513 (2)0.29117 (15)1.03352 (18)0.0256 (8)
C260.3551 (2)0.32380 (14)1.00391 (18)0.0240 (8)
C270.33247 (19)0.39879 (14)1.02117 (16)0.0208 (8)
C280.40902 (19)0.43994 (14)1.06964 (16)0.0170 (7)
C290.49835 (18)0.52464 (14)1.14061 (15)0.0162 (8)
C300.47239 (19)0.65446 (14)1.18866 (16)0.0168 (8)
S10.21220 (5)0.14511 (3)0.19245 (4)0.0171 (2)
O10.25453 (12)0.08701 (10)0.25384 (11)0.0209 (5)
O20.09531 (12)0.14896 (9)0.19288 (11)0.0208 (5)
O30.26233 (12)0.21792 (9)0.21165 (11)0.0199 (5)
C10.25080 (18)0.12068 (13)0.07911 (17)0.0182 (8)
C20.1867 (2)0.14390 (16)0.00683 (19)0.0307 (9)
C30.2188 (2)0.13075 (18)0.08296 (19)0.0363 (10)
C40.3145 (2)0.09439 (17)0.10240 (19)0.0312 (9)
C50.3776 (2)0.07199 (19)0.0290 (2)0.0385 (10)
C60.3467 (2)0.08403 (17)0.06154 (19)0.0321 (9)
C70.3494 (2)0.0806 (2)0.2003 (2)0.0464 (13)
S20.71207 (5)0.14502 (3)0.80768 (4)0.0170 (2)
O40.59550 (13)0.14897 (10)0.80726 (11)0.0211 (5)
O50.76233 (12)0.21802 (9)0.78844 (11)0.0210 (5)
O60.75459 (13)0.08684 (10)0.74612 (11)0.0218 (5)
C160.8464 (2)0.08440 (17)0.93848 (19)0.0330 (9)
C170.8775 (2)0.07195 (19)1.0293 (2)0.0397 (10)
C180.8143 (2)0.09440 (17)1.10254 (18)0.0295 (9)
C190.7187 (2)0.13093 (18)1.08268 (19)0.0353 (10)
C200.6868 (2)0.14404 (16)0.99331 (19)0.0301 (9)
C210.75051 (19)0.12081 (14)0.92102 (16)0.0178 (8)
C220.8491 (2)0.0808 (2)1.2004 (2)0.0486 (13)
HN10.1196 (16)0.5434 (14)0.1755 (16)0.0210*
HN30.0980 (14)0.4078 (15)0.1986 (17)0.0220*
H4A0.148 (2)0.3840 (12)0.1274 (17)0.0260*
H4B0.1687 (18)0.3051 (12)0.1641 (18)0.0260*
H5A0.0860 (14)0.2874 (16)0.2457 (18)0.0270*
H5B0.021 (2)0.2448 (12)0.2250 (19)0.0270*
H90.095000.690500.099800.0270*
H100.036200.760500.021000.0320*
H110.195800.705600.029100.0290*
H120.233000.578900.000800.0250*
HN60.6213 (15)0.4571 (15)1.1766 (16)0.0210*
HN80.5993 (14)0.5904 (15)1.2000 (16)0.0210*
H9A0.353 (2)0.6174 (12)1.1260 (16)0.0250*
H9B0.3349 (19)0.6944 (12)1.1706 (18)0.0250*
H10A0.478 (2)0.7546 (12)1.2263 (19)0.0290*
H10B0.5849 (14)0.7141 (16)1.2466 (18)0.0290*
H240.595300.309301.099400.0280*
H250.463800.239501.021100.0310*
H260.304100.294100.971300.0290*
H270.267100.421201.000600.0250*
H20.120400.169000.018700.0370*
H30.174100.147100.132200.0440*
H50.444300.047500.041000.0460*
H60.391000.067300.110900.0390*
H7A0.335600.125700.237300.0690*
H7B0.308600.038300.225800.0690*
H7C0.426800.069000.201600.0690*
H160.890800.068000.889100.0400*
H170.944100.047301.041200.0480*
H190.674000.147401.131900.0420*
H200.620600.169200.981500.0360*
H22A0.800900.043901.229000.0730*
H22B0.845800.128001.235000.0730*
H22C0.923300.061701.201000.0730*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0175 (11)0.0148 (11)0.0202 (11)0.0030 (9)0.0011 (8)0.0053 (9)
N20.0175 (11)0.0146 (11)0.0187 (10)0.0009 (9)0.0013 (8)0.0022 (9)
N30.0129 (10)0.0180 (12)0.0232 (11)0.0025 (9)0.0019 (8)0.0001 (9)
N40.0207 (12)0.0157 (13)0.0275 (12)0.0043 (9)0.0027 (9)0.0042 (10)
N50.0198 (11)0.0176 (13)0.0311 (12)0.0049 (10)0.0052 (9)0.0061 (10)
C80.0206 (13)0.0171 (14)0.0149 (12)0.0004 (10)0.0044 (9)0.0027 (10)
C90.0251 (14)0.0175 (14)0.0249 (13)0.0049 (11)0.0062 (11)0.0048 (11)
C100.0340 (16)0.0160 (15)0.0300 (14)0.0006 (12)0.0085 (12)0.0008 (12)
C110.0266 (14)0.0202 (14)0.0250 (13)0.0053 (11)0.0048 (11)0.0034 (12)
C120.0209 (13)0.0218 (15)0.0204 (13)0.0014 (11)0.0038 (10)0.0014 (11)
C130.0204 (13)0.0124 (13)0.0178 (12)0.0007 (10)0.0059 (10)0.0037 (10)
C140.0170 (12)0.0141 (13)0.0162 (12)0.0004 (10)0.0025 (9)0.0028 (10)
C150.0180 (13)0.0197 (15)0.0167 (12)0.0020 (11)0.0008 (10)0.0011 (10)
N60.0163 (11)0.0157 (12)0.0208 (11)0.0034 (9)0.0005 (8)0.0031 (9)
N70.0190 (11)0.0135 (11)0.0171 (10)0.0001 (9)0.0012 (8)0.0004 (9)
N80.0142 (10)0.0154 (12)0.0227 (11)0.0021 (9)0.0021 (8)0.0005 (9)
N90.0200 (12)0.0127 (12)0.0290 (12)0.0035 (9)0.0014 (9)0.0056 (10)
N100.0198 (12)0.0177 (13)0.0342 (13)0.0039 (10)0.0042 (10)0.0051 (10)
C230.0201 (13)0.0146 (13)0.0174 (12)0.0003 (10)0.0049 (10)0.0027 (10)
C240.0250 (14)0.0169 (14)0.0272 (14)0.0042 (11)0.0062 (11)0.0025 (11)
C250.0318 (15)0.0137 (14)0.0312 (15)0.0006 (12)0.0112 (12)0.0005 (12)
C260.0268 (14)0.0190 (14)0.0262 (14)0.0059 (12)0.0044 (11)0.0033 (12)
C270.0185 (13)0.0205 (15)0.0234 (13)0.0014 (11)0.0050 (10)0.0014 (11)
C280.0203 (13)0.0150 (13)0.0156 (12)0.0009 (10)0.0052 (10)0.0030 (10)
C290.0178 (13)0.0161 (14)0.0148 (12)0.0009 (10)0.0021 (9)0.0030 (10)
C300.0184 (13)0.0166 (14)0.0153 (12)0.0007 (10)0.0007 (10)0.0001 (10)
S10.0165 (3)0.0142 (3)0.0205 (3)0.0006 (2)0.0007 (2)0.0022 (3)
O10.0190 (9)0.0171 (10)0.0267 (9)0.0007 (7)0.0013 (7)0.0067 (8)
O20.0166 (9)0.0212 (10)0.0245 (9)0.0000 (7)0.0024 (7)0.0013 (8)
O30.0222 (9)0.0130 (9)0.0245 (9)0.0008 (7)0.0026 (7)0.0001 (7)
C10.0182 (13)0.0117 (13)0.0246 (13)0.0023 (10)0.0032 (10)0.0000 (11)
C20.0279 (15)0.0370 (17)0.0272 (14)0.0119 (13)0.0009 (12)0.0022 (13)
C30.0344 (17)0.049 (2)0.0254 (15)0.0067 (14)0.0032 (12)0.0034 (14)
C40.0267 (15)0.0379 (18)0.0291 (15)0.0119 (13)0.0026 (12)0.0130 (13)
C50.0242 (15)0.051 (2)0.0404 (18)0.0084 (14)0.0052 (13)0.0144 (15)
C60.0251 (15)0.0411 (19)0.0302 (15)0.0109 (13)0.0043 (12)0.0029 (14)
C70.0329 (17)0.073 (3)0.0332 (17)0.0122 (16)0.0085 (13)0.0214 (17)
S20.0163 (3)0.0140 (3)0.0206 (3)0.0006 (2)0.0008 (2)0.0022 (3)
O40.0170 (9)0.0209 (10)0.0253 (9)0.0016 (7)0.0014 (7)0.0022 (8)
O50.0213 (9)0.0137 (10)0.0279 (9)0.0003 (7)0.0010 (7)0.0009 (8)
O60.0196 (9)0.0186 (10)0.0271 (9)0.0019 (7)0.0010 (7)0.0054 (8)
C160.0260 (15)0.0418 (19)0.0311 (15)0.0109 (13)0.0044 (12)0.0083 (14)
C170.0252 (16)0.053 (2)0.0410 (18)0.0095 (14)0.0048 (13)0.0168 (16)
C180.0275 (15)0.0349 (18)0.0262 (14)0.0088 (13)0.0032 (11)0.0110 (13)
C190.0334 (16)0.048 (2)0.0245 (15)0.0070 (14)0.0019 (12)0.0014 (14)
C200.0271 (15)0.0367 (17)0.0266 (14)0.0116 (13)0.0002 (11)0.0016 (13)
C210.0194 (13)0.0114 (13)0.0226 (13)0.0029 (10)0.0044 (10)0.0016 (10)
C220.0365 (18)0.075 (3)0.0342 (17)0.0139 (17)0.0102 (14)0.0238 (18)
Geometric parameters (Å, º) top
S1—O21.4490 (16)C9—H90.9500
S1—O31.4642 (17)C10—H100.9500
S1—O11.4624 (18)C11—H110.9500
S1—C11.767 (3)C12—H120.9500
S2—C211.766 (2)C23—C241.393 (4)
S2—O61.4659 (18)C23—C281.397 (3)
S2—O51.4681 (17)C24—C251.381 (4)
S2—O41.4451 (17)C25—C261.393 (4)
N1—C141.356 (3)C26—C271.387 (4)
N1—C81.388 (3)C27—C281.389 (3)
N2—C141.305 (3)C24—H240.9500
N2—C131.396 (3)C25—H250.9500
N3—C151.357 (3)C26—H260.9500
N3—C141.386 (3)C27—H270.9500
N4—C151.314 (3)C1—C61.379 (3)
N5—C151.321 (3)C1—C21.379 (4)
N1—HN10.86 (2)C2—C31.382 (4)
N3—HN30.855 (18)C3—C41.380 (4)
N4—H4A0.87 (2)C4—C71.505 (4)
N4—H4B0.87 (2)C4—C51.380 (4)
N5—H5A0.893 (18)C5—C61.385 (4)
N5—H5B0.88 (2)C2—H20.9500
N6—C291.361 (3)C3—H30.9500
N6—C231.388 (3)C5—H50.9500
N7—C281.401 (3)C6—H60.9500
N7—C291.309 (3)C7—H7B0.9800
N8—C291.384 (3)C7—H7C0.9800
N8—C301.362 (3)C7—H7A0.9800
N9—C301.315 (3)C16—C171.391 (4)
N10—C301.319 (3)C16—C211.376 (4)
N6—HN60.88 (2)C17—C181.379 (4)
N8—HN80.870 (18)C18—C191.381 (4)
N9—H9B0.85 (2)C18—C221.504 (4)
N9—H9A0.86 (2)C19—C201.376 (4)
N10—H10B0.885 (19)C20—C211.376 (4)
N10—H10A0.88 (2)C16—H160.9500
C8—C91.386 (4)C17—H170.9500
C8—C131.400 (3)C19—H190.9500
C9—C101.384 (4)C20—H200.9500
C10—C111.394 (4)C22—H22A0.9800
C11—C121.386 (4)C22—H22B0.9800
C12—C131.391 (3)C22—H22C0.9800
O2—S1—C1106.62 (10)C25—C26—C27121.2 (2)
O3—S1—C1106.28 (10)C26—C27—C28117.5 (2)
O1—S1—O3111.02 (10)N7—C28—C23109.9 (2)
O1—S1—C1107.21 (10)N7—C28—C27129.5 (2)
O1—S1—O2112.88 (9)C23—C28—C27120.6 (2)
O2—S1—O3112.38 (9)N7—C29—N8125.5 (2)
O6—S2—C21107.36 (11)N6—C29—N7114.7 (2)
O4—S2—O5112.31 (10)N6—C29—N8119.8 (2)
O5—S2—C21106.21 (11)N8—C30—N10118.1 (2)
O5—S2—O6110.96 (10)N8—C30—N9120.2 (2)
O4—S2—O6113.00 (10)N9—C30—N10121.8 (2)
O4—S2—C21106.55 (11)C25—C24—H24122.00
C8—N1—C14105.87 (19)C23—C24—H24122.00
C13—N2—C14104.01 (19)C24—C25—H25119.00
C14—N3—C15125.4 (2)C26—C25—H25119.00
C8—N1—HN1125.5 (17)C25—C26—H26119.00
C14—N1—HN1127.1 (16)C27—C26—H26119.00
C14—N3—HN3116.2 (18)C28—C27—H27121.00
C15—N3—HN3118.0 (18)C26—C27—H27121.00
C15—N4—H4A115.7 (16)S1—C1—C6121.45 (19)
C15—N4—H4B122.2 (15)S1—C1—C2118.58 (18)
H4A—N4—H4B122 (2)C2—C1—C6119.8 (2)
C15—N5—H5A120.4 (18)C1—C2—C3120.1 (2)
H5A—N5—H5B123 (2)C2—C3—C4121.3 (3)
C15—N5—H5B115.2 (16)C5—C4—C7121.3 (2)
C23—N6—C29105.77 (19)C3—C4—C5117.7 (3)
C28—N7—C29103.93 (19)C3—C4—C7121.1 (2)
C29—N8—C30125.0 (2)C4—C5—C6122.1 (2)
C29—N6—HN6126.1 (17)C1—C6—C5119.1 (2)
C23—N6—HN6126.6 (18)C1—C2—H2120.00
C29—N8—HN8114.7 (17)C3—C2—H2120.00
C30—N8—HN8120.1 (18)C4—C3—H3119.00
C30—N9—H9B117.1 (16)C2—C3—H3119.00
C30—N9—H9A115.7 (16)C4—C5—H5119.00
H9A—N9—H9B127 (2)C6—C5—H5119.00
C30—N10—H10B122.5 (18)C1—C6—H6120.00
H10A—N10—H10B122 (2)C5—C6—H6120.00
C30—N10—H10A115.1 (16)H7B—C7—H7C110.00
C9—C8—C13122.2 (2)C4—C7—H7A109.00
N1—C8—C13105.3 (2)C4—C7—H7B110.00
N1—C8—C9132.5 (2)C4—C7—H7C109.00
C8—C9—C10116.7 (2)H7A—C7—H7B109.00
C9—C10—C11121.8 (2)H7A—C7—H7C109.00
C10—C11—C12121.4 (2)C17—C16—C21119.2 (2)
C11—C12—C13117.5 (2)C16—C17—C18121.8 (2)
N2—C13—C8110.0 (2)C17—C18—C19117.5 (2)
C8—C13—C12120.5 (2)C17—C18—C22121.2 (2)
N2—C13—C12129.6 (2)C19—C18—C22121.2 (2)
N1—C14—N3119.8 (2)C18—C19—C20121.5 (2)
N1—C14—N2114.9 (2)C19—C20—C21120.2 (2)
N2—C14—N3125.3 (2)S2—C21—C16121.26 (19)
N4—C15—N5121.7 (2)S2—C21—C20118.83 (19)
N3—C15—N5118.3 (2)C16—C21—C20119.7 (2)
N3—C15—N4119.9 (2)C17—C16—H16120.00
C10—C9—H9122.00C21—C16—H16120.00
C8—C9—H9122.00C16—C17—H17119.00
C11—C10—H10119.00C18—C17—H17119.00
C9—C10—H10119.00C18—C19—H19119.00
C10—C11—H11119.00C20—C19—H19119.00
C12—C11—H11119.00C19—C20—H20120.00
C13—C12—H12121.00C21—C20—H20120.00
C11—C12—H12121.00C18—C22—H22A109.00
N6—C23—C24132.2 (2)C18—C22—H22B109.00
N6—C23—C28105.6 (2)C18—C22—H22C109.00
C24—C23—C28122.2 (2)H22A—C22—H22B109.00
C23—C24—C25116.4 (2)H22A—C22—H22C110.00
C24—C25—C26122.1 (2)H22B—C22—H22C109.00
O1—S1—C1—C2152.0 (2)C13—C8—C9—C100.1 (4)
O2—S1—C1—C230.8 (2)N1—C8—C9—C10179.8 (2)
O3—S1—C1—C289.3 (2)N1—C8—C13—C12179.1 (2)
O1—S1—C1—C632.8 (2)C8—C9—C10—C111.0 (4)
O2—S1—C1—C6153.9 (2)C9—C10—C11—C120.9 (4)
O3—S1—C1—C686.0 (2)C10—C11—C12—C130.2 (4)
O5—S2—C21—C2089.1 (2)C11—C12—C13—C81.2 (3)
O6—S2—C21—C20152.1 (2)C11—C12—C13—N2179.0 (2)
O6—S2—C21—C1632.8 (2)C28—C23—C24—C250.4 (4)
O4—S2—C21—C16154.2 (2)N6—C23—C24—C25179.7 (2)
O5—S2—C21—C1685.9 (2)C24—C23—C28—N7179.0 (2)
O4—S2—C21—C2030.8 (2)N6—C23—C28—N71.0 (3)
C14—N1—C8—C9178.3 (3)N6—C23—C28—C27179.2 (2)
C14—N1—C8—C131.4 (2)C24—C23—C28—C270.8 (4)
C8—N1—C14—N3178.5 (2)C23—C24—C25—C261.1 (4)
C8—N1—C14—N21.8 (3)C24—C25—C26—C270.8 (4)
C13—N2—C14—N3179.0 (2)C25—C26—C27—C280.4 (4)
C14—N2—C13—C80.3 (3)C26—C27—C28—C231.2 (3)
C13—N2—C14—N11.3 (3)C26—C27—C28—N7178.6 (2)
C14—N2—C13—C12180.0 (2)S1—C1—C2—C3175.1 (2)
C14—N3—C15—N5178.4 (2)C2—C1—C6—C50.8 (4)
C15—N3—C14—N23.6 (4)C6—C1—C2—C30.3 (4)
C14—N3—C15—N43.5 (4)S1—C1—C6—C5174.4 (2)
C15—N3—C14—N1176.6 (2)C1—C2—C3—C40.1 (4)
C23—N6—C29—N8178.4 (2)C2—C3—C4—C7179.7 (3)
C23—N6—C29—N71.5 (3)C2—C3—C4—C50.4 (4)
C29—N6—C23—C24178.6 (3)C3—C4—C5—C61.0 (5)
C29—N6—C23—C281.5 (2)C7—C4—C5—C6179.8 (3)
C28—N7—C29—N8179.1 (2)C4—C5—C6—C11.1 (5)
C29—N7—C28—C27180.0 (3)C17—C16—C21—C200.3 (4)
C29—N7—C28—C230.2 (3)C17—C16—C21—S2174.8 (2)
C28—N7—C29—N60.8 (3)C21—C16—C17—C180.7 (5)
C30—N8—C29—N6176.5 (2)C16—C17—C18—C190.8 (5)
C29—N8—C30—N93.6 (4)C16—C17—C18—C22179.8 (3)
C30—N8—C29—N73.4 (4)C17—C18—C19—C200.5 (4)
C29—N8—C30—N10178.4 (2)C22—C18—C19—C20179.5 (3)
N1—C8—C13—N20.7 (3)C18—C19—C20—C210.1 (4)
C9—C8—C13—N2179.0 (2)C19—C20—C21—C160.0 (4)
C9—C8—C13—C121.2 (4)C19—C20—C21—S2175.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O1i0.86 (2)2.11 (2)2.948 (3)166 (2)
N3—HN3···O6ii0.86 (2)1.95 (2)2.805 (3)173 (2)
N6—HN6···O6iii0.88 (2)2.09 (2)2.944 (3)164 (2)
N8—HN8···O1iv0.87 (2)1.93 (2)2.799 (2)177 (2)
N4—H4A···N20.87 (2)1.97 (2)2.686 (3)139 (2)
N4—H4B···O30.87 (2)2.06 (2)2.909 (3)166 (2)
N5—H5A···O5ii0.89 (2)1.98 (2)2.871 (3)176 (3)
N5—H5B···O20.88 (2)1.99 (2)2.863 (3)169 (3)
N9—H9A···N70.86 (2)1.98 (2)2.683 (3)138 (2)
N9—H9B···O5v0.85 (2)2.06 (2)2.906 (3)174 (2)
N10—H10A···O4v0.88 (2)2.00 (2)2.863 (3)167 (3)
N10—H10B···O3iv0.89 (2)1.99 (2)2.872 (3)179 (3)
C2—H2···O20.952.572.929 (3)103
C7—H7C···O4vi0.982.533.283 (3)133
C20—H20···O40.952.572.928 (3)102
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1, z+2; (vi) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O1i0.86 (2)2.11 (2)2.948 (3)166 (2)
N3—HN3···O6ii0.855 (18)1.954 (18)2.805 (3)173 (2)
N6—HN6···O6iii0.88 (2)2.09 (2)2.944 (3)164 (2)
N8—HN8···O1iv0.870 (18)1.931 (18)2.799 (2)177 (2)
N4—H4A···N20.87 (2)1.97 (2)2.686 (3)139 (2)
N4—H4B···O30.87 (2)2.06 (2)2.909 (3)166 (2)
N5—H5A···O5ii0.893 (18)1.980 (18)2.871 (3)176 (3)
N5—H5B···O20.88 (2)1.99 (2)2.863 (3)169 (3)
N9—H9A···N70.86 (2)1.98 (2)2.683 (3)138 (2)
N9—H9B···O5v0.85 (2)2.06 (2)2.906 (3)174 (2)
N10—H10A···O4v0.88 (2)2.00 (2)2.863 (3)167 (3)
N10—H10B···O3iv0.885 (19)1.987 (18)2.872 (3)179 (3)
C7—H7C···O4vi0.982.533.283 (3)133
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1, z+2; (vi) x, y, z1.
 

Acknowledgements

Manchester Metropolitan University, Erciyes University and Sohag University are gratefully acknowledged for supporting this study. The authors also thank José Romero Garzón, Centro de Instrumentación Científica, Universidad de Granada, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosta, M., Chiusoli, G. P., Taffurelli, D. & Dalmonego, G. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1541–1546.  Web of Science CrossRef Google Scholar
First citationEkelund, S., Nygren, P. & Larsson, R. (2001). Biochem. Pharmacol. 61, 1183–1193.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHan, J.-J., Xu, Y.-F., Su, Y.-P., She, X.-P. & Pan, X.-F. (2008). Catal. Commun. 9, 2077–2079.  Web of Science CrossRef CAS Google Scholar
First citationHannon, C. L. & Anslyn, E. V. (1993). Bioorg. Chem. Front. 3, 193–255.  CrossRef CAS Google Scholar
First citationHopkins, T. P., Dener, J. M. & Boldi, A. M. (2002). J. Comb. Chem. 4, 167–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKilburn, J. P., Lau, J. & Jones, R. C. F. (2002). Tetrahedron, 58, 1739–1743.  Web of Science CrossRef CAS Google Scholar
First citationKovacevic, B. & Maksic, Z. B. (2001). Org. Lett. 3, 1523–1526.  Web of Science CrossRef PubMed CAS Google Scholar
First citationManimala, J. C. & Anslyn, E. V. (2002). Tetrahedron Lett. 43, 565–567.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Y.-Q., Hamilton, S. K., Wilkinson, D. E. & Hamilton, G. S. (2002). J. Org. Chem. 67, 7553–7556.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1543-o1544
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds