organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3′-[(1H-Indol-3-yl)carbon­yl]-1′-methyl-2-oxo-4′-(thio­phen-2-yl)­spiro­[indoline-3,2′-pyrrolidine]-3′-carbo­nitrile

aSri Ram Engineering College, Chennai 602 024, India, bOrganic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 6 September 2013; accepted 19 September 2013; online 25 September 2013)

In the title compound, C26H20N4O2S, the central pyrrolidine ring adopts a twist conformation on the C—C bond involving the spiro C atom. Its mean plane makes dihedral angles of 78.83 (14), 65.91 (15) and 44.49 (18)° with the mean planes of the adjacent oxindole ring system, the indole system and the thio­phene ring, respectively. The indole and indoline units are essentially planar, with maximum deviations of 0.019 (3) and 0.090 (3) Å, respectively. In the oxindole fused-ring system, the pyrrole ring adopts an envelope conformation with the spiro C atom as the flap. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules, forming inversion dimers with an R22(8) ring motif. The dimers are linked by further N—H⋯O hydrogen bonds, forming a two-dimensional network lying parallel to (100).

Related literature

For background to indole derivatives and their biological activity, see: Srivastava et al. (2011[Srivastava, Anupam & Pandeya, S. N. (2011). JCPR, 1, 1-17.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Inglebert et al. (2013[Inglebert, S. A., Arun, Y., Sethusankar, K. & Perumal, P. T. (2013). Acta Cryst. E69, o1328-o1329.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20N4O2S

  • Mr = 452.52

  • Monoclinic, P 21 /c

  • a = 11.6215 (6) Å

  • b = 17.1050 (11) Å

  • c = 12.3381 (8) Å

  • β = 114.431 (2)°

  • V = 2233.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII2 CCD difractometer diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.957

  • 16319 measured reflections

  • 5279 independent reflections

  • 3636 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.252

  • S = 1.07

  • 5279 reflections

  • 306 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.84 (4) 2.12 (5) 2.828 (3) 142 (5)
N4—H4A⋯O1ii 0.85 (3) 1.99 (3) 2.829 (3) 177 (3)
Symmetry codes: (i) -x+1, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The name indole is portmanteau of the words indigo and oleum, since indole was first isolated by treatment of the indigo dye with oleum. The indole compound is aromatic and solid at room temperature, and it has many applications in the fragrance and pharmaceutical industries. Several natural alkaloids having indole as their basic ring and have been found to be therapeutically active. The biological activities of indole derivatives include antimicrobial, antibiotic, analgesic, anticonvulsant, antimalarial, anticancer, antiulcer and antileishmanial (Srivastava et al., 2011).

In the title compound, fig. 1, the central pyrrolidine ring adopts a twisted conformation on bond C8-C9 with puckering parameters (Cremer and Pople, 1975) of q(2) = 0.407 (3)Å and ϕ(2) = 133.5 (4)°. Atoms C8 and C9 deviate from the mean plane of the other atoms by 0.253 (3)Å and -0.232 (3)Å, respectively. The dihedral angle between the mean plane of the indole and the oxindole unit is 34.22 (11)°. The angles between the mean planes of the pyrrolidine ring and the oxindole and indole units are 78.83 (14)° and 65.91 (15)°, respectively.

The thiophene ring is perpendicular to the indole unit with a dihedral angle of 89.02 (15)°. Due to steric forces caused by the bulky substituents on the pyrrolidine moiety, the N—C and C—C bond lengths are slightly longer than the normal values. The sum of the angle around atom N1 (339.1 (7)°) is in accordance with sp3 hybridization. The indole and oxindole units are planar with maximum deviations of 0.019 (3)Å and -0.090 (3)Å for the atoms C11 and C8 from the mean planes. The thiophene ring is also essentially planar with a maximum deviation of -0.006 (4)Å for C2 atom.

The cyano bond distance C26N2 agrees well with the reported value of 1.138 (7) Å (Allen et al., 1987). The small tilts between the planes of the five- and six-membered rings in the indole and oxindole units are 3.87 (16)° and 1.56 (18)°, respectively. Both the indole and oxindole moieties are individually quite planar and the dihedral angle between them is 34.22 (11)°. The title compound exhibits structural similarities with the previously reported related structure (Inglebert et al., 2013).

Atom O1 deviates by 1.4756 (22) Å and 0.3082 (24) Å from the mean plane of the pyrrolidine ring and indole unit, respectively. Atom O2 attached to C25 is coplanar with the indoline ring system as indicated by the torsion angle O2–C25–N3–C24 = 175.5 (3)°.

In the crystal, molecules are linked by pairs of N—H···O hydrogen bonds, forming inversion dimers with an R22(8) ring motifs (Bernstein et al., 1995). The dimers are linked by N—H···O hydrogen bonds forming a two-dimensional network lying parallel to (100) [Table 1 and Fig. 2].

Related literature top

For background to indole derivatives and their biological activity, see: Srivastava et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995). For a related structure, see: Inglebert et al. (2013).

Experimental top

A mixture of isatin (1 mmol), sarcosine (1.2 mmol) and 2-(1H-indole- 3-carbonyl)-3-(thiophen-2-yl)acrylonitrile (1 mmol) were refluxed in ethanol (30 ml). After completion of the reaction, as evidenced by TLC analysis, the reaction mixture was poured into ice-water. The resulting solid was filtered off and purified by column chromatography using ethyl acetate: petroleum ether (6:4) as an eluent to afford pure product. Slow evaporation of the solvents yielded block-like colourless crystals of the title compound.

Refinement top

The H atoms were localized from the difference electron density maps. The N bound H atoms were freely refined. The C bound H atoms were treated as riding atoms: C-H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. The rotation angles for methyl groups were optimized by least squares.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The partial view of thecrystal packing of the title compound along the c axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have omitted for clarity).
3'-[(1H-Indol-3-yl)carbonyl]-1'-methyl-2-oxo-4'-(thiophen-2-yl)spiro[indoline-3,2'-pyrrolidine]-3'-carbonitrile top
Crystal data top
C26H20N4O2SF(000) = 944
Mr = 452.52Dx = 1.346 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5279 reflections
a = 11.6215 (6) Åθ = 2.2–27.9°
b = 17.1050 (11) ŵ = 0.18 mm1
c = 12.3381 (8) ÅT = 293 K
β = 114.431 (2)°Block, colourless
V = 2233.0 (2) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII2 CCD difractometer
diffractometer
5279 independent reflections
Radiation source: fine-focus sealed tube3636 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scanθmax = 27.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 158
Tmin = 0.941, Tmax = 0.957k = 2122
16319 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.252H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.1409P)2 + 1.6573P]
where P = (Fo2 + 2Fc2)/3
5279 reflections(Δ/σ)max = 0.003
306 parametersΔρmax = 1.15 e Å3
5 restraintsΔρmin = 0.98 e Å3
Crystal data top
C26H20N4O2SV = 2233.0 (2) Å3
Mr = 452.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6215 (6) ŵ = 0.18 mm1
b = 17.1050 (11) ÅT = 293 K
c = 12.3381 (8) Å0.35 × 0.30 × 0.25 mm
β = 114.431 (2)°
Data collection top
Bruker APEXII2 CCD difractometer
diffractometer
5279 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3636 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.957Rint = 0.027
16319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0735 restraints
wR(F2) = 0.252H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.15 e Å3
5279 reflectionsΔρmin = 0.98 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.9175 (3)0.04509 (16)0.1198 (3)0.0313 (6)
H50.85260.03710.03900.038*
C60.9536 (3)0.03507 (18)0.1780 (3)0.0403 (7)
H6A0.92040.07600.11880.048*
H6B1.04480.04030.21700.048*
C70.8686 (3)0.12000 (19)0.2877 (4)0.0502 (8)
H7A0.94130.15290.30640.075*
H7B0.79990.13970.21800.075*
H7C0.84460.11970.35340.075*
C80.7970 (2)0.01482 (16)0.2360 (2)0.0289 (6)
C90.8532 (2)0.08688 (16)0.1927 (2)0.0277 (6)
C100.7470 (2)0.14477 (16)0.1152 (2)0.0303 (6)
C110.6903 (3)0.19866 (17)0.1672 (2)0.0323 (6)
C120.5730 (2)0.24011 (16)0.1035 (2)0.0311 (6)
C130.4806 (3)0.24014 (19)0.0133 (3)0.0394 (7)
H130.48820.20790.07060.047*
C140.3773 (3)0.2892 (2)0.0420 (3)0.0474 (8)
H140.31530.28950.11960.057*
C150.3641 (3)0.3378 (2)0.0420 (3)0.0479 (8)
H150.29460.37100.01920.058*
C160.4511 (3)0.33779 (19)0.1576 (3)0.0446 (8)
H160.44130.36940.21450.054*
C170.5550 (3)0.28865 (18)0.1871 (3)0.0361 (6)
C180.7336 (3)0.22322 (19)0.2844 (3)0.0419 (7)
H180.80710.20550.34630.050*
C190.7534 (2)0.03331 (17)0.3323 (2)0.0313 (6)
C200.8205 (3)0.0492 (2)0.4520 (3)0.0405 (7)
H200.90830.04680.48700.049*
C210.7536 (4)0.0689 (2)0.5186 (3)0.0520 (9)
H210.79740.08070.59890.062*
C220.6227 (3)0.0714 (2)0.4675 (3)0.0519 (9)
H220.57990.08560.51360.062*
C230.5554 (3)0.0530 (2)0.3496 (3)0.0461 (8)
H230.46760.05330.31560.055*
C240.6223 (3)0.03431 (18)0.2832 (3)0.0344 (6)
C250.6696 (2)0.00651 (17)0.1305 (2)0.0320 (6)
C260.9511 (3)0.12412 (17)0.2976 (3)0.0338 (6)
N10.8989 (2)0.04069 (14)0.2652 (2)0.0314 (5)
N21.0305 (3)0.1513 (2)0.3775 (3)0.0536 (8)
N30.5757 (2)0.01076 (17)0.1639 (2)0.0384 (6)
N40.6549 (3)0.27593 (17)0.2955 (2)0.0432 (6)
O10.7082 (2)0.13787 (13)0.00656 (18)0.0420 (5)
O20.65774 (19)0.03273 (14)0.03448 (19)0.0431 (6)
C31.1633 (3)0.07184 (19)0.1643 (3)0.0387 (7)
H31.20420.02880.21000.046*
C11.1410 (4)0.1943 (2)0.0621 (4)0.0541 (9)
H11.16830.23850.03560.065*
C21.2182 (3)0.1393 (2)0.1252 (3)0.0540 (9)
H21.30450.14230.14500.065*
C41.0225 (3)0.09175 (19)0.1099 (3)0.0369 (6)
S10.98893 (10)0.17802 (6)0.03333 (12)0.0667 (4)
H3A0.4965 (19)0.008 (4)0.130 (5)0.110 (19)*
H4A0.669 (4)0.303 (2)0.357 (3)0.066 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0313 (13)0.0332 (14)0.0297 (14)0.0053 (11)0.0129 (11)0.0025 (12)
C60.0417 (15)0.0360 (16)0.0468 (18)0.0096 (12)0.0220 (14)0.0045 (14)
C70.0495 (18)0.0358 (17)0.066 (2)0.0044 (14)0.0248 (17)0.0119 (16)
C80.0236 (11)0.0356 (14)0.0229 (12)0.0021 (10)0.0048 (10)0.0001 (11)
C90.0257 (11)0.0327 (13)0.0229 (12)0.0042 (10)0.0084 (10)0.0002 (11)
C100.0318 (12)0.0323 (14)0.0248 (13)0.0061 (11)0.0095 (11)0.0021 (11)
C110.0337 (13)0.0346 (14)0.0265 (13)0.0070 (11)0.0103 (11)0.0001 (11)
C120.0318 (13)0.0314 (14)0.0314 (14)0.0035 (11)0.0142 (11)0.0020 (11)
C130.0350 (14)0.0453 (17)0.0357 (16)0.0043 (12)0.0123 (13)0.0011 (14)
C140.0303 (14)0.055 (2)0.0478 (19)0.0043 (13)0.0066 (13)0.0085 (16)
C150.0341 (15)0.0502 (19)0.062 (2)0.0124 (13)0.0223 (15)0.0099 (17)
C160.0448 (16)0.0409 (17)0.056 (2)0.0098 (14)0.0284 (16)0.0002 (15)
C170.0386 (14)0.0352 (15)0.0368 (16)0.0033 (12)0.0180 (13)0.0011 (13)
C180.0439 (16)0.0426 (17)0.0344 (16)0.0111 (13)0.0114 (13)0.0040 (13)
C190.0306 (13)0.0366 (15)0.0249 (13)0.0020 (11)0.0096 (11)0.0030 (11)
C200.0363 (14)0.0528 (19)0.0269 (14)0.0078 (13)0.0076 (12)0.0031 (13)
C210.058 (2)0.070 (2)0.0266 (15)0.0113 (18)0.0167 (15)0.0025 (16)
C220.056 (2)0.068 (2)0.0418 (19)0.0141 (17)0.0301 (17)0.0036 (17)
C230.0346 (15)0.060 (2)0.0468 (19)0.0058 (14)0.0197 (14)0.0023 (16)
C240.0307 (13)0.0400 (15)0.0305 (14)0.0023 (11)0.0106 (11)0.0029 (12)
C250.0271 (12)0.0350 (14)0.0280 (14)0.0000 (11)0.0056 (11)0.0010 (12)
C260.0300 (13)0.0369 (15)0.0329 (15)0.0036 (11)0.0114 (12)0.0023 (12)
N10.0288 (11)0.0308 (12)0.0310 (12)0.0057 (9)0.0088 (10)0.0044 (10)
N20.0381 (14)0.065 (2)0.0456 (16)0.0050 (13)0.0052 (13)0.0178 (15)
N30.0242 (11)0.0548 (16)0.0309 (13)0.0000 (11)0.0061 (10)0.0052 (12)
N40.0483 (15)0.0466 (15)0.0318 (14)0.0116 (12)0.0135 (12)0.0089 (12)
O10.0500 (12)0.0498 (13)0.0247 (10)0.0188 (10)0.0139 (9)0.0043 (9)
O20.0329 (10)0.0571 (14)0.0322 (11)0.0007 (9)0.0064 (9)0.0134 (10)
C30.0327 (11)0.0462 (16)0.0462 (17)0.0091 (12)0.0255 (12)0.0036 (14)
C10.057 (2)0.0451 (19)0.069 (2)0.0063 (16)0.0351 (19)0.0027 (18)
C20.0441 (18)0.057 (2)0.066 (2)0.0071 (15)0.0274 (17)0.0100 (18)
C40.0348 (11)0.0456 (14)0.0338 (15)0.0016 (12)0.0177 (11)0.0060 (10)
S10.0605 (6)0.0559 (6)0.0906 (9)0.0067 (4)0.0380 (6)0.0152 (5)
Geometric parameters (Å, º) top
C5—C41.505 (4)C16—C171.390 (4)
C5—C61.524 (4)C16—H160.9300
C5—C91.560 (4)C17—N41.379 (4)
C5—H50.9800C18—N41.331 (4)
C6—N11.462 (4)C18—H180.9300
C6—H6A0.9700C19—C201.382 (4)
C6—H6B0.9700C19—C241.388 (4)
C7—N11.457 (4)C20—C211.385 (5)
C7—H7A0.9600C20—H200.9300
C7—H7B0.9600C21—C221.386 (5)
C7—H7C0.9600C21—H210.9300
C8—N11.442 (3)C22—C231.372 (5)
C8—C191.506 (4)C22—H220.9300
C8—C251.557 (3)C23—C241.379 (4)
C8—C91.587 (4)C23—H230.9300
C9—C261.469 (4)C24—N31.401 (4)
C9—C101.562 (4)C25—O21.220 (3)
C10—O11.231 (3)C25—N31.349 (4)
C10—C111.430 (4)C26—N21.135 (4)
C11—C181.385 (4)N3—H3A0.84 (2)
C11—C121.446 (4)N4—H4A0.844 (19)
C12—C131.396 (4)C3—C21.492 (4)
C12—C171.405 (4)C3—C41.528 (4)
C13—C141.385 (4)C3—H30.9300
C13—H130.9300C1—C21.310 (5)
C14—C151.386 (5)C1—S11.676 (4)
C14—H140.9300C1—H10.9300
C15—C161.365 (5)C2—H20.9300
C15—H150.9300C4—S11.708 (3)
C4—C5—C6116.2 (2)N4—C17—C16129.9 (3)
C4—C5—C9113.7 (2)N4—C17—C12107.3 (2)
C6—C5—C9104.2 (2)C16—C17—C12122.8 (3)
C4—C5—H5107.5N4—C18—C11110.1 (3)
C6—C5—H5107.5N4—C18—H18124.9
C9—C5—H5107.5C11—C18—H18124.9
N1—C6—C5106.7 (2)C20—C19—C24119.8 (3)
N1—C6—H6A110.4C20—C19—C8131.2 (3)
C5—C6—H6A110.4C24—C19—C8109.0 (2)
N1—C6—H6B110.4C19—C20—C21118.3 (3)
C5—C6—H6B110.4C19—C20—H20120.8
H6A—C6—H6B108.6C21—C20—H20120.8
N1—C7—H7A109.5C20—C21—C22121.2 (3)
N1—C7—H7B109.5C20—C21—H21119.4
H7A—C7—H7B109.5C22—C21—H21119.4
N1—C7—H7C109.5C23—C22—C21120.8 (3)
H7A—C7—H7C109.5C23—C22—H22119.6
H7B—C7—H7C109.5C21—C22—H22119.6
N1—C8—C19116.8 (2)C22—C23—C24118.0 (3)
N1—C8—C25116.9 (2)C22—C23—H23121.0
C19—C8—C25101.2 (2)C24—C23—H23121.0
N1—C8—C9100.7 (2)C23—C24—C19122.0 (3)
C19—C8—C9115.0 (2)C23—C24—N3128.6 (3)
C25—C8—C9106.4 (2)C19—C24—N3109.4 (2)
C26—C9—C5109.0 (2)O2—C25—N3126.6 (3)
C26—C9—C10113.1 (2)O2—C25—C8125.8 (2)
C5—C9—C10112.5 (2)N3—C25—C8107.6 (2)
C26—C9—C8108.5 (2)N2—C26—C9177.1 (3)
C5—C9—C8101.5 (2)C8—N1—C7115.0 (2)
C10—C9—C8111.6 (2)C8—N1—C6109.6 (2)
O1—C10—C11121.4 (2)C7—N1—C6114.5 (3)
O1—C10—C9116.5 (2)C25—N3—C24112.0 (2)
C11—C10—C9121.9 (2)C25—N3—H3A134 (4)
C18—C11—C10128.8 (3)C24—N3—H3A114 (4)
C18—C11—C12105.8 (2)C18—N4—C17110.3 (3)
C10—C11—C12125.3 (2)C18—N4—H4A125 (3)
C13—C12—C17118.2 (3)C17—N4—H4A124 (3)
C13—C12—C11135.3 (3)C2—C3—C4102.1 (3)
C17—C12—C11106.5 (2)C2—C3—H3129.0
C14—C13—C12118.7 (3)C4—C3—H3129.0
C14—C13—H13120.7C2—C1—S1114.2 (3)
C12—C13—H13120.7C2—C1—H1122.9
C13—C14—C15121.6 (3)S1—C1—H1122.9
C13—C14—H14119.2C1—C2—C3117.9 (3)
C15—C14—H14119.2C1—C2—H2121.1
C16—C15—C14121.2 (3)C3—C2—H2121.1
C16—C15—H15119.4C5—C4—C3127.1 (3)
C14—C15—H15119.4C5—C4—S1119.7 (2)
C15—C16—C17117.5 (3)C3—C4—S1113.2 (2)
C15—C16—H16121.3C1—S1—C492.66 (17)
C17—C16—H16121.3
C4—C5—C6—N1132.7 (3)N1—C8—C19—C24136.3 (3)
C9—C5—C6—N16.8 (3)C25—C8—C19—C248.2 (3)
C4—C5—C9—C2641.6 (3)C9—C8—C19—C24106.0 (3)
C6—C5—C9—C2685.8 (3)C24—C19—C20—C212.6 (5)
C4—C5—C9—C1084.7 (3)C8—C19—C20—C21176.3 (3)
C6—C5—C9—C10147.9 (2)C19—C20—C21—C221.1 (6)
C4—C5—C9—C8155.9 (2)C20—C21—C22—C231.1 (6)
C6—C5—C9—C828.5 (3)C21—C22—C23—C241.8 (6)
N1—C8—C9—C2674.4 (3)C22—C23—C24—C190.3 (5)
C19—C8—C9—C2652.0 (3)C22—C23—C24—N3177.2 (3)
C25—C8—C9—C26163.2 (2)C20—C19—C24—C231.9 (5)
N1—C8—C9—C540.3 (2)C8—C19—C24—C23177.1 (3)
C19—C8—C9—C5166.8 (2)C20—C19—C24—N3175.5 (3)
C25—C8—C9—C582.1 (2)C8—C19—C24—N35.4 (3)
N1—C8—C9—C10160.4 (2)N1—C8—C25—O244.9 (4)
C19—C8—C9—C1073.2 (3)C19—C8—C25—O2172.9 (3)
C25—C8—C9—C1038.0 (3)C9—C8—C25—O266.6 (4)
C26—C9—C10—O1139.7 (3)N1—C8—C25—N3136.3 (3)
C5—C9—C10—O115.6 (4)C19—C8—C25—N38.3 (3)
C8—C9—C10—O197.7 (3)C9—C8—C25—N3112.1 (3)
C26—C9—C10—C1145.4 (4)C19—C8—N1—C765.8 (3)
C5—C9—C10—C11169.4 (3)C25—C8—N1—C754.3 (3)
C8—C9—C10—C1177.2 (3)C9—C8—N1—C7169.0 (2)
O1—C10—C11—C18168.2 (3)C19—C8—N1—C6163.6 (2)
C9—C10—C11—C1817.1 (5)C25—C8—N1—C676.3 (3)
O1—C10—C11—C1210.7 (5)C9—C8—N1—C638.4 (3)
C9—C10—C11—C12164.0 (3)C5—C6—N1—C820.8 (3)
C18—C11—C12—C13176.8 (3)C5—C6—N1—C7151.7 (3)
C10—C11—C12—C134.1 (5)O2—C25—N3—C24175.5 (3)
C18—C11—C12—C171.3 (3)C8—C25—N3—C245.7 (3)
C10—C11—C12—C17177.8 (3)C23—C24—N3—C25176.9 (3)
C17—C12—C13—C141.5 (4)C19—C24—N3—C250.3 (4)
C11—C12—C13—C14179.5 (3)C11—C18—N4—C170.5 (4)
C12—C13—C14—C150.0 (5)C16—C17—N4—C18179.4 (3)
C13—C14—C15—C161.7 (5)C12—C17—N4—C180.3 (4)
C14—C15—C16—C171.6 (5)S1—C1—C2—C31.0 (5)
C15—C16—C17—N4178.9 (3)C4—C3—C2—C11.1 (4)
C15—C16—C17—C120.1 (5)C6—C5—C4—C37.7 (4)
C13—C12—C17—N4177.5 (3)C9—C5—C4—C3113.2 (3)
C11—C12—C17—N41.0 (3)C6—C5—C4—S1173.7 (2)
C13—C12—C17—C161.6 (5)C9—C5—C4—S165.4 (3)
C11—C12—C17—C16179.8 (3)C2—C3—C4—C5179.4 (3)
C10—C11—C18—N4177.9 (3)C2—C3—C4—S10.7 (3)
C12—C11—C18—N41.1 (4)C2—C1—S1—C40.5 (3)
N1—C8—C19—C2044.8 (4)C5—C4—S1—C1179.0 (3)
C25—C8—C19—C20172.9 (3)C3—C4—S1—C10.2 (3)
C9—C8—C19—C2072.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.84 (4)2.12 (5)2.828 (3)142 (5)
N4—H4A···O1ii0.85 (3)1.99 (3)2.829 (3)177 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.84 (4)2.12 (5)2.828 (3)142 (5)
N4—H4A···O1ii0.85 (3)1.99 (3)2.829 (3)177 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are gratefully to Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAllen, F. H., kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationInglebert, S. A., Arun, Y., Sethusankar, K. & Perumal, P. T. (2013). Acta Cryst. E69, o1328–o1329.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, Anupam & Pandeya, S. N. (2011). JCPR, 1, 1–17.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds