organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Bromo­phen­yl)-2,6-di­methyl-1,3-dioxan-4-amine

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bChemistry Department, GEBH, Sree Vidyanikethan Engineering College, A. Rangampet, Tirupati 517102, India, and cCentre for Organic and Medicinal Chemistry, VIT University, Vellore 632 014, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 10 September 2013; accepted 17 September 2013; online 21 September 2013)

In the title compound, C12H16BrNO2, the dioxane ring adopts a chair conformation and its mean plane makes a dihedral angle of 60.63 (12)° with the 4-bromo­phenyl ring. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. These dimers are consolidated by pairs of C—H⋯O hydrogen bonds with an R22(16) ring motif. Adjacent dimers are connected via C—H⋯O hydrogen bonds, forming infinite chains propagating along the c-axis direction.

Related literature

For biological properties of dioxanes and applications of 1,3-dioxane derivatives, see: Aubele et al. (2005[Aubele, D. L., Wan, S. & Floreancig, P. E. (2005). Angew. Chem. Int. Ed. 44, 3485-3488.]); Marucci et al. (2005[Marucci, G., Piero, A., Brasili, L., Buccioni, M., Giardinà, D., Gulini, U., Piergentili, A. & Sagratini, G. (2005). Med. Chem. Res. 14, 274-296.]); Wang et al. (1996a[Wang, G. W., Yuan, X. Y., Liu, Y. C., Guo, Q. X. & Lei, X. G. (1996a). Indian J. Chem. Sect. B, 35, 583-585.],b[Wang, G. W., Yuan, X. Y., Lei, X. G. & Liu, Y. C. (1996b). Chin. J. Appl. Chem. 11, 114-115.]); Yuan et al. (2005[Yuan, X. Y., Yang, N. F., Luo, H. A. & Liu, Y. J. (2005). Chin. J. Org. Chem. 25, 1049-1052.]). For related crystal structures, see: Chuprunov et al. (1981[Chuprunov, E. V., Tarkhova, T. N., Korallova, T. Y., Simonov, M. A. & Belov, W. V. (1981). Zh. Strukt. Khim. 22, 191-192.]); Thevenet et al. (2010[Thevenet, D., Neier, R. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, o473-o474.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16BrNO2

  • Mr = 286.17

  • Monoclinic, P 21 /c

  • a = 9.9367 (5) Å

  • b = 13.5660 (6) Å

  • c = 10.3206 (5) Å

  • β = 115.543 (3)°

  • V = 1255.25 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.26 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.310, Tmax = 0.746

  • 11981 measured reflections

  • 3119 independent reflections

  • 1819 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 1.01

  • 3119 reflections

  • 150 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.82 (2) 2.66 (2) 3.465 (2) 168 (2)
C8—H8⋯O2i 0.93 2.51 3.352 (3) 150
C9—H9⋯O2ii 0.93 2.65 3.557 (3) 165
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Dioxane rings are frequently encountered as structural motifs in many bioactive molecules such as cytotoxic agents (Aubele et al., 2005) and antimuscarinic agents (Marucci et al., 2005). 1,3-dioxane derivatives have applications in fine medicinal chemistry in the pharmaceutical (Wang et al., 1996a) and cosmetic industries (Wang et al., 1996b; Yuan et al., 2005). In view of the excellent biological and pharmacological applications of this class of compounds, we report herein on the synthesis and crystal structure of the title compound.

In the title compound, Fig 1, the dioxane ring (O1/O2/C2—C5) adopts a chair conformation and its mean plane makes a dihedral angle of 60.63 (12)° with the benzene ring (C7—C12).

In the crystal, molecules are linked by a pair of N—H···O hydrogen bonds forming inversion dimers with an R22(8) ring motif (Bernstein et al., 1995). These dimers are consolidated by a pair of C—H···O hydrogen bonds with an R22(16) ring motif. Adjacent dimers are connected via C—H···O hydrogen bonds forming infinite chains propagating along the c axis (see Table 1 and Fig. 2 for details).

Related literature top

For biological properties of dioxanes and applications of 1,3-dioxane derivatives, see: Aubele et al. (2005); Marucci et al. (2005); Wang et al. (1996a,b); Yuan et al. (2005). For related crystal structures, see: Chuprunov et al. (1981); Thevenet et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To 4-bromoaniline (1 mmol), acetaldehyde (3 mmol) was added drop wise and stirred for about 4 h at 273 K. The progress of the reaction was monitored through TLC. On completion of the reaction the mixture was washed with petroleum ether. The resultant product was dissolved in diethylether and allowed to evaporate. Block-like colourless crystals of the title compound were obtained by recrystallization with diethylether.

Refinement top

The NH H atom was refined with a distance restraint of N-H = 0.86 (2) Å with Uiso(H) = 1.2Ueq(N). The C bound H atoms were placed in calculated positions and refined as riding atoms: C-H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1 fro details; H atoms not involved in hydrogen bonding have been omitted for clarity).
N-(4-Bromophenyl)-2,6-dimethyl-1,3-dioxan-4-amine top
Crystal data top
C12H16BrNO2F(000) = 584
Mr = 286.17Dx = 1.514 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3119 reflections
a = 9.9367 (5) Åθ = 2.3–28.4°
b = 13.5660 (6) ŵ = 3.26 mm1
c = 10.3206 (5) ÅT = 293 K
β = 115.543 (3)°Block, colourless
V = 1255.25 (10) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3119 independent reflections
Radiation source: fine-focus sealed tube1819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1213
Tmin = 0.310, Tmax = 0.746k = 1815
11981 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.0602P]
where P = (Fo2 + 2Fc2)/3
3119 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.38 e Å3
Crystal data top
C12H16BrNO2V = 1255.25 (10) Å3
Mr = 286.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9367 (5) ŵ = 3.26 mm1
b = 13.5660 (6) ÅT = 293 K
c = 10.3206 (5) Å0.25 × 0.20 × 0.15 mm
β = 115.543 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3119 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1819 reflections with I > 2σ(I)
Tmin = 0.310, Tmax = 0.746Rint = 0.032
11981 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.45 e Å3
3119 reflectionsΔρmin = 0.38 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.07805 (3)0.63232 (2)1.22087 (3)0.07742 (15)
O10.70096 (17)0.52265 (9)0.47016 (15)0.0474 (4)
O20.61959 (17)0.53559 (10)0.22317 (15)0.0488 (4)
N10.6108 (2)0.62162 (13)0.6010 (2)0.0502 (5)
H10.531 (2)0.5954 (17)0.588 (3)0.060*
C10.4240 (3)0.64080 (17)0.0718 (3)0.0640 (7)
H1A0.45660.62700.00140.096*
H1B0.38520.70670.05980.096*
H1C0.34750.59490.06420.096*
C20.5537 (3)0.63121 (15)0.2171 (2)0.0497 (6)
H20.62760.68180.22600.060*
C30.5121 (3)0.64209 (15)0.3411 (3)0.0504 (6)
H3A0.47810.70880.34330.060*
H3B0.43110.59730.32820.060*
C40.6445 (3)0.61968 (14)0.4810 (2)0.0461 (5)
H40.72250.66850.49600.055*
C50.7436 (3)0.51969 (17)0.3564 (2)0.0522 (6)
H50.81960.57010.37140.063*
C60.8065 (3)0.4193 (2)0.3537 (3)0.0756 (8)
H6A0.83600.41620.27660.113*
H6B0.73200.37010.33940.113*
H6C0.89170.40750.44320.113*
C70.7211 (3)0.62384 (13)0.7422 (2)0.0433 (5)
C80.6828 (3)0.60493 (15)0.8537 (3)0.0501 (6)
H80.58440.58960.83280.060*
C90.7872 (3)0.60831 (15)0.9954 (3)0.0545 (6)
H90.75940.59441.06870.065*
C100.9320 (3)0.63231 (14)1.0272 (3)0.0504 (6)
C110.9719 (3)0.65323 (19)0.9185 (3)0.0622 (7)
H111.06980.67070.94020.075*
C120.8674 (3)0.64851 (18)0.7771 (3)0.0586 (6)
H120.89600.66220.70420.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0657 (2)0.1039 (3)0.05105 (18)0.01315 (15)0.01413 (14)0.00249 (14)
O10.0466 (10)0.0523 (8)0.0450 (8)0.0057 (7)0.0215 (7)0.0021 (7)
O20.0433 (9)0.0577 (9)0.0437 (9)0.0010 (7)0.0170 (7)0.0041 (7)
N10.0444 (12)0.0600 (12)0.0494 (11)0.0045 (9)0.0232 (10)0.0055 (9)
C10.0644 (18)0.0693 (16)0.0515 (15)0.0022 (13)0.0185 (13)0.0100 (12)
C20.0489 (15)0.0482 (13)0.0496 (13)0.0078 (10)0.0189 (12)0.0034 (10)
C30.0513 (15)0.0458 (12)0.0521 (14)0.0051 (11)0.0205 (12)0.0013 (10)
C40.0472 (14)0.0483 (12)0.0449 (12)0.0050 (10)0.0218 (11)0.0036 (10)
C50.0410 (14)0.0714 (15)0.0454 (13)0.0020 (11)0.0199 (11)0.0053 (11)
C60.067 (2)0.0956 (19)0.0612 (17)0.0282 (16)0.0250 (15)0.0049 (15)
C70.0451 (14)0.0386 (11)0.0480 (12)0.0019 (10)0.0219 (11)0.0023 (9)
C80.0457 (15)0.0546 (12)0.0556 (14)0.0051 (11)0.0273 (12)0.0005 (11)
C90.0614 (18)0.0605 (14)0.0499 (13)0.0015 (12)0.0319 (13)0.0046 (11)
C100.0494 (15)0.0528 (13)0.0471 (13)0.0079 (11)0.0190 (11)0.0007 (10)
C110.0418 (15)0.0861 (17)0.0596 (16)0.0025 (12)0.0226 (13)0.0010 (13)
C120.0468 (15)0.0854 (17)0.0514 (15)0.0032 (13)0.0284 (12)0.0014 (12)
Geometric parameters (Å, º) top
Br1—C101.898 (2)C4—H40.9800
O1—C51.410 (2)C5—C61.504 (3)
O1—C41.454 (2)C5—H50.9800
O2—C51.412 (3)C6—H6A0.9600
O2—C21.442 (2)C6—H6B0.9600
N1—C71.396 (3)C6—H6C0.9600
N1—C41.416 (3)C7—C121.379 (3)
N1—H10.824 (16)C7—C81.383 (3)
C1—C21.503 (3)C8—C91.382 (3)
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600C9—C101.369 (4)
C1—H1C0.9600C9—H90.9300
C2—C31.513 (3)C10—C111.371 (3)
C2—H20.9800C11—C121.381 (4)
C3—C41.507 (3)C11—H110.9300
C3—H3A0.9700C12—H120.9300
C3—H3B0.9700
C5—O1—C4110.76 (15)O1—C5—C6108.55 (19)
C5—O2—C2111.66 (16)O2—C5—C6108.37 (19)
C7—N1—C4122.5 (2)O1—C5—H5109.7
C7—N1—H1116.7 (18)O2—C5—H5109.7
C4—N1—H1114.8 (18)C6—C5—H5109.7
C2—C1—H1A109.5C5—C6—H6A109.5
C2—C1—H1B109.5C5—C6—H6B109.5
H1A—C1—H1B109.5H6A—C6—H6B109.5
C2—C1—H1C109.5C5—C6—H6C109.5
H1A—C1—H1C109.5H6A—C6—H6C109.5
H1B—C1—H1C109.5H6B—C6—H6C109.5
O2—C2—C1107.42 (17)C12—C7—C8117.7 (2)
O2—C2—C3109.59 (17)C12—C7—N1122.8 (2)
C1—C2—C3114.0 (2)C8—C7—N1119.4 (2)
O2—C2—H2108.6C9—C8—C7121.6 (2)
C1—C2—H2108.6C9—C8—H8119.2
C3—C2—H2108.6C7—C8—H8119.2
C4—C3—C2110.3 (2)C10—C9—C8119.6 (2)
C4—C3—H3A109.6C10—C9—H9120.2
C2—C3—H3A109.6C8—C9—H9120.2
C4—C3—H3B109.6C9—C10—C11119.9 (2)
C2—C3—H3B109.6C9—C10—Br1119.97 (18)
H3A—C3—H3B108.1C11—C10—Br1120.13 (19)
N1—C4—O1109.21 (16)C10—C11—C12120.3 (2)
N1—C4—C3113.3 (2)C10—C11—H11119.9
O1—C4—C3108.37 (17)C12—C11—H11119.9
N1—C4—H4108.6C7—C12—C11121.0 (2)
O1—C4—H4108.6C7—C12—H12119.5
C3—C4—H4108.6C11—C12—H12119.5
O1—C5—O2110.92 (17)
C5—O2—C2—C1179.79 (18)C2—O2—C5—C6179.48 (18)
C5—O2—C2—C355.9 (2)C4—N1—C7—C1216.4 (3)
O2—C2—C3—C453.0 (2)C4—N1—C7—C8166.52 (18)
C1—C2—C3—C4173.36 (17)C12—C7—C8—C91.4 (3)
C7—N1—C4—O173.0 (2)N1—C7—C8—C9178.59 (18)
C7—N1—C4—C3166.05 (17)C7—C8—C9—C101.0 (3)
C5—O1—C4—N1176.72 (18)C8—C9—C10—C110.3 (3)
C5—O1—C4—C359.4 (2)C8—C9—C10—Br1177.60 (15)
C2—C3—C4—N1175.78 (17)C9—C10—C11—C121.1 (4)
C2—C3—C4—O154.4 (2)Br1—C10—C11—C12176.77 (18)
C4—O1—C5—O263.2 (2)C8—C7—C12—C110.6 (3)
C4—O1—C5—C6177.81 (19)N1—C7—C12—C11177.6 (2)
C2—O2—C5—O161.5 (2)C10—C11—C12—C70.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.82 (2)2.66 (2)3.465 (2)168 (2)
C8—H8···O2i0.932.513.352 (3)150
C9—H9···O2ii0.932.653.557 (3)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.824 (16)2.655 (16)3.465 (2)168 (2)
C8—H8···O2i0.932.513.352 (3)150
C9—H9···O2ii0.932.653.557 (3)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. ZF and DV acknowledge the UGC (SAP–CAS) for the departmental facilities. ZF also thanks the UGC for a meritorious fellowship.

References

First citationAubele, D. L., Wan, S. & Floreancig, P. E. (2005). Angew. Chem. Int. Ed. 44, 3485–3488.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChuprunov, E. V., Tarkhova, T. N., Korallova, T. Y., Simonov, M. A. & Belov, W. V. (1981). Zh. Strukt. Khim. 22, 191–192.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarucci, G., Piero, A., Brasili, L., Buccioni, M., Giardinà, D., Gulini, U., Piergentili, A. & Sagratini, G. (2005). Med. Chem. Res. 14, 274–296.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThevenet, D., Neier, R. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, o473–o474.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, G. W., Yuan, X. Y., Lei, X. G. & Liu, Y. C. (1996b). Chin. J. Appl. Chem. 11, 114–115.  Google Scholar
First citationWang, G. W., Yuan, X. Y., Liu, Y. C., Guo, Q. X. & Lei, X. G. (1996a). Indian J. Chem. Sect. B, 35, 583–585.  Google Scholar
First citationYuan, X. Y., Yang, N. F., Luo, H. A. & Liu, Y. J. (2005). Chin. J. Org. Chem. 25, 1049–1052.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds