organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-{[(1,3,3-Tri­methyl­indolin-2-yl­­idene)meth­yl]diazen­yl}phen­yl)ethanone

aCallaghan Innovation Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: graeme.gainsford@callaghaninnovation.govt.nz

(Received 21 August 2013; accepted 28 August 2013; online 4 September 2013)

The title compound, C20H21N3O, has crystallographic mirror symmetry with all non-H atoms apart from the methyl C atom of the CMe2 group lying on the mirror plane. Mol­ecules are linked into planar sheets parallel to (010) by phen­yl–azo C—H⋯N and phen­yl–ethanone C—H⋯O inter­actions. Methyl C—H⋯π inter­actions provide crosslinking between the planes.

Related literature

For general background to NLO chromophores, see: Dalton et al. (2011[Dalton, L. R., Benight, S. J., Johnson, L. E., Knorr, D. B., Kosilkin, I. & Eichinger, B. E. (2011). Chem. Mater. 23, 430-445.]); Marder et al. (1994[Marder, S. R., Cheng, L. T., Tiemann, B. G., Friedli, A. C., Blanchard, D. M. & Perry, J. W. (1994). Science, 263, 511-514.]); Cheng et al. (1991[Cheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G. & Marder, S. R. (1991). J. Phys. Chem. 95, 10631-10643.]); Mashraqui et al. (2004[Mashraqui, S. H., Kenny, R. S., Ghadigaonkar, S. G., Krishnan, A., Bhattacharya, M. & Das, P. K. (2004). Opt. Mater. 27, 257-260.]); Moylan et al. (1993[Moylan, C. R., Twieg, R. J., Lee, V. Y., Swanson, S. A., Betterton, K. M. & Miller, R. D. (1993). J. Am. Chem. Soc. 115, 12599-12600.]); Zhang et al. (1997[Zhang, J. X., Dubois, P. & Jerome, R. J. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 1209-1216.]); Prim et al. (1994[Prim, D. & Krisch, G. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 2603-2606.]). For related structures, see: Odabasoglu et al. (2005[Odabasoglu, M., Turgut, G., Karadayi, N. & Buyukgungor, O. (2005). Dyes Pigm. 64, 271-278.]); Simunek et al. (2003[Simunek, P., Bertolasi, V., Lycka, A. & Machacek, V. (2003). Org. Biomol. Chem. 1, 3250-3256.]); Bhuiyan et al. (2011[Bhuiyan, M. D. H., Ashraf, M., Teshome, A., Gainsford, G. J., Kay, A. J., Asselberghs, I. & Clays, K. (2011). Dyes Pigm. 89, 177-187.]); Ashraf et al. (2013[Ashraf, M., Teshome, A., Kay, A. J., Gainsford, G. J., Bhuiyan, M. D. H., Asselberghs, I. & Clays, K. (2013). Dyes Pigm. 98, 82-92.]). For analysis of the structures, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N3O

  • Mr = 319.40

  • Monoclinic, C 2/m

  • a = 14.8688 (2) Å

  • b = 6.89500 (12) Å

  • c = 16.3546 (3) Å

  • β = 99.5834 (16)°

  • V = 1653.27 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 120 K

  • 0.19 × 0.15 × 0.09 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: gaussian (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Santa Clara, CA, USA.]) Tmin = 0.804, Tmax = 1.000

  • 9379 measured reflections

  • 1803 independent reflections

  • 1634 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.07

  • 1803 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.57 3.5227 (19) 179
C14—H14⋯N3ii 0.95 2.55 3.4985 (19) 175
C11—H11ACg3iii 0.981 (15) 2.665 (14) 3.5230 (4) 145.8 (11)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, y, -z; (iii) -x-1, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2012[Sheldrick, G. M. (2012). SHELXL2012. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL2012, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury.

Supporting information


Comment top

The synthesis of organic non-linear optical (NLO) molecules continue to be of research interest due to their potential use in optical communications, information storage, optical switching and photonic imaging and sensing (Dalton et al., 2011). Dipolar donor-π-acceptor (D-π-A) type chromophores are commonly connected via olefins (Marder et al., 1994), acetylenes (Cheng et al., 1991), oxadiazole systems (Mashraqui et al., 2004) and azo groups (Moylan et al., 1993). However, despite the vast range of possibilities, there are some strategies for designing effective NLO materials that consistently give good results, including the incorporation of azo linkers into the conjugated interconnect. Consequently, a number of such D-azo-A systems have been investigated, with many azo-containing systems showing improved non-linear optical performance and thermal stability (Zhang et al., 1997) when compared to the olefinic analogues.

Furthermore, over the past two decades, azobenzene/azoheterocycle containing polymers have been the subject of intensive research in optical switching, and digital and holographic storage applications (Prim et al., 1994). Thus, they represent a useful class of compound to study as they hold promise for applications beyond just non-linear optics. Hence, there is a need to synthesize new organic NLO materials with azo linkers and study their structural, physical, thermal and optical properties. We have recently reported a range of NLO materials containing an azo linker (Ashraf et al., 2013).

The asymmetric unit contains the title compound which lies on a crystallographic mirror plane (Fig. 1). The planarity of structures containing an azo linkage and indeed, the N–N bond length, varies considerably depending on the bound ring systems (Allen, 2002; CSD Version 5.34, with May 2013 updates). For example in LAQYAE (Odabasoglu et al., 2005) the dihedral angles of the pendant phenyl rings being 0.31 (12) and 26.74 (14)° for the two independent molecules with N–N lengths of 1.158 (4) and 1.247 (3) Å, respectively. The closest related structure with appended phenyl and alkene chain is ULEGAT (Simunek et al., 2003) with a comparable N—N length of 1.282 (2) Å, and dihedral angle 0.4 (2)°. The quality of the crystal packing & consequent diffraction data confirms that the methyl hydrogen atoms based on the in-plane carbon C11 are ordered unlike the disorder model required for the related compound 2-{3-[2-(1,3,3-trimethyl-1,3-dihydroindol-2-ylidene)propenyl] -5H-furan-2-ylidene}malonitrile (Bhuiyan et al., 2011), hereafter FATN, which also crystallized in space group C2/m.

The planar molecules in the title compound form sheets utilizing two interactions in a similar way although with different interactions to those in FATN. Here, the phenyl(C14)–H14···N3(azo) interaction provides one of the in-plane links making the common R22(8) motif (Bernstein et al., 1995) parallel to ethene(C)—H···N3(cyano) R22(16) interaction in FATN, aligned around a two fold axis of symmetry (Fig. 2). Likewise, a second in-plane interaction here occurs between phenyl(C2)—H and the ketone oxygen O1 described by the C(14) motif whilst in FATN a (dichloromethane)C–Cl···N(cyano) interaction performs the same role. A methylC–H···O(ketone) interaction is also found in the ULEGAT crystal packing. The planar (0 1 0) sheets are then cross-linked by two (symmetric) methyl(C11)–H11A···π(phenyl) interactions as shown in Fig. 2.

Related literature top

For general background to NLO chromophores, see: Dalton et al. (2011); Marder et al. (1994); Cheng et al. (1991); Mashraqui et al. (2004); Moylan et al. (1993); Zhang et al. (1997); Prim et al. (1994). For related structures, see: Odabasoglu et al. (2005); Simunek et al. (2003); Bhuiyan et al. (2011); Ashraf et al. (2013). For analysis of the structures, see: Spek (2009); Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

4-Aminacetophenone (1.35 g, 10 mmol) was added to concentrated sulfuric acid (10 ml) and the reaction mixture cooled to 0–5 °C. A solution of sodium nitrite (824 mg, 12 mmol) in water (5 ml) was added slowly and the reaction stirred at 0–5 °C for 30 min. To this, was added a solution of 1,3,3-trimethyl 2-methyleneindole (1.56 g, 9 mmol) in acetic acid (20 ml); the resultant mixture was stirred for an additional 2 h and then poured into water and neutralized with aqueous sodium carbonate. The resulting oil was extracted with dichloromethane, dried (MgSO4) and concentrated under reduced pressure. The crude material was purified by column chromatography (silica gel, dichloromethane: hexanes 1:1) to afford the final compound (1.89 g, 66%) as a bright-red-yellow solid. X-ray quality red crystals were grown by slow evaporation of a solution of the chromophore in a chloroform and methanol mixture (1:1). M.pt: XXX K. 1H NMR (500 MHz, DMSO-d6) δ: 1.71 (6H, s, 2x CH3), 2.58 (3H, s, CO—CH3), 3.43 (3H, s, N—CH3), 7.05–7.12 (1H, m, ArH), 7.19 (1H, d, J 5.0 Hz, ArH), 7.30–7.35 (1H, m, ArH), 7.45 (1H, d J 5.0 Hz, ArH), 7.51 (1H, s, CH), 7.63 (2H, d, J 5.0 Hz, ArH), 8.02 (2H, d, J 10.0 Hz, ArH). 13C NMR (125 MHz, DMSO-d6) δ: 26.6, 28.5, 29.8, 48.0, 108.9, 120.4, 120.8, 122.0, 122.4, 127.9, 128.1, 129.6, 134.4, 138.4, 139.8, 143.8, 156.9, 164.8, 168.0, 196.8.

Refinement top

All H atoms except those on C11 & C20 bound to carbon were constrained to their expected geometries (C—H 0.95–0.98 Å). The methyl-H atoms bound to atoms on the mirror plane were located on difference Fourier maps and their positions refined. All methyl- and phenyl-H atoms were refined with Uiso 1.5 & 1.2 times, respectively, that of the Ueq of their parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2012); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2012), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. Molecular structure of title molecule; displacement ellipsoids are shown at the 50% probability level. Symmetry (i) x, -y, z.
[Figure 2] Fig. 2. Cell packing view; one representative set of intermolecular attractive contacts (Table 1) are shown as purple dotted lines. The CG ball is the centroid of phenyl group C13···C18. Symmetry (i): 1 - x, y, -z (ii) -1/2 + x, 1/2 + y, z (iii) 1/2 + x, 1/2 + y,z (iv) 1/2 + x, 1/2 - y, z.
1-(4-{[(1,3,3-Trimethylindolin-2-ylidene)methyl]diazenyl}phenyl)ethanone top
Crystal data top
C20H21N3OF(000) = 680
Mr = 319.40Dx = 1.283 Mg m3
Monoclinic, C2/mCu Kα radiation, λ = 1.5418 Å
a = 14.8688 (2) ÅCell parameters from 4498 reflections
b = 6.89500 (12) Åθ = 5.5–73.9°
c = 16.3546 (3) ŵ = 0.64 mm1
β = 99.5834 (16)°T = 120 K
V = 1653.27 (5) Å3Block, red
Z = 40.19 × 0.15 × 0.09 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
1803 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1634 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.6501 pixels mm-1θmax = 73.8°, θmin = 2.7°
ω scansh = 1718
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)
k = 88
Tmin = 0.804, Tmax = 1.000l = 2019
9379 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.9765P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1803 reflectionsΔρmax = 0.27 e Å3
153 parametersΔρmin = 0.21 e Å3
Crystal data top
C20H21N3OV = 1653.27 (5) Å3
Mr = 319.40Z = 4
Monoclinic, C2/mCu Kα radiation
a = 14.8688 (2) ŵ = 0.64 mm1
b = 6.89500 (12) ÅT = 120 K
c = 16.3546 (3) Å0.19 × 0.15 × 0.09 mm
β = 99.5834 (16)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
1803 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)
1634 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 1.000Rint = 0.026
9379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.27 e Å3
1803 reflectionsΔρmin = 0.21 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93789 (7)0.00000.21729 (7)0.0256 (3)
N10.24599 (8)0.00000.25969 (8)0.0192 (3)
N20.46957 (8)0.00000.19967 (7)0.0186 (3)
N30.50012 (8)0.00000.13053 (8)0.0204 (3)
C10.22453 (9)0.00000.34038 (9)0.0187 (3)
C20.13956 (10)0.00000.36490 (10)0.0227 (3)
H20.08480.00000.32560.027*
C30.13841 (11)0.00000.44990 (11)0.0255 (3)
H30.08140.00000.46900.031*
C40.21825 (11)0.00000.50739 (10)0.0245 (3)
H40.21530.00000.56500.029*
C50.30291 (10)0.00000.48133 (9)0.0216 (3)
H50.35770.00000.52060.026*
C60.30564 (9)0.00000.39733 (9)0.0185 (3)
C70.38604 (9)0.00000.35149 (9)0.0177 (3)
C80.44476 (7)0.18267 (16)0.37151 (6)0.0217 (2)
H8A0.46850.18680.43110.033*
H8B0.40750.29810.35570.033*
H8C0.49580.17960.34050.033*
C100.33759 (9)0.00000.26123 (9)0.0176 (3)
C110.17867 (10)0.00000.18420 (10)0.0232 (3)
H11A0.1863 (9)0.114 (2)0.1498 (9)0.035*
H11B0.1170 (14)0.00000.1982 (13)0.035*
C120.37724 (10)0.00000.19120 (9)0.0191 (3)
H120.34070.00000.13770.023*
C130.59616 (10)0.00000.14061 (9)0.0188 (3)
C140.63291 (10)0.00000.06719 (9)0.0215 (3)
H140.59330.00000.01520.026*
C150.72657 (10)0.00000.06964 (9)0.0222 (3)
H150.75050.00000.01930.027*
C160.78629 (10)0.00000.14535 (9)0.0196 (3)
C170.74891 (10)0.00000.21879 (9)0.0201 (3)
H170.78860.00000.27070.024*
C180.65596 (10)0.00000.21732 (9)0.0208 (3)
H180.63220.00000.26780.025*
C190.88757 (10)0.00000.15055 (10)0.0214 (3)
C200.92658 (11)0.00000.07131 (11)0.0316 (4)
H20A0.9913 (16)0.00000.0818 (15)0.047*
H20B0.9057 (10)0.113 (2)0.0369 (10)0.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0193 (5)0.0339 (6)0.0220 (6)0.0000.0014 (4)0.000
N10.0140 (6)0.0235 (6)0.0189 (6)0.0000.0007 (5)0.000
N20.0185 (6)0.0208 (6)0.0164 (6)0.0000.0026 (5)0.000
N30.0186 (6)0.0259 (6)0.0160 (6)0.0000.0010 (5)0.000
C10.0176 (7)0.0177 (7)0.0205 (7)0.0000.0024 (6)0.000
C20.0164 (7)0.0220 (7)0.0295 (8)0.0000.0036 (6)0.000
C30.0216 (7)0.0235 (7)0.0338 (9)0.0000.0115 (6)0.000
C40.0301 (8)0.0229 (7)0.0223 (8)0.0000.0100 (6)0.000
C50.0225 (7)0.0219 (7)0.0201 (7)0.0000.0029 (6)0.000
C60.0173 (7)0.0176 (7)0.0206 (7)0.0000.0031 (5)0.000
C70.0150 (6)0.0227 (7)0.0146 (7)0.0000.0000 (5)0.000
C80.0196 (5)0.0265 (5)0.0180 (5)0.0039 (4)0.0002 (4)0.0018 (4)
C100.0155 (6)0.0179 (7)0.0179 (7)0.0000.0014 (5)0.000
C110.0167 (7)0.0286 (8)0.0217 (8)0.0000.0038 (6)0.000
C120.0171 (7)0.0231 (7)0.0156 (7)0.0000.0017 (5)0.000
C130.0176 (7)0.0198 (7)0.0184 (7)0.0000.0012 (5)0.000
C140.0204 (7)0.0281 (8)0.0146 (7)0.0000.0012 (5)0.000
C150.0216 (7)0.0289 (8)0.0162 (7)0.0000.0035 (6)0.000
C160.0188 (7)0.0204 (7)0.0189 (7)0.0000.0011 (5)0.000
C170.0204 (7)0.0227 (7)0.0154 (7)0.0000.0019 (5)0.000
C180.0216 (7)0.0255 (7)0.0152 (7)0.0000.0026 (6)0.000
C190.0203 (7)0.0216 (7)0.0218 (8)0.0000.0018 (6)0.000
C200.0187 (7)0.0527 (11)0.0234 (8)0.0000.0037 (6)0.000
Geometric parameters (Å, º) top
O1—C191.2163 (19)C8—H8A0.9800
N1—C101.3580 (18)C8—H8B0.9800
N1—C11.4084 (19)C8—H8C0.9800
N1—C111.4541 (19)C10—C121.373 (2)
N2—N31.2868 (18)C11—H11A0.983 (15)
N2—C121.3567 (18)C11—H11B0.98 (2)
N3—C131.4101 (18)C12—H120.9500
C1—C21.388 (2)C13—C141.400 (2)
C1—C61.396 (2)C13—C181.412 (2)
C2—C31.393 (2)C14—C151.386 (2)
C2—H20.9500C14—H140.9500
C3—C41.386 (2)C15—C161.398 (2)
C3—H30.9500C15—H150.9500
C4—C51.395 (2)C16—C171.405 (2)
C4—H40.9500C16—C191.494 (2)
C5—C61.381 (2)C17—C181.378 (2)
C5—H50.9500C17—H170.9500
C6—C71.5132 (19)C18—H180.9500
C7—C101.5310 (19)C19—C201.505 (2)
C7—C8i1.5365 (13)C20—H20A0.95 (2)
C7—C81.5365 (13)C20—H20B0.983 (17)
C10—N1—C1111.44 (12)H8B—C8—H8C109.5
C10—N1—C11124.21 (13)N1—C10—C12123.59 (13)
C1—N1—C11124.35 (12)N1—C10—C7109.11 (12)
N3—N2—C12114.17 (12)C12—C10—C7127.30 (13)
N2—N3—C13113.32 (12)N1—C11—H11A110.9 (8)
C2—C1—C6122.29 (14)N1—C11—H11B109.8 (12)
C2—C1—N1129.04 (14)H11A—C11—H11B109.6 (10)
C6—C1—N1108.67 (12)N2—C12—C10118.86 (13)
C1—C2—C3116.83 (14)N2—C12—H12120.6
C1—C2—H2121.6C10—C12—H12120.6
C3—C2—H2121.6C14—C13—N3115.60 (13)
C4—C3—C2121.70 (14)C14—C13—C18118.97 (13)
C4—C3—H3119.2N3—C13—C18125.43 (13)
C2—C3—H3119.2C15—C14—C13120.59 (13)
C3—C4—C5120.48 (14)C15—C14—H14119.7
C3—C4—H4119.8C13—C14—H14119.7
C5—C4—H4119.8C14—C15—C16120.81 (14)
C6—C5—C4118.79 (14)C14—C15—H15119.6
C6—C5—H5120.6C16—C15—H15119.6
C4—C5—H5120.6C15—C16—C17118.28 (13)
C5—C6—C1119.91 (13)C15—C16—C19122.40 (13)
C5—C6—C7130.49 (13)C17—C16—C19119.33 (13)
C1—C6—C7109.60 (13)C18—C17—C16121.56 (13)
C6—C7—C10101.19 (11)C18—C17—H17119.2
C6—C7—C8i111.23 (8)C16—C17—H17119.2
C10—C7—C8i111.41 (8)C17—C18—C13119.79 (14)
C6—C7—C8111.24 (8)C17—C18—H18120.1
C10—C7—C8111.41 (8)C13—C18—H18120.1
C8i—C7—C8110.12 (12)O1—C19—C16120.98 (14)
C7—C8—H8A109.5O1—C19—C20120.33 (14)
C7—C8—H8B109.5C16—C19—C20118.70 (13)
H8A—C8—H8B109.5C19—C20—H20A111.7 (14)
C7—C8—H8C109.5C19—C20—H20B111.3 (9)
H8A—C8—H8C109.5H20A—C20—H20B108.5 (12)
C12—N2—N3—C13180.0C6—C7—C10—N10.000 (1)
C10—N1—C1—C2180.000 (1)C8i—C7—C10—N1118.30 (8)
C11—N1—C1—C20.000 (1)C8—C7—C10—N1118.30 (8)
C10—N1—C1—C60.000 (1)C6—C7—C10—C12180.000 (1)
C11—N1—C1—C6180.000 (1)C8i—C7—C10—C1261.70 (8)
C6—C1—C2—C30.000 (1)C8—C7—C10—C1261.70 (8)
N1—C1—C2—C3180.000 (1)N3—N2—C12—C10180.000 (1)
C1—C2—C3—C40.000 (1)N1—C10—C12—N2180.000 (1)
C2—C3—C4—C50.000 (1)C7—C10—C12—N20.000 (1)
C3—C4—C5—C60.000 (1)N2—N3—C13—C14180.0
C4—C5—C6—C10.000 (1)N2—N3—C13—C180.000 (1)
C4—C5—C6—C7180.000 (1)N3—C13—C14—C15180.0
C2—C1—C6—C50.000 (1)C18—C13—C14—C150.000 (1)
N1—C1—C6—C5180.000 (1)C13—C14—C15—C160.0
C2—C1—C6—C7180.000 (1)C14—C15—C16—C170.000 (1)
N1—C1—C6—C70.000 (1)C14—C15—C16—C19180.0
C5—C6—C7—C10180.000 (1)C15—C16—C17—C180.000 (1)
C1—C6—C7—C100.000 (1)C19—C16—C17—C18180.000 (1)
C5—C6—C7—C8i61.57 (8)C16—C17—C18—C130.000 (1)
C1—C6—C7—C8i118.43 (8)C14—C13—C18—C170.000 (1)
C5—C6—C7—C861.58 (8)N3—C13—C18—C17180.000 (1)
C1—C6—C7—C8118.42 (8)C15—C16—C19—O1180.0
C1—N1—C10—C12180.000 (1)C17—C16—C19—O10.000 (1)
C11—N1—C10—C120.000 (1)C15—C16—C19—C200.000 (1)
C1—N1—C10—C70.000 (1)C17—C16—C19—C20180.0
C11—N1—C10—C7180.000 (1)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1ii0.952.573.5227 (19)179
C14—H14···N3iii0.952.553.4985 (19)175
C11—H11A···Cg3iv0.981 (15)2.665 (14)3.5230 (4)145.8 (11)
Symmetry codes: (ii) x1, y, z; (iii) x+1, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.573.5227 (19)179
C14—H14···N3ii0.952.553.4985 (19)175
C11—H11A···Cg3iii0.981 (15)2.665 (14)3.5230 (4)145.8 (11)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

We thank Dr Matthew Colson of the University of Canterbury for the data collection.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Santa Clara, CA, USA.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAshraf, M., Teshome, A., Kay, A. J., Gainsford, G. J., Bhuiyan, M. D. H., Asselberghs, I. & Clays, K. (2013). Dyes Pigm. 98, 82–92.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhuiyan, M. D. H., Ashraf, M., Teshome, A., Gainsford, G. J., Kay, A. J., Asselberghs, I. & Clays, K. (2011). Dyes Pigm. 89, 177–187.  Web of Science CSD CrossRef CAS Google Scholar
First citationCheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G. & Marder, S. R. (1991). J. Phys. Chem. 95, 10631–10643.  CrossRef CAS Web of Science Google Scholar
First citationDalton, L. R., Benight, S. J., Johnson, L. E., Knorr, D. B., Kosilkin, I. & Eichinger, B. E. (2011). Chem. Mater. 23, 430–445.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarder, S. R., Cheng, L. T., Tiemann, B. G., Friedli, A. C., Blanchard, D. M. & Perry, J. W. (1994). Science, 263, 511–514.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationMashraqui, S. H., Kenny, R. S., Ghadigaonkar, S. G., Krishnan, A., Bhattacharya, M. & Das, P. K. (2004). Opt. Mater. 27, 257–260.  Web of Science CrossRef CAS Google Scholar
First citationMoylan, C. R., Twieg, R. J., Lee, V. Y., Swanson, S. A., Betterton, K. M. & Miller, R. D. (1993). J. Am. Chem. Soc. 115, 12599–12600.  CrossRef CAS Web of Science Google Scholar
First citationOdabasoglu, M., Turgut, G., Karadayi, N. & Buyukgungor, O. (2005). Dyes Pigm. 64, 271–278.  CAS Google Scholar
First citationPrim, D. & Krisch, G. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 2603–2606.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2012). SHELXL2012. University of Göttingen, Germany.  Google Scholar
First citationSimunek, P., Bertolasi, V., Lycka, A. & Machacek, V. (2003). Org. Biomol. Chem. 1, 3250–3256.  Web of Science PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J. X., Dubois, P. & Jerome, R. J. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 1209–1216.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds