organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-2-(2-chloro­benzoyl)phenol

aDepartment of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysore, 570 005, India, and bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore, 570 006, India
*Correspondence e-mail: shaukathara@yahoo.co.in

(Received 4 September 2013; accepted 16 September 2013; online 21 September 2013)

In the title mol­ecule, C13H8Cl2O2, the dihedral angle between the benzene rings is 74.53 (9)°. An intra­molecular O—H⋯O hydrogen bond leading to a S(6) ring is observed. In the crystal, the mol­ecules are connected into a three-dimensional network by C—H⋯O and ππ [inter-centroid distance = 3.6254 (10) Å] inter­actions.

Related literature

For the biological activity of benzo­phenone derivatives, see: Khanum et al. (2005[Khanum, S. A., Shashikanth, S., Umesha, S. & Kavitha, R. (2005). Eur. J. Med. Chem. 40, 1156-1162.], 2010[Khanum, S. A., Begum, B. A., Girish, V. & Khanum, N. F. (2010). Int. J. Biomed. Sci. 6, 60-65.]). For a related structure, see: Devaiah et al. (2006[Devaiah, V. T., Naveen, S., Shashikanth, S., Anandalwar, S. M. & Prasad, J. S. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x157-x158.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Cl2O2

  • Mr = 267.09

  • Orthorhombic, P b c a

  • a = 16.0231 (4) Å

  • b = 7.4216 (2) Å

  • c = 19.6843 (5) Å

  • V = 2340.80 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 4.87 mm−1

  • T = 295 K

  • 0.20 × 0.19 × 0.18 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madaison, Wisconsin, USA.]) Tmin = 0.442, Tmax = 0.474

  • 15868 measured reflections

  • 1972 independent reflections

  • 1712 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.06

  • 1972 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H16⋯O9 0.82 1.88 2.598 (2) 146
C13—H13⋯O9i 0.93 2.50 3.413 (3) 168
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madaison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madaison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: Mercury.

Supporting information


Comment top

The on-going research in synthesizing benzophenone derivatives in our laboratory resulted in the title molecule. These derivatives used in the preparation of anti-inflammatory (Khanum et al., 2010) and anti-fungal (Khanum et al., 2005) compounds.

In the title molecule (Fig. 1), the dihedral angle between chlorobenzene (C1–C6) and chlorohydroxybenzene (C10–C15) rings is 74.53 (9)°. The molecule features an intramolecular O—H..O hydrogen bond forming a S(6) ring (Table 1). The bond lengths and bond angles are similar to those in the 5-chloro-2-hydroxyphenyl-4-chlorophenyl-methanone structure (Devaiah et al., 2006)

The molecules are connected by C13–H13···O9 hydrogen bonds forming chains along the a axis (Fig. 2 and Table 1). Additional C6—Cl7···π(Cg1), Table 1, and π(Cg2···π(Cg2) interactions, with inter-centroid distance 3.6254 (10) Å [x-1, -y, z-1], lead to a three-dimensional architecture, Fig. 2; where Cg1: C1–C6 and Cg2: C10–C15.

Related literature top

For the biological activity of benzophenone derivatives, see: Khanum et al. (2005, 2010). For a related structure, see: Devaiah et al. (2006).

Experimental top

A mixture of anhydrous aluminium chloride (1.74 g, 12.94 mmol) and include the name of the compound here (2.0 g, 8.62 mmol), was protected from moisture by a calcium chloride guard tube and heated over an oil bath at 80–90 °C for 45 min. At the end of this period the contents were cooled and decomposed by acidulated ice-cold water. The residual solid was crushed into a powder, dissolved in ether (40 ml) and extracted with 10% sodium hydroxide (3 x 30 ml). The basic aqueous solution was neutralized with 10% hydrochloric acid. The filtered solid was washed with distilled water (3 x 30 ml) and recrystallized from ethanol to afford yellow needles of the title compound. Yield 1.6 g (80%). M.Pt: 357–359 K. IR (Nujol): 1615 ν(CO), 3525–3655 cm-1 ν(OH). 1H NMR (CDCl3): δ 6.9–7.5 (m, 7H, Ar—H), 9.2 (bs, 1H, OH). EI–MS: m/z 267 (M+, 81), 266 (100), 154.5 (57), 111.5 (50). Anal. Calcd. for C13H8Cl2O2 (267): C, 58.46; H, 3.02; Cl, 26.55. Found: C, 58.54; H, 3.25; Cl, 26.32%.

Refinement top

All the hydrogen atoms of the compound are fixed geometrically (C—H = 0.93–0.97 Å, O—H= 0.82 Å) and refined as riding with Uiso(H) = 1.2 or 1.5 Ueq(C, O).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound along b-axis with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram, viewed along the crystallographic b axis. Dotted lines represents C—H···O interactions.
4-Chloro-2-(2-chlorobenzoyl)phenol top
Crystal data top
C13H8Cl2O2F(000) = 1088
Mr = 267.09Dx = 1.516 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 1972 reflections
a = 16.0231 (4) Åθ = 4.5–64.9°
b = 7.4216 (2) ŵ = 4.87 mm1
c = 19.6843 (5) ÅT = 295 K
V = 2340.80 (10) Å3Needle, yellow
Z = 80.20 × 0.19 × 0.18 mm
Data collection top
Bruker X8 Proteum
diffractometer
1972 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1712 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.062
Detector resolution: 10.7 pixels mm-1θmax = 64.9°, θmin = 4.5°
\ϕ and \ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 84
Tmin = 0.442, Tmax = 0.474l = 2322
15868 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.4839P]
where P = (Fo2 + 2Fc2)/3
1972 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H8Cl2O2V = 2340.80 (10) Å3
Mr = 267.09Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 16.0231 (4) ŵ = 4.87 mm1
b = 7.4216 (2) ÅT = 295 K
c = 19.6843 (5) Å0.20 × 0.19 × 0.18 mm
Data collection top
Bruker X8 Proteum
diffractometer
1972 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1712 reflections with I > 2σ(I)
Tmin = 0.442, Tmax = 0.474Rint = 0.062
15868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
1972 reflectionsΔρmin = 0.21 e Å3
154 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl70.41862 (4)0.46830 (6)0.29403 (2)0.0481 (2)
Cl170.68664 (3)0.11456 (7)0.40130 (3)0.0439 (2)
O90.29828 (9)0.2266 (2)0.43513 (7)0.0486 (5)
O160.38062 (10)0.3221 (2)0.54298 (7)0.0428 (5)
C10.37955 (13)0.1912 (2)0.21207 (9)0.0330 (5)
C20.35120 (13)0.0191 (2)0.19888 (9)0.0341 (5)
C30.32654 (14)0.0927 (2)0.25143 (10)0.0376 (6)
C40.33080 (13)0.0318 (2)0.31807 (9)0.0356 (6)
C50.36117 (12)0.1391 (2)0.33254 (9)0.0289 (5)
C60.38485 (12)0.2493 (2)0.27869 (9)0.0296 (5)
C80.36471 (13)0.1988 (2)0.40532 (9)0.0317 (5)
C100.44516 (12)0.2149 (2)0.43988 (9)0.0288 (5)
C110.44873 (12)0.2764 (2)0.50758 (9)0.0310 (5)
C120.52597 (14)0.2929 (2)0.53977 (9)0.0390 (6)
C130.59771 (13)0.2463 (3)0.50739 (10)0.0373 (5)
C140.59454 (12)0.1799 (2)0.44109 (10)0.0324 (5)
C150.52003 (12)0.1657 (2)0.40762 (9)0.0289 (5)
H10.394900.267100.176600.0400*
H20.348700.022100.154300.0410*
H30.307200.208200.242200.0450*
H40.313200.106200.353300.0430*
H120.528400.336400.584000.0470*
H130.648800.258600.529400.0450*
H150.518900.123200.363200.0350*
H160.339100.307600.519300.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl70.0670 (4)0.0413 (3)0.0359 (3)0.0138 (2)0.0087 (2)0.0009 (2)
Cl170.0269 (3)0.0563 (3)0.0484 (3)0.0061 (2)0.0024 (2)0.0039 (2)
O90.0283 (8)0.0882 (10)0.0294 (7)0.0028 (7)0.0032 (7)0.0086 (7)
O160.0401 (9)0.0647 (8)0.0237 (7)0.0061 (7)0.0043 (6)0.0069 (6)
C10.0312 (10)0.0440 (9)0.0239 (9)0.0027 (8)0.0001 (8)0.0026 (7)
C20.0311 (10)0.0465 (9)0.0247 (9)0.0068 (8)0.0053 (8)0.0055 (7)
C30.0368 (11)0.0413 (9)0.0347 (10)0.0027 (8)0.0084 (10)0.0037 (7)
C40.0332 (10)0.0454 (10)0.0281 (9)0.0050 (8)0.0019 (9)0.0052 (7)
C50.0208 (9)0.0437 (8)0.0222 (8)0.0011 (7)0.0026 (8)0.0000 (6)
C60.0264 (9)0.0381 (8)0.0244 (8)0.0004 (7)0.0020 (8)0.0006 (7)
C80.0262 (10)0.0449 (9)0.0241 (9)0.0002 (7)0.0020 (8)0.0012 (7)
C100.0295 (10)0.0349 (8)0.0220 (8)0.0020 (7)0.0023 (8)0.0030 (6)
C110.0331 (11)0.0382 (8)0.0216 (8)0.0044 (7)0.0024 (8)0.0022 (6)
C120.0465 (13)0.0476 (9)0.0228 (9)0.0109 (9)0.0073 (9)0.0013 (7)
C130.0336 (10)0.0475 (9)0.0307 (9)0.0070 (8)0.0104 (9)0.0074 (7)
C140.0291 (10)0.0359 (8)0.0322 (9)0.0006 (7)0.0036 (9)0.0066 (7)
C150.0291 (10)0.0353 (8)0.0224 (8)0.0005 (7)0.0009 (8)0.0013 (6)
Geometric parameters (Å, º) top
Cl7—C61.7394 (16)C10—C151.406 (3)
Cl17—C141.740 (2)C10—C111.410 (2)
O9—C81.233 (2)C11—C121.396 (3)
O16—C111.339 (2)C12—C131.359 (3)
O16—H160.8200C13—C141.396 (3)
C1—C61.383 (2)C14—C151.368 (3)
C1—C21.380 (2)C1—H10.9300
C2—C31.384 (3)C2—H20.9300
C3—C41.389 (3)C3—H30.9300
C4—C51.388 (2)C4—H40.9300
C5—C61.392 (2)C12—H120.9300
C5—C81.501 (2)C13—H130.9300
C8—C101.462 (3)C15—H150.9300
C11—O16—H16109.00C11—C12—C13120.98 (17)
C2—C1—C6119.15 (16)C12—C13—C14119.83 (19)
C1—C2—C3120.55 (16)Cl17—C14—C13119.24 (15)
C2—C3—C4119.79 (15)C13—C14—C15120.62 (18)
C3—C4—C5120.55 (16)Cl17—C14—C15120.14 (15)
C4—C5—C8118.62 (15)C10—C15—C14120.49 (17)
C6—C5—C8122.91 (14)C2—C1—H1120.00
C4—C5—C6118.45 (16)C6—C1—H1120.00
Cl7—C6—C5120.12 (13)C1—C2—H2120.00
C1—C6—C5121.49 (15)C3—C2—H2120.00
Cl7—C6—C1118.36 (13)C2—C3—H3120.00
O9—C8—C10121.73 (16)C4—C3—H3120.00
C5—C8—C10120.10 (17)C3—C4—H4120.00
O9—C8—C5118.11 (18)C5—C4—H4120.00
C8—C10—C11120.13 (17)C11—C12—H12120.00
C8—C10—C15121.39 (16)C13—C12—H12119.00
C11—C10—C15118.46 (17)C12—C13—H13120.00
O16—C11—C10122.76 (17)C14—C13—H13120.00
O16—C11—C12117.67 (16)C10—C15—H15120.00
C10—C11—C12119.57 (17)C14—C15—H15120.00
C6—C1—C2—C31.5 (3)O9—C8—C10—C15173.55 (16)
C2—C1—C6—Cl7178.65 (16)C5—C8—C10—C11178.00 (14)
C2—C1—C6—C50.9 (3)C5—C8—C10—C153.7 (2)
C1—C2—C3—C40.4 (3)C8—C10—C11—O160.0 (2)
C2—C3—C4—C51.3 (3)C8—C10—C11—C12179.36 (14)
C3—C4—C5—C61.8 (3)C15—C10—C11—O16178.36 (15)
C3—C4—C5—C8179.90 (19)C15—C10—C11—C122.3 (2)
C4—C5—C6—Cl7176.96 (15)C8—C10—C15—C14179.27 (15)
C4—C5—C6—C10.7 (3)C11—C10—C15—C140.9 (2)
C8—C5—C6—Cl71.2 (3)O16—C11—C12—C13178.94 (17)
C8—C5—C6—C1178.93 (18)C10—C11—C12—C131.7 (2)
C4—C5—C8—O969.0 (2)C11—C12—C13—C140.4 (3)
C4—C5—C8—C10108.3 (2)C12—C13—C14—Cl17178.09 (14)
C6—C5—C8—O9109.2 (2)C12—C13—C14—C151.8 (3)
C6—C5—C8—C1073.5 (2)Cl17—C14—C15—C10178.75 (12)
O9—C8—C10—C114.8 (2)C13—C14—C15—C101.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O16—H16···O90.821.882.598 (2)146
C13—H13···O9i0.932.503.413 (3)168
C6—Cl7···Cg1ii1.74 (1)3.89 (1)4.901 (2)116 (1)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O16—H16···O90.821.882.598 (2)146
C13—H13···O9i0.932.503.413 (3)168
C6—Cl7···Cg1ii1.7394 (16)3.8879 (10)4.901 (2)115.77 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the IOE and the University of Mysore for providing the single crystal X-ray diffractometer facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madaison, Wisconsin, USA.  Google Scholar
First citationDevaiah, V. T., Naveen, S., Shashikanth, S., Anandalwar, S. M. & Prasad, J. S. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x157–x158.  CSD CrossRef CAS Google Scholar
First citationKhanum, S. A., Begum, B. A., Girish, V. & Khanum, N. F. (2010). Int. J. Biomed. Sci. 6, 60–65.  CAS PubMed Google Scholar
First citationKhanum, S. A., Shashikanth, S., Umesha, S. & Kavitha, R. (2005). Eur. J. Med. Chem. 40, 1156–1162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds