metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages m562-m563

Tetra­butyl­ammonium butyl­tetra­chlorido­stannate(IV)

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bInstitut Européen des Membranes, Université de Montpellier II, 34000, Montpellier, France
*Correspondence e-mail: tijchimia@yahoo.fr

(Received 2 August 2013; accepted 22 September 2013; online 28 September 2013)

In the title compound, [N(C4H9)4][Sn(C4H9)Cl4], the SnIV atom of the stannate anion has a trigonal-bipyramidal coordination sphere by two Cl atoms and one butyl chain in the equatorial plane and by two Cl atoms in the apical positions. Two of the four butyl chains of the tetra­butyl­ammonium cation are partially disordered, each with refined site occupancies of 0.691 (6):0.309 (6). Weak C—H⋯Cl hydrogen-bonding inter­actions help to consolidate the crystal packing, as well as a short Cl⋯Cl inter­action of 3.295 (2) Å.

Related literature

For general background to and applications of tin(IV) compounds, see: Evans & Karpel (1985[Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, Journal of Organometallic Chemistry Library, Vol. 16. Amsterdam and New York: Elsevier Science Publishers.]); Davies et al. (2008[Davies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). In Tin Chemistry: Fundamentals, Frontiers, and Applications. London: John Wiley & Sons Ltd.]). For related structures, see: Webster et al. (1976[Webster, M., Mudd, K. R. & Taylor, D. J. (1976). Inorg. Chim. Acta, 20, 231-235.]); Sow et al. (2010[Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2010). Main Group Met. Chem. 33, 205-207.]). For short Cl⋯Cl inter­actions in other chlorido­tin(IV) complexes, see: Brazeau et al. (2012[Brazeau, A. L., Jones, N. D. & Ragogna, P. J. (2012). Dalton Trans. 41, 7890-7896.]); Cabon et al. (2010[Cabon, Y., Reboule, I., Lutz, M., Gebbink, R. J. M. K. & Deelman, B. J. (2010). Organometallics, 29, 5904-5911.]). For background to the weighting schemes used in the refinement, see: Prince (1982[Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H36N)[Sn(C4H9)Cl4]

  • Mr = 560.08

  • Triclinic, [P \overline 1]

  • a = 11.6933 (5) Å

  • b = 11.7463 (5) Å

  • c = 12.2301 (6) Å

  • α = 114.236 (5)°

  • β = 101.680 (4)°

  • γ = 104.123 (4)°

  • V = 1395.80 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 175 K

  • 0.45 × 0.40 × 0.15 mm

Data collection
  • Agilent Xcalibur (Sapphire3, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.803, Tmax = 1.000

  • 18571 measured reflections

  • 6635 independent reflections

  • 5438 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.088

  • S = 0.97

  • 6628 reflections

  • 254 parameters

  • 142 restraints

  • H-atom parameters constrained

  • Δρmax = 1.32 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C6 2.129 (5)
Sn1—Cl2 2.3390 (12)
Sn1—Cl3 2.3494 (14)
Sn1—Cl4 2.4812 (14)
Sn1—Cl5 2.5051 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H152⋯Cl4 0.96 2.81 3.752 (6) 167
C19—H191⋯Cl5i 0.96 2.88 3.837 (5) 171
C19—H192⋯Cl5ii 0.96 2.90 3.830 (5) 164
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The interest in new organotin(IV) derivatives is related to their applications in different fields: stabilization of polyvinyl chloride, treatments for glass surface, homogeneous catalysts, textile treatments and fungicidal properties (Evans & Karpel, 1985; Davies et al., 2008).

The asymmetric unit of the title compound, (N(C4H9)4)[Sn(C4H9)Cl4], is illustrated in Fig. 1. It consists of a tetrabutylammonium cation and a tetrachloridobutylstannate(IV) anion. The Sn(IV) atom is five-coordinated in a distorted trigonal-bipyramidal arrangement with Cl4 and Cl5 in the apical positions. Major bond angle deviations with respect to the ideal trigonal-bipyramidal coordination geometry appear to be related to the different sizes of the butyl group and the Cl atoms. Thus in the equitorial plane, the C6—Sn1—Cl2 angle (125.04 (15)°) is larger than the Cl2—Sn1—Cl3 angle (112.46 (6)°). The angle Cl4—Sn1—Cl5 is 175.24 (6)°, indicating a slight deviation from linearity. The local geometry at the Sn(IV) position in the title compound is thus similar to that in (Ph4As)[MeSnCl4] (Webster et al., 1976). The Sn—Cl distances, [2.3390 (12), 2.3494 (14), 2.4812 (14) and 2.5051 (14) Å], are slightly outside the range of the Sn—Cl distances [2.369 (4) and 2.400 (4) Å] observed in (n-Pr2NH2)[Sn(C2O4)Cl4] (Sow et al., 2010). The C—N—C angles of the cation are close to 109°, in agreement with the expected sp3 hybridization.

The packing of the structure is shown in Fig. 2. A short intermolecular Cl2···Cl2 interaction of 3.295 (2) Å is found between two SnBuCl4- anions related by an inversion center. Only two other non-disordered compounds containing chloridotin(IV) complexes have shorter Cl···Cl intermolecular interactions: 3.190 Å in [C33H25N3SnCl4]·CH2Cl2 (Brazeau et al., 2012); 3.288 Å in trans-[PdCl(SnCl3(2-PyPPh2)2)] (Cabon et al., 2010). In the title compound, cations and anions stack along the a-axis and are connected via weak C—H···Cl hydrogen-bonding interactions (Fig. 2). The stacks themselves are connected via weak Cl···Cl interactions and another C—H···Cl interaction as to form sheets parallel to the ab plane.

Related literature top

For general background to and applications of tin(IV) compounds, see: Evans & Karpel (1985); Davies et al. (2008). For related structures, see: Webster et al. (1976); Sow et al. (2010). For short Cl···Cl interactions in other chloridotin(IV) complexes, see: Brazeau et al. (2012); Cabon et al. (2010). For background to the weighting schemes used in the refinement, see: Prince (1982); Watkin (1994).

Experimental top

Ethanolic solutions containing (NBu4)HSO4 (1.26 g, 4 mmol) and SnBuCl3 2.25 g, 8 mmol) were mixed and stirred at room temperature for more than 1 h. After removing the precipitate, the filtrate was allowed to evaporate to give colourless crystals of the title compound. The idealized overall reaction is: (NBu4)HSO4 + 2 SnBuCl3 (NBu4)[SnBuCl4] + SnBuCl2HSO4

Refinement top

Three reflections, (0 1 1), (1 0 0) and (1 1 1), were obstructed by the beam stop and were omitted from the refinement. Disorder is observed for the dibutyl ammonium ion. Two of the four butyl chains of the tetrabutylammonium cation are partially disordered and were refined with site occupancies of 0.691 (6):0.309 (6) for each chain. All equivalent disordered moieties were restrained to have similar geometries. The displacement parameters of disordered atoms C12, C121, C24 and C241 of the tetrabutylammonium cation were restrained to be approximately isotropic. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: OLEX2 (Dolomanov et al., 2009) and VESTA (Momma & Izumi, 2011); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as spheres of arbitary radius. Only the major component of the disordered part of the tetrabutylammonium cation is drawn for the sake of clarity.
[Figure 2] Fig. 2. The packing of the structure viewed along the a axis in wireframe style. Intermolecular Cl···Cl interactions are drawn as dashed red lines and intermolecular C—H···Cl interactions as dashed blue lines.
Tetrabutylammonium butyltetrachloridostannate(IV) top
Crystal data top
(C16H36N)[Sn(C4H9)Cl4]Z = 2
Mr = 560.08F(000) = 580.000
Triclinic, P1Dx = 1.333 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.6933 (5) ÅCell parameters from 5275 reflections
b = 11.7463 (5) Åθ = 2.0–28.2°
c = 12.2301 (6) ŵ = 1.30 mm1
α = 114.236 (5)°T = 175 K
β = 101.680 (4)°Plate, colourless
γ = 104.123 (4)°0.45 × 0.40 × 0.15 mm
V = 1395.80 (14) Å3
Data collection top
Agilent Xcalibur (Sapphire3, Gemini)
diffractometer
6635 independent reflections
Radiation source: Enhance (Mo) X-ray Source5438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 16.0143 pixels mm-1θmax = 29.2°, θmin = 1.9°
ω scansh = 1516
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1515
Tmin = 0.803, Tmax = 1.000l = 1616
18571 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.088 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.178E + 04 0.238E + 04 0.133E + 04 350. 47.8
S = 0.97(Δ/σ)max = 0.001
6628 reflectionsΔρmax = 1.32 e Å3
254 parametersΔρmin = 1.00 e Å3
142 restraints
Crystal data top
(C16H36N)[Sn(C4H9)Cl4]γ = 104.123 (4)°
Mr = 560.08V = 1395.80 (14) Å3
Triclinic, P1Z = 2
a = 11.6933 (5) ÅMo Kα radiation
b = 11.7463 (5) ŵ = 1.30 mm1
c = 12.2301 (6) ÅT = 175 K
α = 114.236 (5)°0.45 × 0.40 × 0.15 mm
β = 101.680 (4)°
Data collection top
Agilent Xcalibur (Sapphire3, Gemini)
diffractometer
6635 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
5438 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 1.000Rint = 0.039
18571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049142 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 0.97Δρmax = 1.32 e Å3
6628 reflectionsΔρmin = 1.00 e Å3
254 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A·M., 1986. J. Appl. Cryst. 105–107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.19913 (3)0.15984 (3)0.83567 (3)0.0345
Cl20.07714 (13)0.07249 (13)0.93279 (13)0.0501
Cl30.35953 (15)0.36814 (14)0.98257 (16)0.0696
Cl40.34432 (13)0.04890 (15)0.87972 (15)0.0554
Cl50.05658 (13)0.28254 (14)0.81078 (14)0.0522
C60.1661 (6)0.0700 (5)0.6359 (5)0.0528
C70.1672 (6)0.0706 (6)0.5700 (5)0.0542
C80.0680 (6)0.1742 (5)0.5766 (5)0.0541
C90.0661 (8)0.3156 (6)0.5062 (6)0.0838
H910.00410.37560.51780.1202*
H930.04710.34360.41710.1200*
H920.14720.31550.54100.1201*
H820.01380.17530.53660.0644*
H810.08010.15040.66470.0641*
H720.15510.09710.48050.0641*
H710.24900.06890.61000.0640*
H610.22850.12870.62170.0612*
H620.08290.06380.59540.0613*
N100.7478 (4)0.2479 (4)0.9853 (4)0.0392
C110.7451 (6)0.1082 (5)0.9094 (5)0.0586
C120.6356 (7)0.0102 (7)0.8184 (7)0.05400.691 (6)
C130.6825 (7)0.1149 (7)0.7370 (5)0.0814
C140.7350 (7)0.1247 (9)0.6359 (7)0.1001
H1420.73770.21090.59270.1750*
H1410.81800.05860.67790.1751*
H1430.68430.10540.57960.1750*
C150.6838 (5)0.2475 (7)1.0813 (5)0.0657
C160.6844 (7)0.3808 (9)1.1736 (6)0.0926
C170.6118 (8)0.3602 (12)1.2581 (7)0.1457
C180.6068 (11)0.4897 (14)1.3521 (8)0.2270
H1820.55620.46281.40050.3500*
H1830.68560.54851.40590.3500*
H1810.56060.52051.30570.3500*
H1720.65430.32401.30550.1789*
H1710.52850.29571.20410.1789*
H1610.76960.44361.22510.1170*
H1620.64410.41841.12650.1170*
H1510.72880.21661.13150.0782*
H1520.59910.18551.03440.0781*
C190.8824 (5)0.3421 (5)1.0513 (5)0.0448
C200.9606 (5)0.3237 (6)1.1534 (5)0.0526
C211.0970 (6)0.4119 (8)1.1979 (6)0.0762
C221.1793 (7)0.3939 (9)1.2977 (7)0.1068
H2211.26530.44351.31860.1650*
H2231.16780.29981.26390.1650*
H2221.15750.42161.37330.1649*
H2121.12540.39051.12500.0922*
H2111.10330.50621.23590.0922*
H2010.95380.23111.11780.0639*
H2020.92890.34671.22390.0643*
H1910.92080.33190.98680.0541*
H1920.88250.43191.09160.0543*
C230.6808 (7)0.2893 (7)0.9006 (5)0.0727
C240.6979 (9)0.2669 (10)0.7805 (8)0.07030.691 (6)
C250.5893 (8)0.2945 (9)0.7078 (7)0.1069
C260.6013 (9)0.2481 (10)0.5815 (7)0.1269
H2620.55380.27330.52920.2270*
H2610.68840.28240.59460.2270*
H2630.57220.15050.54030.2270*
H2410.77970.33190.80130.1187*0.691 (6)
H2420.69700.18090.73620.1187*0.691 (6)
C1210.7471 (16)0.0365 (11)0.7809 (10)0.05770.309 (6)
C2410.5625 (11)0.2512 (19)0.8044 (14)0.06990.309 (6)
H1210.58560.01330.76580.0975*0.691 (6)
H1220.59030.04070.86240.0975*0.691 (6)
H12110.83140.06010.78500.0600*0.309 (6)
H12120.70410.06720.72700.0600*0.309 (6)
H24110.51530.15420.76460.0600*0.309 (6)
H24120.50810.29200.84700.0600*0.309 (6)
H1110.80000.11670.86330.0751*0.691 (6)
H1120.78050.08640.97170.0751*0.691 (6)
H1130.81660.10700.96140.0751*0.309 (6)
H1140.67110.05160.90860.0751*0.309 (6)
H2310.70300.38340.95010.0874*0.691 (6)
H2320.59370.24520.88080.0874*0.691 (6)
H2330.73740.29940.85640.0874*0.309 (6)
H2340.68780.37530.96190.0874*0.309 (6)
H2510.60310.38750.74710.1274*0.691 (6)
H2520.50940.24580.70400.1274*0.691 (6)
H2530.66970.36320.75820.1274*0.309 (6)
H2540.52840.33390.69940.1274*0.309 (6)
H1310.74560.11660.79830.0974*0.691 (6)
H1320.61190.19640.69690.0974*0.691 (6)
H1330.71570.14610.79200.0974*0.309 (6)
H1340.59320.14840.71180.0974*0.309 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03730 (17)0.03018 (15)0.03305 (16)0.00540 (12)0.00836 (12)0.01820 (12)
Cl20.0569 (8)0.0525 (7)0.0618 (8)0.0205 (6)0.0315 (7)0.0408 (7)
Cl30.0570 (9)0.0399 (7)0.0734 (10)0.0079 (6)0.0061 (8)0.0208 (7)
Cl40.0447 (7)0.0638 (9)0.0735 (10)0.0213 (7)0.0157 (7)0.0484 (8)
Cl50.0568 (8)0.0470 (7)0.0678 (9)0.0253 (6)0.0236 (7)0.0365 (7)
C60.074 (4)0.048 (3)0.038 (3)0.015 (3)0.018 (3)0.027 (2)
C70.066 (4)0.058 (3)0.039 (3)0.022 (3)0.023 (3)0.021 (3)
C80.067 (4)0.045 (3)0.044 (3)0.019 (3)0.017 (3)0.017 (3)
C90.125 (7)0.047 (4)0.066 (4)0.030 (4)0.030 (4)0.017 (3)
N100.042 (2)0.049 (2)0.041 (2)0.0283 (18)0.0206 (18)0.0260 (17)
C110.100 (4)0.042 (2)0.039 (3)0.031 (2)0.021 (2)0.0226 (18)
C120.065 (4)0.058 (3)0.050 (4)0.039 (2)0.016 (3)0.029 (3)
C130.116 (5)0.071 (3)0.039 (3)0.061 (4)0.006 (3)0.005 (2)
C140.082 (5)0.106 (6)0.078 (5)0.027 (5)0.018 (4)0.024 (4)
C150.036 (3)0.106 (5)0.039 (3)0.015 (3)0.020 (2)0.023 (3)
C160.080 (5)0.151 (7)0.042 (3)0.086 (5)0.023 (3)0.019 (4)
C170.102 (7)0.294 (15)0.051 (4)0.122 (9)0.048 (5)0.055 (7)
C180.222 (13)0.43 (2)0.053 (5)0.270 (15)0.051 (7)0.047 (9)
C190.048 (3)0.050 (3)0.046 (3)0.017 (2)0.021 (2)0.028 (2)
C200.051 (3)0.075 (4)0.049 (3)0.036 (3)0.022 (3)0.035 (3)
C210.046 (3)0.115 (6)0.048 (3)0.036 (4)0.017 (3)0.019 (4)
C220.064 (5)0.139 (8)0.088 (6)0.060 (5)0.003 (4)0.028 (5)
C230.102 (4)0.094 (4)0.043 (3)0.079 (4)0.019 (3)0.030 (3)
C240.096 (5)0.079 (5)0.079 (4)0.053 (5)0.047 (4)0.056 (5)
C250.148 (6)0.114 (6)0.074 (4)0.059 (5)0.009 (4)0.066 (4)
C260.131 (7)0.154 (8)0.068 (4)0.077 (6)0.004 (4)0.029 (5)
C1210.072 (7)0.092 (4)0.042 (4)0.059 (6)0.024 (5)0.043 (4)
C2410.063 (5)0.069 (8)0.102 (7)0.042 (6)0.017 (4)0.059 (6)
Geometric parameters (Å, º) top
Sn1—C62.129 (5)C17—H1720.975
Sn1—Cl22.3390 (12)C17—H1710.963
Sn1—Cl32.3494 (14)C18—H1821.003
Sn1—Cl42.4812 (14)C18—H1830.910
Sn1—Cl52.5051 (14)C18—H1810.940
C6—C71.516 (7)C19—C201.516 (7)
C6—H610.971C19—H1910.964
C6—H620.969C19—H1920.963
C7—C81.505 (7)C20—C211.515 (8)
C7—H720.975C20—H2010.966
C7—H710.974C20—H2020.970
C8—C91.517 (7)C21—C221.515 (9)
C8—H820.976C21—H2120.972
C8—H810.965C21—H2110.986
C9—H910.957C22—H2210.951
C9—H930.957C22—H2230.970
C9—H920.957C22—H2220.956
N10—C111.505 (6)C23—C241.446 (7)
N10—C151.517 (6)C23—C2411.450 (9)
N10—C191.501 (6)C23—H2310.950
N10—C231.483 (6)C23—H2320.950
C11—C121.447 (7)C23—H2330.950
C11—C1211.455 (9)C23—H2340.950
C11—H1110.950C24—C251.578 (7)
C11—H1120.950C24—H2410.974
C11—H1130.950C24—H2420.925
C11—H1140.950C24—C2411.648 (16)
C12—C131.532 (7)C24—H2330.818
C12—C1211.520 (16)C25—C261.462 (7)
C12—H1210.950C25—C2411.523 (9)
C12—H1220.939C25—H2510.950
C12—H1140.963C25—H2520.950
C13—C141.465 (10)C25—H2530.950
C13—C1211.556 (9)C25—H2540.950
C13—H1310.950C26—H2620.946
C13—H1320.950C26—H2610.952
C13—H1330.950C26—H2630.975
C13—H1340.954C121—H12110.941
C14—H1420.943C121—H12120.983
C14—H1410.954C121—H1110.985
C14—H1430.952C241—H24110.984
C15—C161.505 (9)C241—H24120.992
C15—H1510.964C241—H2320.969
C15—H1520.957C241—H2521.227
C16—C171.519 (10)H112—H1130.499
C16—H1610.969H131—H1330.395
C16—H1620.975H132—H1340.626
C17—C181.508 (13)
Cl2—Sn1—Cl3112.46 (6)N10—C19—H192107.4
Cl2—Sn1—Cl488.66 (5)C20—C19—H192107.4
Cl3—Sn1—Cl488.58 (6)H191—C19—H192109.4
Cl2—Sn1—Cl588.99 (5)C19—C20—C21109.9 (5)
Cl3—Sn1—Cl588.51 (6)C19—C20—H201109.0
Cl4—Sn1—Cl5175.24 (6)C21—C20—H201108.7
Cl2—Sn1—C6125.04 (15)C19—C20—H202108.7
Cl3—Sn1—C6122.42 (15)C21—C20—H202110.6
Cl4—Sn1—C695.13 (16)H201—C20—H202109.9
Cl5—Sn1—C689.61 (16)C20—C21—C22111.7 (6)
Sn1—C6—C7117.6 (3)C20—C21—H212109.2
Sn1—C6—H61107.8C22—C21—H212109.8
C7—C6—H61108.6C20—C21—H211108.1
Sn1—C6—H62106.8C22—C21—H211108.6
C7—C6—H62105.9H212—C21—H211109.4
H61—C6—H62110.0C21—C22—H221110.4
C6—C7—C8114.0 (5)C21—C22—H223109.3
C6—C7—H72108.7H221—C22—H223108.2
C8—C7—H72108.6C21—C22—H222111.2
C6—C7—H71108.3H221—C22—H222109.5
C8—C7—H71108.4H223—C22—H222108.1
H72—C7—H71108.8N10—C23—C24122.5 (5)
C7—C8—C9113.8 (5)N10—C23—C241143.6 (8)
C7—C8—H82108.0C24—C23—C24169.3 (7)
C9—C8—H82106.9N10—C23—H231106.0
C7—C8—H81109.5C24—C23—H231106.1
C9—C8—H81108.9C241—C23—H231102.1
H82—C8—H81109.6N10—C23—H232106.2
C8—C9—H91109.6C24—C23—H232106.2
C8—C9—H93109.9H231—C23—H232109.5
H91—C9—H93109.6N10—C23—H233100.4
C8—C9—H92108.2C241—C23—H233100.8
H91—C9—H92109.5H231—C23—H23393.0
H93—C9—H92109.9H232—C23—H233138.2
C11—N10—C15107.9 (4)N10—C23—H234100.2
C11—N10—C19108.4 (4)C24—C23—H234121.2
C15—N10—C19111.0 (4)C241—C23—H234100.2
C11—N10—C23110.7 (4)H232—C23—H23497.0
C15—N10—C23109.5 (4)H233—C23—H234109.5
C19—N10—C23109.4 (4)C23—C24—C25105.9 (6)
N10—C11—C12126.8 (5)C23—C24—H241106.6
N10—C11—C121131.7 (6)C25—C24—H241110.9
C12—C11—C12163.1 (7)C23—C24—H242110.2
N10—C11—H111105.1C25—C24—H242113.5
C12—C11—H111105.3H241—C24—H242109.5
N10—C11—H112104.7C23—C24—C24155.5 (5)
C12—C11—H112104.9C25—C24—C24156.3 (4)
C121—C11—H112118.5H241—C24—C241143.5
H111—C11—H112109.5H242—C24—C241106.8
N10—C11—H113103.1C25—C24—H233132.3
C12—C11—H113124.0H241—C24—H23371.0
C121—C11—H113103.5H242—C24—H233109.8
H111—C11—H11380.9C241—C24—H23392.9
N10—C11—H114104.3C24—C25—C26101.9 (7)
C121—C11—H114103.7C24—C25—C24164.2 (6)
H111—C11—H114145.4C26—C25—C241144.2 (11)
H112—C11—H11479.8C24—C25—H251110.9
H113—C11—H114109.5C26—C25—H251110.8
C11—C12—C13107.2 (6)C241—C25—H251104.9
C11—C12—C12158.7 (5)C24—C25—H252111.8
C13—C12—C12161.3 (5)C26—C25—H252111.9
C11—C12—H121108.2C241—C25—H25253.6
C13—C12—H121109.7H251—C25—H252109.5
C121—C12—H12190.6C24—C25—H25359.3
C11—C12—H122109.3C26—C25—H25399.8
C13—C12—H122112.0C241—C25—H25399.8
C121—C12—H122158.8H251—C25—H25356.4
H121—C12—H122110.4H252—C25—H253148.4
C13—C12—H114128.6C24—C25—H254156.4
C121—C12—H11498.6C26—C25—H254100.5
H121—C12—H114117.7C241—C25—H254100.7
H122—C12—H11469.2H251—C25—H25453.2
C12—C13—C14131.8 (7)H252—C25—H25465.8
C12—C13—C12159.0 (6)H253—C25—H254109.5
C14—C13—C12179.8 (6)C25—C26—H262113.7
C12—C13—H131103.6C25—C26—H261106.8
C14—C13—H131103.7H262—C26—H261111.5
C121—C13—H13195.0C25—C26—H263107.0
C12—C13—H132103.7H262—C26—H263108.9
C14—C13—H132103.5H261—C26—H263108.6
C121—C13—H132153.4C13—C121—C1259.8 (5)
H131—C13—H132109.5C13—C121—C11105.6 (7)
C12—C13—H133104.1C12—C121—C1158.2 (5)
C14—C13—H133116.7C13—C121—H1211113.1
C121—C13—H133116.3C12—C121—H1211156.6
H132—C13—H13386.3C11—C121—H1211107.9
C12—C13—H13468.6C13—C121—H1212113.8
C14—C13—H134116.4C12—C121—H121295.4
C121—C13—H134116.2C11—C121—H1212108.9
H131—C13—H134132.0H1211—C121—H1212107.4
H133—C13—H134109.1C13—C121—H111134.7
C13—C14—H142110.2C12—C121—H11198.5
C13—C14—H141105.8H1211—C121—H11170.3
H142—C14—H141110.2H1212—C121—H111107.1
C13—C14—H143108.0C25—C241—C23108.6 (8)
H142—C14—H143111.5C25—C241—C2459.5 (5)
H141—C14—H143111.0C23—C241—C2455.2 (5)
N10—C15—C16116.4 (6)C25—C241—H2411112.5
N10—C15—H151106.1C23—C241—H2411110.2
C16—C15—H151106.8C24—C241—H2411106.2
N10—C15—H152107.5C25—C241—H2412113.0
C16—C15—H152109.5C23—C241—H2412108.9
H151—C15—H152110.4C24—C241—H2412149.9
C15—C16—C17109.1 (8)H2411—C241—H2412103.4
C15—C16—H161110.7C25—C241—H232149.0
C17—C16—H161110.4C24—C241—H23291.9
C15—C16—H162109.5H2411—C241—H23285.3
C17—C16—H162109.1H2412—C241—H23285.2
H161—C16—H162108.0C23—C241—H252147.1
C16—C17—C18112.1 (11)C24—C241—H25294.0
C16—C17—H172107.9H2411—C241—H25287.8
C18—C17—H172108.6H2412—C241—H25292.4
C16—C17—H171108.2H232—C241—H252171.9
C18—C17—H171110.7C121—H111—C1197.6
H172—C17—H171109.2C11—H112—H11374.8
C17—C18—H182104.3C11—H113—H11274.8
C17—C18—H183110.3C12—H114—C1198.3
H182—C18—H183110.4C241—H232—C2398.2
C17—C18—H181108.0C23—H233—C24109.5
H182—C18—H181107.6C241—H252—C2587.8
H183—C18—H181115.7C13—H131—H13378.0
N10—C19—C20116.1 (4)C13—H132—H13471.2
N10—C19—H191107.6C13—H133—H13178.0
C20—C19—H191108.9H132—H134—C1370.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H152···Cl40.962.813.752 (6)167
C19—H191···Cl5i0.962.883.837 (5)171
C19—H192···Cl5ii0.962.903.830 (5)164
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2.
Selected bond lengths (Å) top
Sn1—C62.129 (5)Sn1—Cl42.4812 (14)
Sn1—Cl22.3390 (12)Sn1—Cl52.5051 (14)
Sn1—Cl32.3494 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H152···Cl40.9572.8143.752 (6)166.55
C19—H191···Cl5i0.9642.8823.837 (5)171.2
C19—H192···Cl5ii0.9632.8963.830 (5)163.6
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2.
 

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrazeau, A. L., Jones, N. D. & Ragogna, P. J. (2012). Dalton Trans. 41, 7890–7896.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCabon, Y., Reboule, I., Lutz, M., Gebbink, R. J. M. K. & Deelman, B. J. (2010). Organometallics, 29, 5904–5911.  Web of Science CSD CrossRef CAS Google Scholar
First citationDavies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). In Tin Chemistry: Fundamentals, Frontiers, and Applications. London: John Wiley & Sons Ltd.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEvans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, Journal of Organometallic Chemistry Library, Vol. 16. Amsterdam and New York: Elsevier Science Publishers.  Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationSow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2010). Main Group Met. Chem. 33, 205–207.  CSD CrossRef CAS Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWebster, M., Mudd, K. R. & Taylor, D. J. (1976). Inorg. Chim. Acta, 20, 231–235.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages m562-m563
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds