inorganic compounds
Tetrayttrium difluoride disilicate orthosilicate, Y4F2[Si2O7][SiO4]
aDepartment of Chemistry and Biochemistry, University of Delaware, 304A Drake Hall, Newark, DE 19716, USA, and bInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
*Correspondence e-mail: schleid@iac.uni-stuttgart.de
In the 4F2[Si2O7][SiO4], three fundamental building blocks are present, viz. anionic disilicate and orthosilicate units ([Si2O7]6− and [SiO4]4−) and cationic [F2Y4]10+ entities. The latter are built up by two [FY3]8+ triangles sharing a common edge. The four crystallographically independent Y3+ cations display coordination numbers of eight for one and of seven for the other three cations, provided by oxide and fluoride anions. The overall arrangement of the building blocks can be considered as layer-like parallel to the ac plane.
of YCCDC reference: 962944
Related literature
For isotypic Er4F2[Si2O7][SiO4], see: Müller-Bunz & Schleid (2001). For the minor by-product phase Y3F[Si3O10], see: Müller-Bunz & Schleid (1998). For the of allanite (old name orthite), see: Rumanova & Nikoleva (1959).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 962944
10.1107/S1600536813026391/wm2768sup1.cif
contains datablocks I, publication_text. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813026391/wm2768Isup2.hkl
Colourless lath-shaped single crystals of Y4F2[Si2O7][SiO4] were obtained by the reaction of yttrium sesquioxide (Y2O3), yttrium trifluoride (YF3), and silicon dioxide (SiO2) in the molar ratio 2:5:3 and an excess of cesium chloride (CsCl) as
in evacuated silica ampoules within nine days at 973 K and a cooling rate of 10 Kh-1. Due to the stability of the product against air and moisture, the excess can the removed by washing with water. Besides the title compound, single crystals of thalenite-type Y3F[Si3O10] (Müller-Bunz & Schleid, 1998) were also found in the product mixture as minor by-product.The highest and lowest electron densities are found 1.29 Å from atom F2 and and 1.28 Å from atom O8, respectively.
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Y4F2[Si2O7][SiO4] | Z = 2 |
Mr = 653.91 | F(000) = 608 |
Triclinic, P1 | Dx = 4.359 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.4987 (5) Å | Cell parameters from 5136 reflections |
b = 6.6196 (5) Å | θ = 0.4–28.3° |
c = 13.2978 (9) Å | µ = 23.52 mm−1 |
α = 87.418 (4)° | T = 293 K |
β = 85.702 (4)° | Lath-shaped, colourless |
γ = 60.854 (3)° | 0.10 × 0.06 × 0.03 mm |
V = 498.19 (6) Å3 |
Nonius KappaCCD diffractometer | 2427 independent reflections |
Radiation source: fine-focus sealed tube | 1475 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.120 |
ω and ϕ mscans | θmax = 28.2°, θmin = 1.5° |
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1995) | h = −8→8 |
Tmin = 0.104, Tmax = 0.463 | k = −8→8 |
12473 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | w = 1/[σ2(Fo2) + (0.0233P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.107 | (Δ/σ)max < 0.001 |
S = 0.98 | Δρmax = 1.56 e Å−3 |
2427 reflections | Δρmin = −1.49 e Å−3 |
182 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0029 (6) |
Y4F2[Si2O7][SiO4] | γ = 60.854 (3)° |
Mr = 653.91 | V = 498.19 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.4987 (5) Å | Mo Kα radiation |
b = 6.6196 (5) Å | µ = 23.52 mm−1 |
c = 13.2978 (9) Å | T = 293 K |
α = 87.418 (4)° | 0.10 × 0.06 × 0.03 mm |
β = 85.702 (4)° |
Nonius KappaCCD diffractometer | 2427 independent reflections |
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1995) | 1475 reflections with I > 2σ(I) |
Tmin = 0.104, Tmax = 0.463 | Rint = 0.120 |
12473 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 182 parameters |
wR(F2) = 0.107 | 0 restraints |
S = 0.98 | Δρmax = 1.56 e Å−3 |
2427 reflections | Δρmin = −1.49 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Y1 | 0.32290 (19) | 0.37903 (19) | 0.20317 (8) | 0.0102 (3) | |
Y2 | 0.94009 (19) | 0.27320 (19) | 0.02756 (8) | 0.0083 (3) | |
Y3 | 0.21943 (19) | 0.21311 (19) | 0.52890 (8) | 0.0083 (3) | |
Y4 | 0.82014 (19) | 0.30705 (19) | 0.32901 (8) | 0.0084 (3) | |
F1 | 0.0366 (11) | 0.2679 (11) | 0.1862 (5) | 0.0118 (14) | |
F2 | 0.2019 (11) | 0.2616 (11) | 0.3554 (5) | 0.0143 (15) | |
Si1 | 0.4925 (5) | 0.2508 (5) | 0.9343 (2) | 0.0098 (7) | |
Si2 | 0.2335 (5) | 0.1526 (5) | 0.7833 (2) | 0.0084 (7) | |
Si3 | 0.2675 (5) | 0.7298 (5) | 0.4207 (2) | 0.0078 (7) | |
O1 | 0.2654 (13) | 0.3396 (14) | 0.0197 (6) | 0.0120 (17) | |
O2 | 0.2523 (13) | 0.9039 (13) | 0.0181 (6) | 0.0117 (17) | |
O3 | 0.5550 (14) | 0.5023 (14) | 0.1127 (6) | 0.0145 (18) | |
O4 | 0.4646 (12) | 0.0987 (13) | 0.8473 (5) | 0.0086 (16) | |
O5 | 0.2042 (13) | 0.3248 (13) | 0.6867 (5) | 0.0081 (16) | |
O6 | 0.6842 (13) | 0.1117 (13) | 0.2472 (6) | 0.0122 (17) | |
O7 | 0.0069 (13) | 0.7152 (13) | 0.1437 (6) | 0.0116 (17) | |
O8 | 0.4064 (13) | 0.8414 (13) | 0.4786 (6) | 0.0092 (16) | |
O9 | 0.4233 (13) | 0.5444 (14) | 0.3321 (6) | 0.0132 (18) | |
O10 | 0.8272 (13) | 0.4057 (14) | 0.4931 (6) | 0.0135 (18) | |
O11 | 0.0157 (13) | 0.9376 (13) | 0.3873 (6) | 0.0089 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Y1 | 0.0090 (5) | 0.0126 (6) | 0.0088 (6) | −0.0050 (4) | −0.0027 (4) | 0.0019 (4) |
Y2 | 0.0088 (5) | 0.0079 (6) | 0.0077 (6) | −0.0035 (4) | −0.0013 (4) | −0.0008 (4) |
Y3 | 0.0082 (5) | 0.0081 (6) | 0.0078 (6) | −0.0032 (4) | −0.0023 (4) | −0.0001 (4) |
Y4 | 0.0079 (5) | 0.0088 (6) | 0.0076 (6) | −0.0034 (4) | −0.0011 (4) | −0.0008 (4) |
F1 | 0.014 (3) | 0.013 (4) | 0.009 (3) | −0.005 (3) | −0.005 (3) | −0.001 (3) |
F2 | 0.013 (3) | 0.019 (4) | 0.012 (4) | −0.009 (3) | −0.004 (3) | 0.003 (3) |
Si1 | 0.0073 (15) | 0.0095 (16) | 0.0107 (16) | −0.0022 (13) | −0.0022 (12) | −0.0016 (12) |
Si2 | 0.0083 (15) | 0.0058 (16) | 0.0077 (16) | −0.0005 (13) | −0.0002 (12) | −0.0019 (12) |
Si3 | 0.0079 (15) | 0.0083 (16) | 0.0077 (16) | −0.0044 (13) | 0.0006 (12) | 0.0002 (12) |
O1 | 0.016 (4) | 0.019 (4) | 0.009 (4) | −0.009 (3) | 0.005 (3) | −0.003 (3) |
O2 | 0.011 (4) | 0.010 (4) | 0.016 (4) | −0.006 (3) | 0.001 (3) | 0.001 (3) |
O3 | 0.017 (4) | 0.012 (4) | 0.010 (4) | −0.004 (3) | −0.003 (3) | 0.006 (3) |
O4 | 0.009 (4) | 0.013 (4) | 0.011 (4) | −0.006 (3) | −0.005 (3) | 0.003 (3) |
O5 | 0.010 (4) | 0.009 (4) | 0.009 (4) | −0.005 (3) | 0.002 (3) | −0.002 (3) |
O6 | 0.009 (4) | 0.009 (4) | 0.019 (4) | −0.001 (3) | −0.001 (3) | −0.004 (3) |
O7 | 0.011 (4) | 0.010 (4) | 0.009 (4) | −0.002 (3) | 0.002 (3) | 0.002 (3) |
O8 | 0.009 (4) | 0.010 (4) | 0.012 (4) | −0.006 (3) | −0.004 (3) | −0.002 (3) |
O9 | 0.014 (4) | 0.019 (4) | 0.009 (4) | −0.008 (3) | 0.000 (3) | −0.004 (3) |
O10 | 0.012 (4) | 0.012 (4) | 0.009 (4) | 0.000 (3) | −0.003 (3) | −0.001 (3) |
O11 | 0.009 (4) | 0.013 (4) | 0.010 (4) | −0.005 (3) | −0.006 (3) | 0.001 (3) |
Y1—O6 | 2.248 (7) | Y3—Si3ii | 3.024 (3) |
Y1—O3 | 2.286 (8) | Y3—Si2 | 3.392 (3) |
Y1—O7 | 2.330 (7) | Y3—Y3i | 3.406 (2) |
Y1—F1 | 2.337 (6) | Y3—Si3x | 3.431 (3) |
Y1—F2 | 2.353 (6) | Y3—Y3ii | 3.559 (2) |
Y1—O9 | 2.366 (7) | Y4—F1iv | 2.223 (6) |
Y1—O1 | 2.540 (8) | Y4—O6 | 2.240 (8) |
Y1—O4i | 2.856 (8) | Y4—O11v | 2.269 (8) |
Y1—Si2i | 3.296 (3) | Y4—O9 | 2.272 (8) |
Y1—Si2ii | 3.428 (3) | Y4—O10 | 2.316 (8) |
Y1—Y4 | 3.5649 (15) | Y4—O5vi | 2.364 (7) |
Y1—Y2iii | 3.7351 (15) | Y4—F2iv | 2.400 (6) |
Y2—O2iii | 2.216 (8) | Y4—Si3vi | 3.352 (3) |
Y2—F1iv | 2.239 (6) | Y4—Y3vi | 3.6603 (16) |
Y2—O7iii | 2.281 (8) | Y4—Y3iv | 3.6740 (14) |
Y2—O2v | 2.295 (7) | Y4—Y1iv | 3.7852 (15) |
Y2—O1iii | 2.322 (8) | F1—Y4xi | 2.223 (6) |
Y2—O1iv | 2.354 (7) | F1—Y2xi | 2.239 (6) |
Y2—O3 | 2.424 (8) | F2—Y4xi | 2.400 (6) |
Y2—Si1vi | 3.064 (3) | Si1—O3vi | 1.613 (8) |
Y2—Si1vii | 3.316 (3) | Si1—O2vi | 1.626 (8) |
Y2—Y2viii | 3.411 (2) | Si1—O4 | 1.644 (8) |
Y2—Y2ix | 3.486 (2) | Si1—O1xii | 1.666 (8) |
Y2—Y1iii | 3.7351 (15) | Si2—O6i | 1.622 (8) |
Y3—O5 | 2.236 (7) | Si2—O7ii | 1.633 (8) |
Y3—O8x | 2.257 (8) | Si2—O5 | 1.637 (8) |
Y3—O8vi | 2.273 (7) | Si2—O4 | 1.657 (7) |
Y3—O10xi | 2.305 (7) | Si3—O11 | 1.621 (7) |
Y3—F2 | 2.319 (6) | Si3—O9 | 1.632 (8) |
Y3—O11ii | 2.388 (8) | Si3—O8 | 1.660 (7) |
Y3—O10vi | 2.398 (8) | Si3—O10vi | 1.684 (8) |
O6—Y1—O3 | 78.8 (3) | O6—Y4—O10 | 138.3 (3) |
O6—Y1—O7 | 163.3 (3) | O11v—Y4—O10 | 84.6 (3) |
O3—Y1—O7 | 85.3 (3) | O9—Y4—O10 | 90.6 (3) |
O6—Y1—F1 | 119.2 (2) | F1iv—Y4—O5vi | 78.7 (2) |
O3—Y1—F1 | 142.5 (2) | O6—Y4—O5vi | 136.0 (3) |
O7—Y1—F1 | 76.9 (2) | O11v—Y4—O5vi | 148.0 (3) |
O6—Y1—F2 | 83.0 (3) | O9—Y4—O5vi | 78.4 (3) |
O3—Y1—F2 | 151.4 (2) | O10—Y4—O5vi | 75.9 (3) |
O7—Y1—F2 | 109.4 (2) | F1iv—Y4—F2iv | 67.0 (2) |
F1—Y1—F2 | 66.0 (2) | O6—Y4—F2iv | 135.7 (3) |
O6—Y1—O9 | 73.5 (3) | O11v—Y4—F2iv | 77.8 (2) |
O3—Y1—O9 | 79.2 (3) | O9—Y4—F2iv | 147.8 (3) |
O7—Y1—O9 | 98.5 (3) | O10—Y4—F2iv | 70.5 (2) |
F1—Y1—O9 | 135.6 (2) | O5vi—Y4—F2iv | 71.9 (2) |
F2—Y1—O9 | 74.6 (2) | Y4xi—F1—Y2xi | 128.6 (3) |
O6—Y1—O1 | 111.4 (3) | Y4xi—F1—Y1 | 112.2 (2) |
O3—Y1—O1 | 75.0 (3) | Y2xi—F1—Y1 | 114.7 (3) |
O7—Y1—O1 | 68.9 (3) | Y3—F2—Y1 | 149.1 (3) |
F1—Y1—O1 | 67.9 (2) | Y3—F2—Y4xi | 102.2 (2) |
F2—Y1—O1 | 132.7 (2) | Y1—F2—Y4xi | 105.6 (2) |
O9—Y1—O1 | 152.0 (3) | O3vi—Si1—O2vi | 115.4 (4) |
O6—Y1—O4i | 56.4 (2) | O3vi—Si1—O4 | 109.4 (4) |
O3—Y1—O4i | 103.4 (3) | O2vi—Si1—O4 | 108.6 (4) |
O7—Y1—O4i | 133.9 (2) | O3vi—Si1—O1xii | 99.6 (4) |
F1—Y1—O4i | 68.9 (2) | O2vi—Si1—O1xii | 113.6 (4) |
F2—Y1—O4i | 84.1 (2) | O4—Si1—O1xii | 110.0 (4) |
O9—Y1—O4i | 127.5 (2) | O6i—Si2—O7ii | 117.1 (4) |
O1—Y1—O4i | 70.1 (2) | O6i—Si2—O5 | 114.0 (4) |
O2iii—Y2—F1iv | 122.9 (3) | O7ii—Si2—O5 | 106.6 (4) |
O2iii—Y2—O7iii | 79.4 (3) | O6i—Si2—O4 | 97.8 (4) |
F1iv—Y2—O7iii | 154.6 (3) | O7ii—Si2—O4 | 109.3 (4) |
O2iii—Y2—O2v | 81.8 (3) | O5—Si2—O4 | 111.9 (4) |
F1iv—Y2—O2v | 85.6 (2) | O11—Si3—O9 | 114.6 (4) |
O7iii—Y2—O2v | 86.0 (3) | O11—Si3—O8 | 109.0 (4) |
O2iii—Y2—O1iii | 108.9 (3) | O9—Si3—O8 | 115.8 (4) |
F1iv—Y2—O1iii | 106.1 (2) | O11—Si3—O10vi | 99.8 (4) |
O7iii—Y2—O1iii | 73.6 (3) | O9—Si3—O10vi | 107.4 (4) |
O2v—Y2—O1iii | 154.3 (3) | O8—Si3—O10vi | 108.9 (4) |
O2iii—Y2—O1iv | 153.3 (3) | Si1vii—O1—Y2iii | 99.1 (4) |
F1iv—Y2—O1iv | 72.8 (2) | Si1vii—O1—Y2xi | 129.2 (4) |
O7iii—Y2—O1iv | 82.0 (3) | Y2iii—O1—Y2xi | 96.4 (3) |
O2v—Y2—O1iv | 78.1 (3) | Si1vii—O1—Y1 | 120.2 (4) |
O1iii—Y2—O1iv | 83.6 (3) | Y2iii—O1—Y1 | 100.3 (3) |
O2iii—Y2—O3 | 78.4 (3) | Y2xi—O1—Y1 | 103.8 (3) |
F1iv—Y2—O3 | 78.6 (2) | Si1vi—O2—Y2iii | 118.5 (4) |
O7iii—Y2—O3 | 121.1 (3) | Si1vi—O2—Y2xiii | 139.1 (5) |
O2v—Y2—O3 | 142.0 (3) | Y2iii—O2—Y2xiii | 98.2 (3) |
O1iii—Y2—O3 | 63.6 (3) | Si1vi—O3—Y1 | 133.6 (5) |
O1iv—Y2—O3 | 127.9 (3) | Si1vi—O3—Y2 | 96.7 (4) |
O5—Y3—O8x | 124.4 (3) | Y1—O3—Y2 | 128.7 (3) |
O5—Y3—O8vi | 84.1 (3) | Si1—O4—Si2 | 130.4 (5) |
O8x—Y3—O8vi | 82.5 (3) | Si1—O4—Y1i | 136.4 (4) |
O5—Y3—O10xi | 102.1 (3) | Si2—O4—Y1i | 89.8 (3) |
O8x—Y3—O10xi | 112.7 (3) | Si2—O5—Y3 | 121.5 (4) |
O8vi—Y3—O10xi | 154.3 (3) | Si2—O5—Y4vi | 132.8 (4) |
O5—Y3—F2 | 155.0 (2) | Y3—O5—Y4vi | 105.4 (3) |
O8x—Y3—F2 | 79.2 (3) | Si2i—O6—Y4 | 138.9 (4) |
O8vi—Y3—F2 | 91.6 (2) | Si2i—O6—Y1 | 115.8 (4) |
O10xi—Y3—F2 | 72.2 (2) | Y4—O6—Y1 | 105.2 (3) |
O5—Y3—O11ii | 79.8 (3) | Si2ii—O7—Y2iii | 129.9 (4) |
O8x—Y3—O11ii | 77.4 (3) | Si2ii—O7—Y1 | 118.8 (4) |
O8vi—Y3—O11ii | 140.4 (3) | Y2iii—O7—Y1 | 108.2 (3) |
O10xi—Y3—O11ii | 65.2 (3) | Si3—O8—Y3xiv | 121.6 (4) |
F2—Y3—O11ii | 117.1 (2) | Si3—O8—Y3vi | 135.4 (4) |
O5—Y3—O10vi | 76.7 (3) | Y3xiv—O8—Y3vi | 97.5 (3) |
O8x—Y3—O10vi | 147.8 (3) | Si3—O9—Y4 | 125.0 (4) |
O8vi—Y3—O10vi | 75.5 (3) | Si3—O9—Y1 | 133.0 (4) |
O10xi—Y3—O10vi | 81.6 (3) | Y4—O9—Y1 | 100.4 (3) |
F2—Y3—O10vi | 78.4 (3) | Si3vi—O10—Y3iv | 97.4 (3) |
O11ii—Y3—O10vi | 133.8 (3) | Si3vi—O10—Y4 | 112.9 (4) |
F1iv—Y4—O6 | 84.0 (3) | Y3iv—O10—Y4 | 105.3 (3) |
F1iv—Y4—O11v | 99.0 (3) | Si3vi—O10—Y3vi | 136.1 (4) |
O6—Y4—O11v | 74.4 (3) | Y3iv—O10—Y3vi | 98.4 (3) |
F1iv—Y4—O9 | 119.3 (2) | Y4—O10—Y3vi | 101.9 (3) |
O6—Y4—O9 | 75.5 (3) | Si3—O11—Y4xiii | 145.4 (4) |
O11v—Y4—O9 | 127.5 (3) | Si3—O11—Y3ii | 96.1 (4) |
F1iv—Y4—O10 | 135.4 (2) | Y4xiii—O11—Y3ii | 116.6 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) x+1, y, z; (v) x+1, y−1, z; (vi) −x+1, −y+1, −z+1; (vii) x, y, z−1; (viii) −x+2, −y, −z; (ix) −x+2, −y+1, −z; (x) x, y−1, z; (xi) x−1, y, z; (xii) x, y, z+1; (xiii) x−1, y+1, z; (xiv) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | Y4F2[Si2O7][SiO4] |
Mr | 653.91 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.4987 (5), 6.6196 (5), 13.2978 (9) |
α, β, γ (°) | 87.418 (4), 85.702 (4), 60.854 (3) |
V (Å3) | 498.19 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 23.52 |
Crystal size (mm) | 0.10 × 0.06 × 0.03 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Numerical (X-SHAPE; Stoe & Cie, 1995) |
Tmin, Tmax | 0.104, 0.463 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12473, 2427, 1475 |
Rint | 0.120 |
(sin θ/λ)max (Å−1) | 0.664 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.107, 0.98 |
No. of reflections | 2427 |
No. of parameters | 182 |
Δρmax, Δρmin (e Å−3) | 1.56, −1.49 |
Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).
Acknowledgements
This work was supported by the State of Baden-Württemberg (Stuttgart) and the Deutsche Forschungsgemeinschaft (DFG, Frankfurt/Main) within the funding program Open Access Publishing.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Müller-Bunz, H. & Schleid, Th. (1998). Z. Anorg. Allg. Chem. 624, 1082–1084. Google Scholar
Müller-Bunz, H. & Schleid, Th. (2001). Z. Anorg. Allg. Chem. 627, 218–223. Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rumanova, I. M. & Nikoleva, T. V. (1959). Sov. Phys. Crystallogr. 4, 789–795. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1995). X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Y4F2[Si2O7][SiO4] crystallizes isotypically with the already known erbium analogue Er4F2[Si2O7][SiO4] (Müller-Bunz & Schleid, 2001). The crystal structure comprises two different oxidosilicate anions, namely a pyroanionic bitetrahedral disilicate unit [Si2O7]6– with eclipsed conformation (Fig. 1, top left) and an orthosilicate tetrahedron [SiO4]4– (Fig. 1, top right), just like in the mineral allanite (old name orthite) (Rumanova & Nikoleva, 1959). Together with these two anionic building blocks, discrete cationic [F2Y4]10+ entities (Fig. 1, bottom) complete the crystal structure of Y4F2[Si2O7][SiO4]. For the formation of the latter, two almost planar [FY3]8+ triangles are fused together via one common edge, resulting in a butterfly-shaped [F2Y4]10+ unit comprising an angle between the two triangular planes of 161.65 (5)°. Two of the four crystallographically distinct Y3+ cations (Y2, Y3) display just one fluoride anion in their coordination sphere, while the other two (F1, F4) have contact with two F– anions each. O2– anions complete the coordination environments of the yttrium cations resulting in distorted bi- (Y1) or monocapped (Y2-4) trigonal prisms. The cationic [F2Y4]10+ as well as the anionic [Si2O7]6– and [SiO4]4– building blocks are arranged layer-like parallel to the ac plane in the crystal structure of the title compound (Fig. 2).