organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1506-o1507

The co-crystal N,N′-bis­­[(pyridin-1-ium-2-yl)meth­yl]ethane­di­thio­amide bis­­(2,6-di­nitro­benzoate)–2,6-di­nitro­benzoic acid (1/4)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 10 August 2013; accepted 21 August 2013; online 4 September 2013)

The asymmetric unit of title co-crystal, C14H16N4S22+·2C7H3N2O6·4C7H4N2O6, comprises a centrosymmetric dipyridinium dication, a 2,6-di­nitro­benzoate anion and two independent 2,6-di­nitro­benzoic acid mol­ecules. The pyridin­ium rings are each approximately perpendicular to the central di­thio­amide unit [dihedral angle = 80.67 (12)°]. The carboxyl­ate/carb­oxy­lic acid groups are approximately perpendicular to the benzene ring to which they are attached [dihedral angles = 78.85 (16), 81.46 (19) and 71.28 (15)°]. By contrast, the major twist exhibited by a nitro group is manifested in a dihedral angle of 32.66 (17)°. The most prominent feature of the crystal packing is linear supra­molecular chains along [1-10], featuring O—H⋯O(carboxyl­ate) and pyridinium-N—H⋯O hydrogen bonds. These are consolidated into a three-dimensional architecture by thio­amide–nitro N—H⋯O, C—H⋯O and ππ [inter-centroid distance = 3.524 (2) Å] inter­actions. One of the nitro O atoms was refined over two sites; the major site was 0.65 (7) occupied.

Related literature

For the 2:1 salts of 2,6-di­nitro­benzoate with isomeric n-({[(pyridin-1-ium-n-ylmeth­yl)carbamo­yl]formamido}­meth­yl)pyridin-1-ium, n = 2, 3 and 4, see: Arman et al. (2013[Arman, H. D., Miller, T. & Tiekink, E. R. T. (2013). Z. Kristallogr. Cryst. Mat. 228, 295-303.]). For co-crystals of 4-nitro­phenyl­acetic acid with N,N′-bis­(pyridin-3-ylmeth­yl)oxalamide and the thioxalamide analogue, see: Arman et al. (2012[Arman, H. D., Miller, T., Kaulgud, T., Poplaukhin, P. & Tiekink, E. R. T. (2012). J. Chem. Crystallogr. 42, 673—679.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N4S22+·2C7H3N2O6·4C7H4N2O6

  • Mr = 1575.14

  • Triclinic, [P \overline 1]

  • a = 11.157 (2) Å

  • b = 11.524 (3) Å

  • c = 14.967 (4) Å

  • α = 79.601 (18)°

  • β = 72.859 (17)°

  • γ = 61.237 (12)°

  • V = 1610.3 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 98 K

  • 0.35 × 0.10 × 0.09 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • 10659 measured reflections

  • 7317 independent reflections

  • 5680 reflections with I > 2σ(I)

  • Rint = 0.040

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.166

  • S = 1.06

  • 7317 reflections

  • 518 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1o⋯O13i 0.84 (3) 1.70 (3) 2.536 (3) 169 (5)
O8—H2o⋯O14 0.85 (3) 1.70 (3) 2.546 (3) 178 (4)
N1—H1n⋯O14 0.88 (3) 1.86 (3) 2.733 (3) 171 (3)
N2—H2n⋯O15ii 0.88 (3) 2.53 (3) 3.202 (3) 134 (2)
C3—H3⋯O18iii 0.95 2.39 3.141 (5) 136
C12—H12⋯O16iv 0.95 2.41 3.301 (4) 157
C25—H25⋯O10iv 0.95 2.38 3.078 (5) 130
Symmetry codes: (i) x-1, y+1, z; (ii) -x+1, -y, -z+1; (iii) -x+2, -y, -z+1; (iv) -x+1, -y, -z.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title salt co-crystal (I) was isolated in continuation of on-going structural studies of salts/co-crystals formed between carboxylic acids, including 2,6-dinitrobenzoic acid (Arman et al., 2013), and various pyridyl derivatives, such as the isomeric N,N'-bis(pyridin-n-ylmethyl)oxalamide series, where n = 2, 3 and 4, and their thioxalamide analogues (Arman et al., 2012).

The asymmetric unit of (I) comprises half of a 2-({[(pyridin-1-ium-2- ylmethyl)carbamoyl]formamido}methyl)pyridin-1-ium dication, disposed about a centre of inversion, a 2,6-dinitrobenzoate anion and two molecules of 2,6-dinitrobenzoic acid, Fig. 1. The pyridin-1-ium rings lie to either side of the central dithioamide chromophore and adopt an almost perpendicular orientation forming a dihedral angle of 80.67 (12)°. In the anion, the carboxylate is inclined to the benzene ring to which it is attached forming a dihedral angle of 78.85 (16)°. A similar situation pertains in the neutral 2,6-dinitrobenzoic acid molecules where the comparable dihedral angles are 81.46 (19) and 71.28 (15)°. By contrast, while all nitro groups are twisted out of the plane of the benzene ring to which they are attached, the greatest twist is seen in the O12—N6—C20—C15 torsion angle of -32.7 (4)°.

The deprotonated carboxylate O13,O14 group is pivotal in the crystal packing, as each oxygen atom accepts a hydrogen bond from an adjacent molecule of 2,6-dinitrobenzoic acid, Table 1. As well, the O14 atom accepts a hydrogen bond from the pyridinium residue. A supramolecular chain results, base vector [1 - 1 0], as shown in Fig. 2. Chains are linked into a three-dimensional architecture by amide-N—H···O, C—H···O and ππ [inter-centroid distance between centrosymmetrically related C8–C13 rings = 3.524 (2) Å; symmetry operation = 1 - x, -y, 1 - z] contacts. Fig. 3 shows the unit-cell contents viewed down the axis of the chain.

Related literature top

For the 2:1 salts of 2,6-dinitrobenzoate with isomeric n-({[(pyridin-1-ium-n-ylmethyl)carbamoyl]formamido}methyl)pyridin-1-ium, n = 2, 3 and 4, see: Arman et al. (2013). For co-crystals of 4-nitrophenylacetic acid with N,N'-bis(pyridin-3-ylmethyl)oxalamide and the thioxalamide analogue, see: Arman et al. (2012).

Experimental top

2,6-Dinitrobenzoic acid (Sigma-Aldrich, 0.1 mmol) was dissolved in methanol (5 ml) and added to this was a chloroform (10 ml) solution of N,N'-bis(pyridin-2-ylmethyl)thioxalamide (0.5 mmol). The mixture was heated and allowed to stand for slow evaporation affording red crystals.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O-and N-bound H-atoms were located in a difference Fourier map and were refined with a distance restraints of O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O). The maximum and minimum residual electron density peaks of 1.01 and 0.50 e Å-3, respectively, were located 1.25 Å and 0.79 Å from the O6 atom. One of the nitro-O atoms was refined over two sites; the major site was present 0.65 (7).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structures of the components of (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level: (a) [C14H16N4S2]2+ (unlabelled atoms are related by the symmetry operation i: 1 - x, 1 - y, 1 - z), (b) 2,6-dinitrobenzoate anion (only the major component of the O17 atom is shown) and (c) the two independent 2,6-dinitrobenzoic acid molecules.
[Figure 2] Fig. 2. View of the supramolecular chain in (I). The O—H···O (orange) and N—H···O (blue) hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Unit-cell contents in (I) viewed down the axis of the supramolecular chain. The amide-N—H···O and C—H···O interactions are shown as pink and green dashed lines, respectively.
N,N'-Bis[(pyridin-1-ium-2-yl)methyl]ethanedithioamide bis(2,6-dinitrobenzoate)–2,6-dinitrobenzoic acid (1/4) top
Crystal data top
C14H16N4S22+·2C7H3N2O6·4C7H4N2O6Z = 1
Mr = 1575.14F(000) = 806
Triclinic, P1Dx = 1.624 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 11.157 (2) ÅCell parameters from 5825 reflections
b = 11.524 (3) Åθ = 2.2–40.6°
c = 14.967 (4) ŵ = 0.20 mm1
α = 79.601 (18)°T = 98 K
β = 72.859 (17)°Block, red
γ = 61.237 (12)°0.35 × 0.10 × 0.09 mm
V = 1610.3 (7) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5680 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ω scansh = 1114
10659 measured reflectionsk = 1414
7317 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0657P)2 + 1.361P]
where P = (Fo2 + 2Fc2)/3
7317 reflections(Δ/σ)max < 0.001
518 parametersΔρmax = 1.01 e Å3
4 restraintsΔρmin = 0.50 e Å3
Crystal data top
C14H16N4S22+·2C7H3N2O6·4C7H4N2O6γ = 61.237 (12)°
Mr = 1575.14V = 1610.3 (7) Å3
Triclinic, P1Z = 1
a = 11.157 (2) ÅMo Kα radiation
b = 11.524 (3) ŵ = 0.20 mm1
c = 14.967 (4) ÅT = 98 K
α = 79.601 (18)°0.35 × 0.10 × 0.09 mm
β = 72.859 (17)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5680 reflections with I > 2σ(I)
10659 measured reflectionsRint = 0.040
7317 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0654 restraints
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.01 e Å3
7317 reflectionsΔρmin = 0.50 e Å3
518 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.70660 (8)0.37681 (7)0.41826 (6)0.03648 (19)
O10.1913 (3)0.7776 (2)0.13753 (16)0.0472 (6)
O20.0893 (3)0.6553 (2)0.22582 (16)0.0450 (6)
H1O0.036 (4)0.717 (3)0.263 (2)0.067*
O30.3630 (3)0.5734 (3)0.2630 (2)0.0622 (8)
O40.5840 (3)0.4611 (3)0.19541 (18)0.0619 (8)
O50.1081 (3)0.5406 (3)0.0511 (2)0.0651 (8)
O60.0553 (3)0.6949 (3)0.0351 (2)0.0763 (9)
O70.4776 (2)0.26021 (19)0.29655 (13)0.0301 (4)
O80.4287 (2)0.08980 (19)0.35613 (14)0.0298 (4)
H2O0.5105 (18)0.047 (3)0.366 (2)0.045*
O90.4564 (2)0.0995 (2)0.16249 (15)0.0417 (5)
O100.2965 (3)0.0709 (3)0.1314 (2)0.0676 (9)
O110.0990 (2)0.5488 (2)0.44050 (14)0.0351 (5)
O120.2474 (2)0.3455 (2)0.47019 (14)0.0387 (5)
O130.90607 (19)0.17032 (19)0.34152 (13)0.0303 (4)
O140.67500 (19)0.04280 (18)0.38458 (12)0.0267 (4)
O150.7209 (2)0.2732 (2)0.30113 (14)0.0364 (5)
O160.6182 (3)0.2497 (3)0.19193 (18)0.0653 (8)
O170.952 (2)0.139 (2)0.1598 (9)0.057 (3)0.65 (7)
O17A0.881 (9)0.196 (6)0.1569 (13)0.073 (13)0.35 (7)
O180.8389 (2)0.1022 (2)0.29373 (14)0.0386 (5)
N10.7670 (2)0.0044 (2)0.51789 (14)0.0221 (4)
H1N0.744 (3)0.020 (3)0.4758 (16)0.027*
N20.4912 (2)0.3477 (2)0.53239 (16)0.0273 (5)
H2N0.4095 (18)0.379 (3)0.5734 (17)0.033*
N30.4577 (3)0.5049 (3)0.20045 (19)0.0414 (6)
N40.1306 (3)0.5836 (3)0.0067 (2)0.0450 (7)
N50.3340 (3)0.1284 (3)0.16974 (16)0.0353 (5)
N60.1660 (2)0.4306 (2)0.42466 (16)0.0298 (5)
N70.6920 (3)0.2256 (2)0.22561 (17)0.0356 (6)
N80.8680 (3)0.0999 (3)0.20945 (19)0.0383 (6)
C10.6818 (3)0.1241 (3)0.55403 (17)0.0238 (5)
C20.8845 (3)0.0856 (3)0.54572 (18)0.0272 (5)
H20.94170.16850.51720.033*
C30.9197 (3)0.0553 (3)0.6158 (2)0.0333 (6)
H31.00200.11690.63650.040*
C40.8332 (3)0.0669 (3)0.6560 (2)0.0362 (7)
H40.85590.08860.70510.043*
C50.7144 (3)0.1571 (3)0.62510 (19)0.0321 (6)
H50.65570.24080.65240.039*
C60.5559 (3)0.2091 (2)0.51299 (19)0.0265 (5)
H6A0.58580.20030.44430.032*
H6B0.48490.17590.53850.032*
C70.5477 (3)0.4270 (2)0.48907 (18)0.0246 (5)
C80.2867 (3)0.5484 (3)0.10827 (18)0.0274 (5)
C90.4185 (3)0.4676 (3)0.12775 (18)0.0297 (6)
C100.5164 (3)0.3527 (3)0.0827 (2)0.0370 (7)
H100.60470.30130.09850.044*
C110.4855 (4)0.3125 (3)0.0145 (2)0.0415 (7)
H110.55180.23270.01620.050*
C120.3575 (4)0.3891 (3)0.0088 (2)0.0368 (7)
H120.33550.36310.05610.044*
C130.2618 (3)0.5043 (3)0.03774 (19)0.0307 (6)
C140.1825 (3)0.6752 (3)0.15902 (19)0.0302 (6)
C150.2550 (3)0.2777 (3)0.29713 (17)0.0247 (5)
C160.2231 (3)0.2407 (3)0.22679 (18)0.0277 (5)
C170.0909 (3)0.3051 (3)0.20708 (19)0.0318 (6)
H170.07380.27650.15850.038*
C180.0145 (3)0.4107 (3)0.2588 (2)0.0312 (6)
H180.10530.45510.24610.037*
C190.0110 (3)0.4528 (3)0.32935 (19)0.0286 (5)
H190.06130.52620.36490.034*
C200.1443 (3)0.3856 (3)0.34695 (18)0.0266 (5)
C210.4005 (3)0.2085 (3)0.31645 (17)0.0246 (5)
C220.7842 (3)0.0671 (2)0.22087 (17)0.0238 (5)
C230.7426 (3)0.1301 (3)0.17386 (18)0.0271 (5)
C240.7446 (3)0.1059 (3)0.07891 (19)0.0301 (6)
H240.71450.15070.04980.036*
C250.7905 (3)0.0164 (3)0.02744 (18)0.0314 (6)
H250.79360.00020.03750.038*
C260.8318 (3)0.0494 (3)0.07111 (19)0.0306 (6)
H260.86330.11140.03660.037*
C270.8268 (3)0.0237 (3)0.16622 (19)0.0273 (5)
C280.7888 (3)0.0975 (3)0.32410 (17)0.0254 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0282 (4)0.0248 (4)0.0446 (4)0.0084 (3)0.0039 (3)0.0065 (3)
O10.0520 (14)0.0229 (11)0.0448 (13)0.0102 (10)0.0058 (11)0.0005 (9)
O20.0467 (13)0.0259 (11)0.0455 (13)0.0157 (10)0.0170 (10)0.0123 (9)
O30.079 (2)0.0403 (15)0.0657 (17)0.0112 (14)0.0344 (16)0.0180 (13)
O40.0589 (17)0.092 (2)0.0520 (15)0.0505 (17)0.0298 (13)0.0319 (14)
O50.0656 (18)0.087 (2)0.0663 (17)0.0437 (17)0.0345 (15)0.0006 (15)
O60.0590 (18)0.0609 (19)0.086 (2)0.0067 (15)0.0384 (17)0.0163 (16)
O70.0281 (10)0.0300 (10)0.0325 (10)0.0137 (9)0.0095 (8)0.0035 (8)
O80.0247 (9)0.0256 (10)0.0364 (10)0.0104 (8)0.0108 (8)0.0077 (8)
O90.0303 (11)0.0413 (13)0.0436 (12)0.0095 (10)0.0037 (9)0.0080 (10)
O100.0554 (16)0.072 (2)0.0743 (19)0.0090 (14)0.0276 (14)0.0419 (15)
O110.0370 (11)0.0287 (11)0.0371 (11)0.0110 (9)0.0098 (9)0.0059 (8)
O120.0336 (11)0.0412 (12)0.0335 (11)0.0052 (10)0.0173 (9)0.0036 (9)
O130.0252 (9)0.0296 (10)0.0263 (9)0.0014 (8)0.0097 (8)0.0058 (7)
O140.0241 (9)0.0238 (9)0.0235 (9)0.0024 (8)0.0056 (7)0.0065 (7)
O150.0447 (12)0.0299 (11)0.0317 (10)0.0162 (10)0.0074 (9)0.0004 (8)
O160.105 (2)0.086 (2)0.0476 (14)0.076 (2)0.0205 (15)0.0017 (14)
O170.066 (7)0.067 (7)0.056 (3)0.052 (6)0.002 (3)0.013 (4)
O17A0.14 (3)0.09 (2)0.046 (5)0.09 (3)0.022 (10)0.006 (7)
O180.0471 (13)0.0406 (12)0.0364 (11)0.0217 (11)0.0145 (10)0.0081 (9)
N10.0242 (10)0.0232 (11)0.0206 (10)0.0118 (9)0.0059 (8)0.0010 (8)
N20.0224 (11)0.0207 (11)0.0346 (12)0.0075 (9)0.0024 (9)0.0055 (9)
N30.0518 (17)0.0423 (16)0.0402 (14)0.0278 (14)0.0217 (13)0.0115 (12)
N40.0445 (16)0.0393 (16)0.0494 (16)0.0133 (13)0.0218 (13)0.0019 (12)
N50.0390 (14)0.0354 (14)0.0277 (12)0.0107 (11)0.0120 (11)0.0047 (10)
N60.0268 (11)0.0332 (13)0.0269 (11)0.0109 (10)0.0082 (9)0.0009 (9)
N70.0483 (15)0.0321 (13)0.0311 (12)0.0224 (12)0.0051 (11)0.0077 (10)
N80.0400 (14)0.0397 (15)0.0414 (14)0.0237 (13)0.0045 (12)0.0084 (11)
C10.0251 (12)0.0218 (12)0.0251 (12)0.0119 (11)0.0052 (10)0.0003 (9)
C20.0274 (13)0.0228 (13)0.0287 (13)0.0102 (11)0.0088 (11)0.0044 (10)
C30.0374 (15)0.0340 (16)0.0343 (15)0.0186 (13)0.0174 (13)0.0068 (12)
C40.0491 (18)0.0365 (16)0.0347 (15)0.0229 (15)0.0219 (14)0.0011 (12)
C50.0388 (15)0.0274 (14)0.0314 (14)0.0134 (13)0.0115 (12)0.0043 (11)
C60.0252 (12)0.0187 (12)0.0353 (14)0.0076 (11)0.0098 (11)0.0035 (10)
C70.0206 (12)0.0217 (13)0.0283 (12)0.0063 (11)0.0049 (10)0.0052 (10)
C80.0288 (13)0.0237 (13)0.0235 (12)0.0094 (11)0.0035 (10)0.0004 (10)
C90.0331 (14)0.0271 (14)0.0260 (13)0.0127 (12)0.0080 (11)0.0039 (10)
C100.0286 (14)0.0274 (15)0.0375 (15)0.0044 (12)0.0026 (12)0.0048 (12)
C110.0446 (18)0.0233 (14)0.0327 (15)0.0052 (13)0.0054 (13)0.0014 (11)
C120.0538 (19)0.0298 (15)0.0261 (13)0.0204 (14)0.0067 (13)0.0006 (11)
C130.0380 (15)0.0246 (14)0.0280 (13)0.0124 (12)0.0100 (12)0.0005 (10)
C140.0336 (15)0.0237 (14)0.0287 (13)0.0101 (12)0.0059 (11)0.0015 (10)
C150.0248 (12)0.0268 (13)0.0227 (12)0.0117 (11)0.0079 (10)0.0020 (10)
C160.0295 (13)0.0274 (14)0.0241 (12)0.0114 (11)0.0078 (10)0.0007 (10)
C170.0350 (15)0.0351 (15)0.0297 (13)0.0172 (13)0.0148 (12)0.0039 (11)
C180.0258 (13)0.0334 (15)0.0352 (14)0.0132 (12)0.0122 (11)0.0040 (11)
C190.0237 (13)0.0273 (14)0.0294 (13)0.0076 (11)0.0077 (11)0.0015 (10)
C200.0262 (13)0.0290 (14)0.0250 (12)0.0123 (11)0.0087 (10)0.0016 (10)
C210.0246 (12)0.0250 (13)0.0223 (12)0.0098 (11)0.0061 (10)0.0001 (9)
C220.0209 (12)0.0205 (12)0.0232 (12)0.0026 (10)0.0057 (9)0.0049 (9)
C230.0291 (13)0.0235 (13)0.0266 (13)0.0096 (11)0.0061 (10)0.0044 (10)
C240.0319 (14)0.0336 (15)0.0272 (13)0.0137 (12)0.0087 (11)0.0079 (11)
C250.0282 (14)0.0364 (16)0.0224 (12)0.0077 (12)0.0072 (11)0.0037 (11)
C260.0260 (13)0.0287 (14)0.0298 (13)0.0094 (12)0.0037 (11)0.0010 (11)
C270.0254 (13)0.0246 (13)0.0313 (13)0.0089 (11)0.0077 (11)0.0061 (10)
C280.0301 (13)0.0220 (13)0.0241 (12)0.0090 (11)0.0097 (10)0.0043 (9)
Geometric parameters (Å, º) top
S1—C71.651 (3)C3—C41.390 (4)
O1—C141.209 (3)C3—H30.9500
O2—C141.291 (3)C4—C51.384 (4)
O2—H1O0.845 (10)C4—H40.9500
O3—N31.223 (4)C5—H50.9500
O4—N31.230 (4)C6—H6A0.9900
O5—N41.209 (4)C6—H6B0.9900
O6—N41.217 (4)C7—C7i1.531 (5)
O7—C211.209 (3)C8—C91.397 (4)
O8—C211.314 (3)C8—C131.398 (4)
O8—H2O0.846 (10)C8—C141.520 (4)
O9—N51.214 (3)C9—C101.377 (4)
O10—N51.221 (3)C10—C111.381 (5)
O11—N61.226 (3)C10—H100.9500
O12—N61.232 (3)C11—C121.381 (5)
O13—C281.245 (3)C11—H110.9500
O14—C281.260 (3)C12—C131.386 (4)
O15—N71.226 (3)C12—H120.9500
O16—N71.234 (3)C15—C201.393 (4)
O17—O17A0.75 (6)C15—C161.395 (3)
O17—N81.227 (8)C15—C211.517 (3)
O17A—N81.28 (2)C16—C171.392 (4)
O18—N81.208 (3)C17—C181.374 (4)
N1—C11.343 (3)C17—H170.9500
N1—C21.350 (3)C18—C191.389 (4)
N1—H1N0.880 (10)C18—H180.9500
N2—C71.323 (3)C19—C201.389 (4)
N2—C61.446 (3)C19—H190.9500
N2—H2N0.879 (10)C22—C271.390 (4)
N3—C91.480 (4)C22—C231.391 (3)
N4—C131.467 (4)C22—C281.532 (3)
N5—C161.473 (4)C23—C241.394 (4)
N6—C201.478 (3)C24—C251.381 (4)
N7—C231.471 (4)C24—H240.9500
N8—C271.473 (3)C25—C261.382 (4)
C1—C51.384 (4)C25—H250.9500
C1—C61.509 (3)C26—C271.391 (4)
C2—C31.373 (4)C26—H260.9500
C2—H20.9500
C14—O2—H1O116 (3)C8—C9—N3119.4 (3)
C21—O8—H2O114 (2)C9—C10—C11119.6 (3)
O17A—O17—N876.8 (15)C9—C10—H10120.2
O17—O17A—N868 (2)C11—C10—H10120.2
C1—N1—C2123.9 (2)C10—C11—C12119.6 (3)
C1—N1—H1N119 (2)C10—C11—H11120.2
C2—N1—H1N117 (2)C12—C11—H11120.2
C7—N2—C6122.7 (2)C11—C12—C13119.2 (3)
C7—N2—H2N120 (2)C11—C12—H12120.4
C6—N2—H2N117 (2)C13—C12—H12120.4
O3—N3—O4124.4 (3)C12—C13—C8123.6 (3)
O3—N3—C9118.1 (3)C12—C13—N4116.2 (3)
O4—N3—C9117.5 (3)C8—C13—N4120.2 (3)
O5—N4—O6123.0 (3)O1—C14—O2127.1 (3)
O5—N4—C13119.1 (3)O1—C14—C8122.4 (3)
O6—N4—C13117.6 (3)O2—C14—C8110.5 (2)
O9—N5—O10123.9 (3)C20—C15—C16115.1 (2)
O9—N5—C16118.7 (2)C20—C15—C21122.2 (2)
O10—N5—C16117.4 (3)C16—C15—C21122.7 (2)
O11—N6—O12125.0 (2)C17—C16—C15123.3 (3)
O11—N6—C20117.7 (2)C17—C16—N5117.8 (2)
O12—N6—C20117.2 (2)C15—C16—N5119.0 (2)
O15—N7—O16123.6 (3)C18—C17—C16119.1 (2)
O15—N7—C23118.5 (2)C18—C17—H17120.4
O16—N7—C23117.9 (2)C16—C17—H17120.4
O18—N8—O17121.3 (6)C17—C18—C19120.3 (3)
O18—N8—O17A121.2 (13)C17—C18—H18119.9
O18—N8—C27119.3 (2)C19—C18—H18119.9
O17—N8—C27118.2 (5)C18—C19—C20118.8 (3)
O17A—N8—C27114.0 (9)C18—C19—H19120.6
N1—C1—C5118.4 (2)C20—C19—H19120.6
N1—C1—C6115.3 (2)C19—C20—C15123.5 (2)
C5—C1—C6126.3 (2)C19—C20—N6117.1 (2)
N1—C2—C3119.0 (3)C15—C20—N6119.4 (2)
N1—C2—H2120.5O7—C21—O8126.1 (2)
C3—C2—H2120.5O7—C21—C15122.1 (2)
C2—C3—C4118.9 (3)O8—C21—C15111.7 (2)
C2—C3—H3120.5C27—C22—C23115.0 (2)
C4—C3—H3120.5C27—C22—C28121.5 (2)
C5—C4—C3120.5 (2)C23—C22—C28123.5 (2)
C5—C4—H4119.7C22—C23—C24123.1 (3)
C3—C4—H4119.7C22—C23—N7119.5 (2)
C1—C5—C4119.3 (3)C24—C23—N7117.4 (2)
C1—C5—H5120.4C25—C24—C23119.6 (2)
C4—C5—H5120.4C25—C24—H24120.2
N2—C6—C1113.4 (2)C23—C24—H24120.2
N2—C6—H6A108.9C24—C25—C26119.5 (2)
C1—C6—H6A108.9C24—C25—H25120.2
N2—C6—H6B108.9C26—C25—H25120.2
C1—C6—H6B108.9C25—C26—C27119.2 (3)
H6A—C6—H6B107.7C25—C26—H26120.4
N2—C7—C7i113.8 (3)C27—C26—H26120.4
N2—C7—S1124.5 (2)C22—C27—C26123.7 (2)
C7i—C7—S1121.7 (3)C22—C27—N8119.7 (2)
C9—C8—C13114.5 (2)C26—C27—N8116.6 (2)
C9—C8—C14121.7 (2)O13—C28—O14125.0 (2)
C13—C8—C14123.8 (2)O13—C28—C22117.2 (2)
C10—C9—C8123.5 (3)O14—C28—C22117.7 (2)
C10—C9—N3117.1 (3)
O17A—O17—N8—O18101 (2)O9—N5—C16—C1524.1 (4)
O17A—O17—N8—C2792.1 (16)O10—N5—C16—C15156.9 (3)
O17—O17A—N8—O18101 (4)C15—C16—C17—C180.1 (4)
O17—O17A—N8—C27105.4 (15)N5—C16—C17—C18179.6 (2)
C2—N1—C1—C51.1 (4)C16—C17—C18—C190.3 (4)
C2—N1—C1—C6179.8 (2)C17—C18—C19—C200.5 (4)
C1—N1—C2—C30.8 (4)C18—C19—C20—C150.3 (4)
N1—C2—C3—C40.2 (4)C18—C19—C20—N6178.1 (2)
C2—C3—C4—C50.7 (4)C16—C15—C20—C190.1 (4)
N1—C1—C5—C40.5 (4)C21—C15—C20—C19178.4 (2)
C6—C1—C5—C4179.0 (3)C16—C15—C20—N6178.4 (2)
C3—C4—C5—C10.4 (4)C21—C15—C20—N63.2 (4)
C7—N2—C6—C174.8 (3)O11—N6—C20—C1932.3 (3)
N1—C1—C6—N2162.8 (2)O12—N6—C20—C19145.8 (3)
C5—C1—C6—N218.6 (4)O11—N6—C20—C15149.3 (2)
C6—N2—C7—C7i172.3 (3)O12—N6—C20—C1532.7 (4)
C6—N2—C7—S18.2 (4)C20—C15—C21—O770.4 (3)
C13—C8—C9—C100.8 (4)C16—C15—C21—O7107.8 (3)
C14—C8—C9—C10179.3 (3)C20—C15—C21—O8109.5 (3)
C13—C8—C9—N3179.3 (2)C16—C15—C21—O872.2 (3)
C14—C8—C9—N30.7 (4)C27—C22—C23—C240.7 (4)
O3—N3—C9—C10154.0 (3)C28—C22—C23—C24177.1 (2)
O4—N3—C9—C1023.7 (4)C27—C22—C23—N7178.4 (2)
O3—N3—C9—C825.9 (4)C28—C22—C23—N73.7 (4)
O4—N3—C9—C8156.4 (3)O15—N7—C23—C2218.6 (4)
C8—C9—C10—C110.2 (4)O16—N7—C23—C22158.8 (3)
N3—C9—C10—C11179.7 (3)O15—N7—C23—C24162.2 (3)
C9—C10—C11—C121.0 (4)O16—N7—C23—C2420.4 (4)
C10—C11—C12—C130.8 (4)C22—C23—C24—C250.5 (4)
C11—C12—C13—C80.3 (4)N7—C23—C24—C25179.6 (3)
C11—C12—C13—N4177.5 (3)C23—C24—C25—C261.0 (4)
C9—C8—C13—C121.0 (4)C24—C25—C26—C270.2 (4)
C14—C8—C13—C12179.5 (3)C23—C22—C27—C261.5 (4)
C9—C8—C13—N4176.7 (2)C28—C22—C27—C26176.4 (2)
C14—C8—C13—N41.9 (4)C23—C22—C27—N8177.7 (2)
O5—N4—C13—C125.7 (4)C28—C22—C27—N84.4 (4)
O6—N4—C13—C12168.2 (3)C25—C26—C27—C221.1 (4)
O5—N4—C13—C8176.5 (3)C25—C26—C27—N8178.2 (3)
O6—N4—C13—C89.6 (5)O18—N8—C27—C2214.3 (4)
C9—C8—C14—O180.4 (4)O17—N8—C27—C22153.1 (16)
C13—C8—C14—O198.1 (4)O17A—N8—C27—C22168 (4)
C9—C8—C14—O298.9 (3)O18—N8—C27—C26165.0 (3)
C13—C8—C14—O282.6 (3)O17—N8—C27—C2627.6 (16)
C20—C15—C16—C170.3 (4)O17A—N8—C27—C2611 (4)
C21—C15—C16—C17178.6 (2)C27—C22—C28—O1376.6 (3)
C20—C15—C16—N5179.4 (2)C23—C22—C28—O13101.1 (3)
C21—C15—C16—N51.1 (4)C27—C22—C28—O14100.7 (3)
O9—N5—C16—C17155.6 (3)C23—C22—C28—O1481.6 (3)
O10—N5—C16—C1723.4 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1o···O13ii0.84 (3)1.70 (3)2.536 (3)169 (5)
O8—H2o···O140.85 (3)1.70 (3)2.546 (3)178 (4)
N1—H1n···O140.88 (3)1.86 (3)2.733 (3)171 (3)
N2—H2n···O15iii0.88 (3)2.53 (3)3.202 (3)134 (2)
C3—H3···O18iv0.952.393.141 (5)136
C12—H12···O16v0.952.413.301 (4)157
C25—H25···O10v0.952.383.078 (5)130
Symmetry codes: (ii) x1, y+1, z; (iii) x+1, y, z+1; (iv) x+2, y, z+1; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1o···O13i0.84 (3)1.70 (3)2.536 (3)169 (5)
O8—H2o···O140.85 (3)1.70 (3)2.546 (3)178 (4)
N1—H1n···O140.88 (3)1.86 (3)2.733 (3)171 (3)
N2—H2n···O15ii0.88 (3)2.53 (3)3.202 (3)134 (2)
C3—H3···O18iii0.952.393.141 (5)136
C12—H12···O16iv0.952.413.301 (4)157
C25—H25···O10iv0.952.383.078 (5)130
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x+1, y, z.
 

Acknowledgements

We gratefully thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationArman, H. D., Miller, T., Kaulgud, T., Poplaukhin, P. & Tiekink, E. R. T. (2012). J. Chem. Crystallogr. 42, 673—679.  Web of Science CSD CrossRef Google Scholar
First citationArman, H. D., Miller, T. & Tiekink, E. R. T. (2013). Z. Kristallogr. Cryst. Mat. 228, 295–303.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1506-o1507
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds