Experimental
Crystal data
[Cu(C9H4O6)(H2O)3] Mr = 325.71 Monoclinic, P 21 /c a = 6.8551 (14) Å b = 18.892 (4) Å c = 10.716 (3) Å β = 126.87 (2)° V = 1110.2 (5) Å3 Z = 4 Mo Kα radiation μ = 2.01 mm−1 T = 293 K 0.24 × 0.21 × 0.21 mm
|
Data collection
Rigaku SCXmini diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.644, Tmax = 0.677 9530 measured reflections 1957 independent reflections 1744 reflections with I > 2σ(I) Rint = 0.047
|
Cu1—O2 | 1.934 (2) | Cu1—O5i | 1.917 (2) | Cu1—O1W | 2.258 (3) | Cu1—O2W | 1.987 (3) | Cu1—O3W | 1.984 (3) | Symmetry code: (i) . | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O3—H1⋯O1ii | 0.83 (1) | 1.80 (2) | 2.570 (4) | 153 (4) | O1W—H1WA⋯O1iii | 0.84 (1) | 2.37 (2) | 3.077 (4) | 142 (3) | O1W—H1WB⋯O4iv | 0.83 (1) | 1.97 (1) | 2.801 (4) | 171 (4) | O2W—H2WA⋯O6v | 0.84 (1) | 1.91 (2) | 2.697 (4) | 155 (4) | O2W—H2WB⋯O3vi | 0.84 (1) | 2.07 (2) | 2.875 (4) | 162 (3) | O3W—H3WA⋯O6vii | 0.83 (1) | 1.92 (2) | 2.717 (4) | 161 (4) | O3W—H3WB⋯O2viii | 0.83 (1) | 2.33 (2) | 3.130 (4) | 161 (3) | Symmetry codes: (ii) x-1, y, z-1; (iii) ; (iv) ; (v) -x+2, -y+2, -z+1; (vi) ; (vii) -x+1, -y+2, -z+1; (viii) . | |
Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
A mixture of copper nitrate (0.2 mmol), 1,3,5-benzenetricarboxylic acid (0.2 mmol), NaOH (0.2 mmol) and H2O (5 ml) was sealed in a 23 ml Tefon-lined stainless-steel reactor and then heated to 413 K for three days under autogenous pressure, then the mixture was slowly cooled to room temperature. The crystals were obtained from the mixture.
Carbon bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, Uiso(H) = 1.2 Ueq(C). The carboxyl H atom and water H atoms were located in a difference map and refined with a distance restraint of O—H = 0.84 (2) Å, Uiso(H) = 1.5Ueq(O).
Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
catena-Poly[[triaquacopper(II)]-µ-5-carboxybenzene-1,3-dicarboxylato-
κ2O1:
O3]
top Crystal data top [Cu(C9H4O6)(H2O)3] | F(000) = 660 |
Mr = 325.71 | Dx = 1.949 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 10073 reflections |
a = 6.8551 (14) Å | θ = 3.2–27.5° |
b = 18.892 (4) Å | µ = 2.01 mm−1 |
c = 10.716 (3) Å | T = 293 K |
β = 126.87 (2)° | Block, blue |
V = 1110.2 (5) Å3 | 0.24 × 0.21 × 0.21 mm |
Z = 4 | |
Data collection top Rigaku SCXmini diffractometer | 1957 independent reflections |
Radiation source: fine-focus sealed tube | 1744 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ω scans | θmax = 25.0°, θmin = 3.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −8→8 |
Tmin = 0.644, Tmax = 0.677 | k = −22→22 |
9530 measured reflections | l = −12→12 |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0257P)2 + 3.7798P] where P = (Fo2 + 2Fc2)/3 |
1957 reflections | (Δ/σ)max = 0.001 |
193 parameters | Δρmax = 0.42 e Å−3 |
10 restraints | Δρmin = −0.47 e Å−3 |
Crystal data top [Cu(C9H4O6)(H2O)3] | V = 1110.2 (5) Å3 |
Mr = 325.71 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.8551 (14) Å | µ = 2.01 mm−1 |
b = 18.892 (4) Å | T = 293 K |
c = 10.716 (3) Å | 0.24 × 0.21 × 0.21 mm |
β = 126.87 (2)° | |
Data collection top Rigaku SCXmini diffractometer | 1957 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1744 reflections with I > 2σ(I) |
Tmin = 0.644, Tmax = 0.677 | Rint = 0.047 |
9530 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.040 | 10 restraints |
wR(F2) = 0.083 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.42 e Å−3 |
1957 reflections | Δρmin = −0.47 e Å−3 |
193 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 0.88938 (8) | 0.72640 (2) | 0.67913 (5) | 0.01706 (15) | |
O1 | 1.0451 (6) | 0.87364 (14) | 0.7671 (3) | 0.0342 (7) | |
O2 | 0.7879 (5) | 0.81134 (12) | 0.5539 (3) | 0.0218 (6) | |
O3 | 0.2513 (5) | 0.91554 (14) | 0.0486 (3) | 0.0310 (7) | |
O4 | 0.2713 (6) | 1.02917 (15) | 0.0054 (3) | 0.0460 (9) | |
O5 | 1.0069 (5) | 1.13796 (13) | 0.7111 (3) | 0.0235 (6) | |
O6 | 0.7413 (5) | 1.18913 (13) | 0.4807 (3) | 0.0258 (6) | |
O2W | 1.1364 (6) | 0.71108 (15) | 0.6410 (4) | 0.0398 (8) | |
O3W | 0.6921 (6) | 0.75211 (17) | 0.7518 (3) | 0.0367 (7) | |
O1W | 0.5840 (5) | 0.67089 (15) | 0.4599 (3) | 0.0337 (7) | |
C2 | 0.7775 (6) | 0.93545 (17) | 0.5254 (4) | 0.0144 (7) | |
C1 | 0.8790 (7) | 0.86999 (18) | 0.6244 (4) | 0.0171 (8) | |
C9 | 0.8375 (7) | 1.13575 (18) | 0.5656 (4) | 0.0174 (8) | |
C7 | 0.8509 (6) | 1.00280 (18) | 0.5912 (4) | 0.0148 (7) | |
H7 | 0.9642 | 1.0078 | 0.6986 | 0.018* | |
C5 | 0.5841 (7) | 1.05491 (18) | 0.3357 (4) | 0.0169 (8) | |
H5 | 0.5191 | 1.0949 | 0.2726 | 0.020* | |
C3 | 0.6077 (6) | 0.92832 (18) | 0.3648 (4) | 0.0160 (8) | |
H3 | 0.5587 | 0.8834 | 0.3208 | 0.019* | |
C4 | 0.5101 (7) | 0.98796 (18) | 0.2688 (4) | 0.0165 (8) | |
C8 | 0.3348 (7) | 0.98117 (19) | 0.0959 (4) | 0.0223 (8) | |
C6 | 0.7546 (6) | 1.06249 (18) | 0.4962 (4) | 0.0150 (7) | |
H1 | 0.167 (6) | 0.915 (2) | −0.0485 (13) | 0.023* | |
H2WA | 1.132 (7) | 0.7397 (13) | 0.579 (4) | 0.023* | |
H3WB | 0.715 (6) | 0.746 (2) | 0.836 (2) | 0.023* | |
H2WB | 1.166 (7) | 0.6699 (7) | 0.628 (4) | 0.023* | |
H1WA | 0.439 (3) | 0.6782 (16) | 0.424 (4) | 0.023* | |
H3WA | 0.575 (5) | 0.7788 (17) | 0.691 (3) | 0.023* | |
H1WB | 0.619 (6) | 0.6279 (7) | 0.475 (4) | 0.023* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0235 (3) | 0.0090 (2) | 0.0143 (2) | 0.00247 (19) | 0.00896 (19) | 0.00336 (18) |
O1 | 0.0463 (19) | 0.0200 (15) | 0.0137 (14) | 0.0008 (13) | 0.0059 (13) | 0.0007 (11) |
O2 | 0.0280 (14) | 0.0083 (12) | 0.0176 (13) | −0.0011 (11) | 0.0074 (12) | 0.0014 (10) |
O3 | 0.0441 (18) | 0.0208 (14) | 0.0097 (13) | −0.0087 (13) | 0.0063 (13) | −0.0049 (11) |
O4 | 0.068 (2) | 0.0180 (15) | 0.0167 (16) | −0.0039 (15) | 0.0064 (16) | 0.0040 (13) |
O5 | 0.0303 (15) | 0.0119 (13) | 0.0153 (14) | −0.0014 (11) | 0.0068 (12) | −0.0034 (10) |
O6 | 0.0296 (15) | 0.0119 (13) | 0.0257 (15) | −0.0008 (11) | 0.0112 (13) | 0.0036 (11) |
O2W | 0.056 (2) | 0.0206 (16) | 0.066 (2) | 0.0127 (15) | 0.0494 (19) | 0.0162 (15) |
O3W | 0.0430 (19) | 0.0456 (19) | 0.0305 (17) | 0.0199 (15) | 0.0270 (16) | 0.0153 (14) |
O1W | 0.0320 (17) | 0.0236 (15) | 0.0294 (16) | −0.0021 (13) | 0.0098 (14) | −0.0048 (13) |
C2 | 0.0169 (18) | 0.0100 (17) | 0.0149 (18) | −0.0020 (14) | 0.0088 (15) | −0.0020 (14) |
C1 | 0.023 (2) | 0.0138 (18) | 0.0140 (19) | 0.0014 (15) | 0.0103 (17) | 0.0002 (14) |
C9 | 0.0220 (19) | 0.0128 (18) | 0.022 (2) | −0.0017 (15) | 0.0152 (17) | −0.0031 (15) |
C7 | 0.0182 (19) | 0.0148 (18) | 0.0100 (17) | 0.0004 (14) | 0.0078 (15) | 0.0002 (14) |
C5 | 0.025 (2) | 0.0094 (17) | 0.0167 (19) | 0.0022 (15) | 0.0124 (16) | 0.0014 (14) |
C3 | 0.0208 (19) | 0.0088 (17) | 0.0180 (19) | −0.0018 (14) | 0.0114 (16) | −0.0021 (14) |
C4 | 0.0184 (18) | 0.016 (2) | 0.0131 (18) | −0.0013 (15) | 0.0084 (15) | −0.0009 (14) |
C8 | 0.028 (2) | 0.0137 (19) | 0.017 (2) | −0.0002 (16) | 0.0089 (17) | −0.0029 (16) |
C6 | 0.0161 (18) | 0.0126 (17) | 0.0148 (18) | −0.0025 (14) | 0.0085 (15) | −0.0024 (14) |
Geometric parameters (Å, º) top Cu1—O2 | 1.934 (2) | O3W—H3WA | 0.832 (10) |
Cu1—O5i | 1.917 (2) | O1W—H1WA | 0.836 (10) |
Cu1—O1W | 2.258 (3) | O1W—H1WB | 0.834 (10) |
Cu1—O2W | 1.987 (3) | C2—C3 | 1.390 (5) |
Cu1—O3W | 1.984 (3) | C2—C7 | 1.394 (5) |
O1—C1 | 1.245 (4) | C2—C1 | 1.501 (5) |
O2—C1 | 1.273 (4) | C9—C6 | 1.511 (5) |
O3—C8 | 1.332 (4) | C7—C6 | 1.392 (5) |
O3—H1 | 0.833 (10) | C7—H7 | 0.9300 |
O4—C8 | 1.202 (5) | C5—C6 | 1.391 (5) |
O5—C9 | 1.268 (4) | C5—C4 | 1.391 (5) |
O5—Cu1ii | 1.917 (2) | C5—H5 | 0.9300 |
O6—C9 | 1.249 (4) | C3—C4 | 1.396 (5) |
O2W—H2WA | 0.840 (10) | C3—H3 | 0.9300 |
O2W—H2WB | 0.838 (10) | C4—C8 | 1.491 (5) |
O3W—H3WB | 0.832 (10) | | |
| | | |
O5i—Cu1—O2 | 174.44 (11) | O1—C1—O2 | 122.6 (3) |
O5i—Cu1—O3W | 93.54 (12) | O1—C1—C2 | 121.1 (3) |
O2—Cu1—O3W | 91.33 (12) | O2—C1—C2 | 116.3 (3) |
O5i—Cu1—O2W | 87.19 (12) | O6—C9—O5 | 124.2 (3) |
O2—Cu1—O2W | 88.53 (12) | O6—C9—C6 | 120.2 (3) |
O3W—Cu1—O2W | 169.17 (15) | O5—C9—C6 | 115.6 (3) |
O5i—Cu1—O1W | 90.26 (11) | C6—C7—C2 | 120.0 (3) |
O2—Cu1—O1W | 86.59 (11) | C6—C7—H7 | 120.0 |
O3W—Cu1—O1W | 95.58 (13) | C2—C7—H7 | 120.0 |
O2W—Cu1—O1W | 95.22 (14) | C6—C5—C4 | 120.5 (3) |
C1—O2—Cu1 | 117.8 (2) | C6—C5—H5 | 119.8 |
C8—O3—H1 | 108 (3) | C4—C5—H5 | 119.8 |
C9—O5—Cu1ii | 120.8 (2) | C2—C3—C4 | 120.6 (3) |
Cu1—O2W—H2WA | 116 (2) | C2—C3—H3 | 119.7 |
Cu1—O2W—H2WB | 120 (3) | C4—C3—H3 | 119.7 |
H2WA—O2W—H2WB | 111.3 (17) | C5—C4—C3 | 119.3 (3) |
Cu1—O3W—H3WB | 132 (2) | C5—C4—C8 | 119.4 (3) |
Cu1—O3W—H3WA | 114 (2) | C3—C4—C8 | 121.3 (3) |
H3WB—O3W—H3WA | 113.6 (18) | O4—C8—O3 | 122.0 (3) |
Cu1—O1W—H1WA | 120 (3) | O4—C8—C4 | 124.7 (3) |
Cu1—O1W—H1WB | 106 (3) | O3—C8—C4 | 113.3 (3) |
H1WA—O1W—H1WB | 112.3 (18) | C5—C6—C7 | 119.9 (3) |
C3—C2—C7 | 119.7 (3) | C5—C6—C9 | 119.5 (3) |
C3—C2—C1 | 119.0 (3) | C7—C6—C9 | 120.6 (3) |
C7—C2—C1 | 121.4 (3) | | |
| | | |
O5i—Cu1—O2—C1 | −135.3 (11) | C6—C5—C4—C3 | 0.4 (5) |
O3W—Cu1—O2—C1 | 73.6 (3) | C6—C5—C4—C8 | −177.5 (3) |
O2W—Cu1—O2—C1 | −95.6 (3) | C2—C3—C4—C5 | −0.2 (5) |
O1W—Cu1—O2—C1 | 169.1 (3) | C2—C3—C4—C8 | 177.8 (3) |
Cu1—O2—C1—O1 | 6.9 (5) | C5—C4—C8—O4 | 9.3 (6) |
Cu1—O2—C1—C2 | −174.0 (2) | C3—C4—C8—O4 | −168.6 (4) |
C3—C2—C1—O1 | 174.3 (4) | C5—C4—C8—O3 | −170.6 (3) |
C7—C2—C1—O1 | −5.3 (5) | C3—C4—C8—O3 | 11.5 (5) |
C3—C2—C1—O2 | −4.8 (5) | C4—C5—C6—C7 | −0.5 (5) |
C7—C2—C1—O2 | 175.5 (3) | C4—C5—C6—C9 | 178.2 (3) |
Cu1ii—O5—C9—O6 | 6.7 (5) | C2—C7—C6—C5 | 0.3 (5) |
Cu1ii—O5—C9—C6 | −173.7 (2) | C2—C7—C6—C9 | −178.4 (3) |
C3—C2—C7—C6 | −0.1 (5) | O6—C9—C6—C5 | 4.9 (5) |
C1—C2—C7—C6 | 179.6 (3) | O5—C9—C6—C5 | −174.7 (3) |
C7—C2—C3—C4 | 0.0 (5) | O6—C9—C6—C7 | −176.3 (3) |
C1—C2—C3—C4 | −179.7 (3) | O5—C9—C6—C7 | 4.0 (5) |
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+2, y+1/2, −z+3/2. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1···O1iii | 0.83 (1) | 1.80 (2) | 2.570 (4) | 153 (4) |
O1W—H1WA···O1iv | 0.84 (1) | 2.37 (2) | 3.077 (4) | 142 (3) |
O1W—H1WB···O4v | 0.83 (1) | 1.97 (1) | 2.801 (4) | 171 (4) |
O2W—H2WA···O6vi | 0.84 (1) | 1.91 (2) | 2.697 (4) | 155 (4) |
O2W—H2WB···O3vii | 0.84 (1) | 2.07 (2) | 2.875 (4) | 162 (3) |
O3W—H3WA···O6viii | 0.83 (1) | 1.92 (2) | 2.717 (4) | 161 (4) |
O3W—H3WB···O2ix | 0.83 (1) | 2.33 (2) | 3.130 (4) | 161 (3) |
Symmetry codes: (iii) x−1, y, z−1; (iv) x−1, −y+3/2, z−1/2; (v) −x+1, y−1/2, −z+1/2; (vi) −x+2, −y+2, −z+1; (vii) x+1, −y+3/2, z+1/2; (viii) −x+1, −y+2, −z+1; (ix) x, −y+3/2, z+1/2. |
Selected bond lengths (Å) topCu1—O2 | 1.934 (2) | Cu1—O2W | 1.987 (3) |
Cu1—O5i | 1.917 (2) | Cu1—O3W | 1.984 (3) |
Cu1—O1W | 2.258 (3) | | |
Symmetry code: (i) −x+2, y−1/2, −z+3/2. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1···O1ii | 0.833 (10) | 1.80 (2) | 2.570 (4) | 153 (4) |
O1W—H1WA···O1iii | 0.836 (10) | 2.37 (2) | 3.077 (4) | 142 (3) |
O1W—H1WB···O4iv | 0.834 (10) | 1.974 (11) | 2.801 (4) | 171 (4) |
O2W—H2WA···O6v | 0.840 (10) | 1.910 (19) | 2.697 (4) | 155 (4) |
O2W—H2WB···O3vi | 0.838 (10) | 2.065 (15) | 2.875 (4) | 162 (3) |
O3W—H3WA···O6vii | 0.832 (10) | 1.918 (16) | 2.717 (4) | 161 (4) |
O3W—H3WB···O2viii | 0.832 (10) | 2.332 (15) | 3.130 (4) | 161 (3) |
Symmetry codes: (ii) x−1, y, z−1; (iii) x−1, −y+3/2, z−1/2; (iv) −x+1, y−1/2, −z+1/2; (v) −x+2, −y+2, −z+1; (vi) x+1, −y+3/2, z+1/2; (vii) −x+1, −y+2, −z+1; (viii) x, −y+3/2, z+1/2. |
Acknowledgements
The authors acknowledge the Air Force Service College for supporting this work.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Lei, J.-W., Xie, C.-X. & Yang, H. (2012). Acta Cryst. E68, m697–m698. CSD CrossRef CAS IUCr Journals Google Scholar
Liu, K. (2012). Acta Cryst. E68, m415. CSD CrossRef IUCr Journals Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yao, X.-J. & Yuan, Q. (2011). Acta Cryst. E67, m1331–m1332. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access
The design and synthesis of novel coordination polymer are currently of great interest due to their potential application. Aromatic polycarboxylate compounds, such as 1,3,5-benzenetricarboxylic acid, have been proved to useful ligands to synthesis coordination polymers due to the versatile binding modes (Lei et al., (2012); Liu (2012); Yao & Yuan, (2011). Herein we report the synthesis and structures of the title compound.
As illustrated in Figure 1, there is one Cu(II) ion in the asymmetry unit. Cu(II) atom exhibits a distorted square-pyramidal coordination sphere, defined by three O atoms from three water molecules and two O atoms from two different carboxylate ligands. O3w is axially positioned, and the other four O atoms are formed the basal plane. The 5-carboxybenzene-1,3-dicarboxylate ligands connect two Cu(II) ions and build a one-dimensional zigzag chain (Fig. 2). The chains are further self-assembled into a three-dimensional supramolecular network through hydrogen bonds between the water molecules and carboxylate groups (Fig. 3). In the crystal, π-π stacking is observed between parallel benzene rings of adjacent chains, centroids distances are 3.584 (3) and 3.684 (3) Å.