organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 8-bromo-3-[1-(4-meth­­oxy­phen­yl)-4-oxo-3-phenyl­azetidin-2-yl]-1-methyl-1,2,3,3a,4,9b-hexa­hydro­chromeno[4,3-b]pyrrole-3a-carboxyl­ate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 21 June 2013; accepted 7 September 2013; online 21 September 2013)

In the title compound, C30H29BrN2O5, the β-lactam ring is essentially planar, with the O atom displaced from this plane by 0.856 (9) Å, and forming dihedral angles of 24.35 (13) and 89.42 (14)° with the planes of the benzene substituent groups on this ring. The tetra­hydro­pyran ring adopts an envelope conformation with the C atom bearing the β-lactam ring as the flap. In the crystal, weak C—H⋯O hydrogen bonds with carboxyl and tetra­hydro­pyran O-atom acceptors give rise to a chain structure extending along the b-axis direction.

Related literature

For general background to β-lactams, see: Brakhage (1998[Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.]). For a related structure, see: Sundaramoorthy et al. (2012[Sundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2200-o2201.]). For conformation of the mol­ecular structure, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C30H29BrN2O5

  • Mr = 577.46

  • Monoclinic, P 21

  • a = 10.904 (5) Å

  • b = 10.765 (5) Å

  • c = 11.405 (5) Å

  • β = 91.681 (5)°

  • V = 1338.2 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2008[Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 28413 measured reflections

  • 6511 independent reflections

  • 5355 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.065

  • S = 0.96

  • 6511 reflections

  • 343 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2910 Friedel pairs

  • Absolute structure parameter: 0.006 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20B⋯O4i 0.97 2.43 3.366 (3) 161
C14—H14⋯O5ii 0.93 2.56 3.309 (3) 138
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+2]; (ii) [-x, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin (Brakhage, 1998). In view of potential applications, the crystal structure determination of the title β-lactam derivative, C30H29BrN2O5, was carried out and is reported herein. In this compound (Fig. 1), the four-membered ring of the β-lactam fragment (N2/C1–C3) is essentially planar (r.m.s. deviation = 0.0122 Å), with O1 displaced from the plane by 0.856 (9) Å. The mean-planes of the benzene rings of the two benzene substituent groups defined by C4–C9 and C10–C15 are inclined at dihedral angles 24.35 (13)° and 89.42 (14) °, respectively, with respect to four-membered β-lactam ring. The pyrrolidine ring (N1/C16/C17/C18/C19) adopts an envelope conformation, defined by the asymmetry parameters (Nardelli, 1983), DS (N2) = 0.0789 (19) Å and D2 (C16) = 0.0228 (15) Å whereas the pyran ring [(O5/C18/C19/C20/C21/C22) adopts a C19-envelope/sofa conformation with C19 displaced by 0.385 (1) Å from the least-squares planes formed by the remaining ring atoms.

In the crystal, the structure is stabilized by weak intermolecular aromatic C14—H···O5tetrahydropyran and tetrahydropyran C20—H···O4carboxyl hydrogen-bonding interactions (Table 1), giving a one-dimensional chain extending along b (Fig. 2). Present also in the structure are two intramolecular C—H···β-lactam interactions involving aromatic C11—H11···Cg [2.932 (4) Å; C—H···Cg, angle 94°] and piperidine C17—H17A···Cg [2.842 (4) Å; C—H···Cg angle, 100°].

Related literature top

For general background to β-lactams, see: Brakhage (1998). For a related structure, see: Sundaramoorthy et al. (2012). For conformation of the molecular structure, see: Nardelli (1983).

Experimental top

A solution of (Z)-methyl 2-[(4-bromo-2-formylphenoxy)methyl]-3-[1-(4-methoxyphenyl)- 4-oxo-3-phenylazetidin-2-yl]acrylate (1 mmol) and sarcosine (1.2 mmol) was refluxed in dry acetonitrile. Completion of the reaction was confirmed by TLC analysis. The solvent was then removed under vacuum, then diluted with dichloromethane and washed with brine and water. The organic layer was separated and removed and the residue was subjected to column chromatography using ethyl acetate and hexane (2:8) as an eluent, affording the cycloadduct. The product was dissolved in ethyl acetate and the resulting solution was allowed to slowly evaporate over 48 h, resulting in the formation of crystals suitable for the single-crystal X-ray diffraction analysis.

Refinement top

Hydrogen atoms were included at calculated positions with C—H ranging from 0.93 to 0.97 Å and treated using a riding model with displacement parameters Uiso(H) = 1.2Ueq(C)(methine, methylene and aromatic), or 1.5Ueq(C)(methyl). The absolute configuration for the molecule was not determined definitively but the local configuration for the five chiral centres [C1(R),C2(R), C16(S),C18(R),C19(R) for the trivial atom numbering scheme used] was assigned on the basis of the Flack parameter [0.006 (5) for 2910 Friedel pairs].

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom numbering for the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, with hydrogen bonds shown as dashed lines. H-atoms not involved in interactions have been omitted.
(I) top
Crystal data top
C30H29BrN2O5F(000) = 596
Mr = 577.46Dx = 1.433 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8834 reflections
a = 10.904 (5) Åθ = 2.1–31.2°
b = 10.765 (5) ŵ = 1.58 mm1
c = 11.405 (5) ÅT = 293 K
β = 91.681 (5)°Block, colourless
V = 1338.2 (11) Å30.25 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6511 independent reflections
Radiation source: fine-focus sealed tube5355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and ϕ scansθmax = 28.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker 2008)
h = 1414
Tmin = 0.979, Tmax = 0.983k = 1214
28413 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0292P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
6511 reflectionsΔρmax = 0.42 e Å3
343 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 2910 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (5)
Crystal data top
C30H29BrN2O5V = 1338.2 (11) Å3
Mr = 577.46Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.904 (5) ŵ = 1.58 mm1
b = 10.765 (5) ÅT = 293 K
c = 11.405 (5) Å0.25 × 0.20 × 0.20 mm
β = 91.681 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6511 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2008)
5355 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.037
28413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.42 e Å3
S = 0.96Δρmin = 0.21 e Å3
6511 reflectionsAbsolute structure: Flack (1983), 2910 Friedel pairs
343 parametersAbsolute structure parameter: 0.006 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.400982 (17)0.56044 (2)0.676638 (19)0.05395 (8)
O10.31783 (11)0.04829 (18)1.46057 (11)0.0508 (4)
O30.04275 (11)0.10982 (13)1.05918 (12)0.0453 (4)
C180.26814 (15)0.19721 (18)0.96769 (15)0.0300 (4)
H180.27830.26001.02950.036*
N20.24186 (14)0.05496 (15)1.29243 (13)0.0346 (4)
C190.15975 (16)0.11200 (16)0.99504 (15)0.0288 (4)
C170.35296 (16)0.0409 (2)1.08186 (17)0.0460 (5)
H17A0.37980.08941.14950.055*
H17B0.39870.03641.08160.055*
C110.00677 (18)0.12700 (19)1.39886 (16)0.0389 (4)
H110.00190.04141.40620.047*
O50.08439 (12)0.12441 (13)0.79140 (12)0.0415 (3)
C10.16563 (17)0.01715 (17)1.20853 (15)0.0322 (4)
H10.07960.00921.20900.039*
C100.08118 (17)0.19488 (18)1.34185 (15)0.0334 (4)
C200.12485 (17)0.04159 (18)0.88268 (15)0.0352 (4)
H20A0.19530.00500.85690.042*
H20B0.05990.01710.89860.042*
N10.37101 (13)0.11007 (16)0.97373 (13)0.0408 (4)
C230.32095 (15)0.36424 (19)0.82176 (15)0.0342 (4)
H230.37740.39680.87620.041*
C20.18887 (17)0.13190 (18)1.28871 (17)0.0349 (4)
H20.24270.19221.25150.042*
O40.04486 (13)0.29512 (13)1.04029 (15)0.0551 (4)
C70.34735 (18)0.4280 (2)1.28407 (17)0.0469 (5)
C210.16422 (17)0.21901 (17)0.76857 (16)0.0332 (4)
C270.04967 (16)0.18462 (18)1.03411 (15)0.0321 (4)
C80.2427 (2)0.3891 (2)1.2253 (2)0.0476 (5)
H80.19550.44601.18230.057*
C220.25184 (15)0.25992 (17)0.85049 (15)0.0299 (4)
C40.27709 (16)0.18125 (18)1.29142 (15)0.0340 (4)
C130.1218 (2)0.3116 (3)1.43409 (19)0.0557 (6)
H130.19020.35041.46420.067*
C30.26291 (15)0.0416 (2)1.36740 (15)0.0367 (4)
C90.20708 (18)0.2667 (2)1.22956 (18)0.0415 (5)
H90.13530.24161.19040.050*
C140.0354 (2)0.3795 (2)1.37900 (18)0.0562 (6)
H140.04460.46511.37180.067*
O20.37564 (17)0.55173 (16)1.27246 (18)0.0755 (5)
C160.21506 (16)0.01548 (18)1.08484 (16)0.0348 (4)
H160.20050.06771.05230.042*
C250.22241 (19)0.3750 (2)0.63222 (17)0.0424 (5)
H250.21470.41210.55870.051*
C150.0665 (2)0.3214 (2)1.33349 (17)0.0453 (5)
H150.12560.36881.29690.054*
C260.1497 (2)0.2749 (2)0.66016 (17)0.0456 (5)
H260.09110.24530.60620.055*
C120.10739 (19)0.1852 (2)1.44493 (18)0.0488 (5)
H120.16570.13871.48350.059*
C60.4169 (2)0.3436 (2)1.34782 (19)0.0480 (5)
H60.48710.36991.38890.058*
C50.38299 (18)0.2206 (2)1.35108 (18)0.0414 (5)
H50.43100.16371.39320.050*
C240.30595 (17)0.41881 (18)0.71383 (17)0.0363 (4)
C300.4857 (4)0.5944 (3)1.3249 (4)0.1324 (18)
H30A0.49400.68191.31090.199*
H30B0.48500.57931.40780.199*
H30C0.55350.55121.29180.199*
C280.15281 (18)0.1671 (2)1.1007 (2)0.0540 (6)
H28A0.21270.10411.11570.081*
H28B0.18500.22351.04230.081*
H28C0.13400.21191.17180.081*
C290.49131 (19)0.1676 (3)0.9721 (2)0.0615 (7)
H29A0.49950.21270.90020.092*
H29B0.55340.10450.97800.092*
H29C0.50060.22371.03720.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.04262 (11)0.05682 (14)0.06218 (14)0.01288 (11)0.00226 (8)0.02366 (12)
O10.0458 (7)0.0643 (11)0.0415 (7)0.0033 (9)0.0118 (6)0.0051 (8)
O30.0307 (7)0.0432 (8)0.0623 (9)0.0010 (6)0.0053 (6)0.0079 (7)
C180.0282 (9)0.0361 (10)0.0254 (9)0.0008 (7)0.0022 (7)0.0006 (7)
N20.0394 (9)0.0372 (9)0.0269 (8)0.0017 (7)0.0042 (7)0.0046 (7)
C190.0321 (9)0.0270 (8)0.0273 (9)0.0027 (7)0.0005 (7)0.0026 (7)
C170.0363 (9)0.0596 (16)0.0423 (10)0.0153 (10)0.0049 (8)0.0145 (11)
C110.0426 (11)0.0362 (10)0.0378 (11)0.0026 (9)0.0016 (9)0.0025 (8)
O50.0512 (8)0.0370 (8)0.0354 (7)0.0124 (6)0.0145 (6)0.0052 (6)
C10.0332 (9)0.0333 (10)0.0299 (9)0.0024 (7)0.0002 (7)0.0061 (7)
C100.0394 (10)0.0340 (10)0.0264 (9)0.0004 (8)0.0040 (8)0.0015 (7)
C200.0440 (10)0.0283 (11)0.0330 (9)0.0001 (8)0.0034 (7)0.0024 (8)
N10.0316 (8)0.0588 (11)0.0324 (8)0.0110 (7)0.0052 (7)0.0111 (7)
C230.0284 (9)0.0430 (11)0.0309 (9)0.0042 (8)0.0035 (7)0.0012 (8)
C20.0336 (10)0.0371 (11)0.0340 (10)0.0033 (8)0.0022 (8)0.0023 (8)
O40.0498 (9)0.0317 (9)0.0850 (12)0.0077 (6)0.0228 (8)0.0021 (8)
C70.0531 (11)0.0383 (11)0.0492 (11)0.0043 (12)0.0001 (9)0.0079 (11)
C210.0370 (10)0.0316 (10)0.0309 (10)0.0014 (8)0.0029 (8)0.0007 (8)
C270.0327 (10)0.0354 (11)0.0282 (9)0.0014 (8)0.0008 (7)0.0053 (8)
C80.0491 (12)0.0418 (12)0.0516 (13)0.0047 (9)0.0031 (10)0.0038 (10)
C220.0288 (9)0.0337 (10)0.0272 (9)0.0016 (7)0.0005 (7)0.0010 (7)
C40.0354 (10)0.0376 (11)0.0291 (9)0.0013 (8)0.0027 (8)0.0094 (8)
C130.0561 (14)0.0730 (18)0.0377 (12)0.0260 (12)0.0030 (10)0.0154 (12)
C30.0309 (8)0.0443 (13)0.0350 (9)0.0008 (9)0.0035 (7)0.0034 (9)
C90.0370 (10)0.0392 (11)0.0478 (12)0.0001 (9)0.0059 (9)0.0113 (9)
C140.0914 (18)0.0418 (13)0.0351 (11)0.0229 (12)0.0043 (12)0.0045 (10)
O20.0852 (13)0.0409 (10)0.0990 (15)0.0164 (9)0.0241 (11)0.0022 (10)
C160.0384 (10)0.0344 (10)0.0318 (9)0.0091 (7)0.0022 (8)0.0023 (7)
C250.0528 (12)0.0413 (11)0.0325 (10)0.0003 (9)0.0065 (9)0.0095 (9)
C150.0664 (13)0.0359 (11)0.0336 (10)0.0012 (10)0.0012 (10)0.0011 (8)
C260.0568 (13)0.0434 (12)0.0357 (11)0.0075 (10)0.0177 (9)0.0023 (9)
C120.0403 (11)0.0644 (16)0.0419 (12)0.0023 (10)0.0018 (9)0.0107 (11)
C60.0474 (12)0.0491 (13)0.0470 (12)0.0131 (10)0.0074 (10)0.0063 (10)
C50.0407 (11)0.0453 (12)0.0379 (11)0.0002 (9)0.0040 (8)0.0042 (9)
C240.0318 (10)0.0358 (11)0.0415 (11)0.0011 (8)0.0032 (8)0.0070 (8)
C300.150 (4)0.070 (2)0.173 (4)0.060 (2)0.077 (3)0.026 (3)
C280.0317 (11)0.0705 (16)0.0601 (14)0.0056 (10)0.0089 (10)0.0124 (12)
C290.0323 (11)0.098 (2)0.0544 (14)0.0065 (12)0.0057 (10)0.0240 (14)
Geometric parameters (Å, º) top
Br—C241.898 (2)O4—C271.193 (2)
O1—C31.206 (2)C7—O21.375 (3)
O3—C271.328 (2)C7—C81.371 (3)
O3—C281.442 (2)C7—C61.377 (3)
C18—N11.462 (2)C21—C261.380 (3)
C18—C221.503 (2)C21—C221.388 (3)
C18—C191.535 (3)C8—C91.375 (3)
C18—H180.9800C8—H80.9300
N2—C31.361 (3)C4—C91.377 (3)
N2—C41.413 (3)C4—C51.389 (3)
N2—C11.471 (2)C13—C141.361 (4)
C19—C271.511 (3)C13—C121.374 (4)
C19—C201.527 (3)C13—H130.9300
C19—C161.567 (3)C9—H90.9300
C17—N11.459 (2)C14—C151.389 (3)
C17—C161.530 (3)C14—H140.9300
C17—H17A0.9700O2—C301.403 (4)
C17—H17B0.9700C16—H160.9800
C11—C121.381 (3)C25—C241.367 (3)
C11—C101.383 (3)C25—C261.381 (3)
C11—H110.9300C25—H250.9300
O5—C211.370 (2)C15—H150.9300
O5—C201.431 (2)C26—H260.9300
C1—C161.525 (3)C12—H120.9300
C1—C21.553 (3)C6—C51.376 (3)
C1—H10.9800C6—H60.9300
C10—C151.375 (3)C5—H50.9300
C10—C21.499 (3)C30—H30A0.9600
C20—H20A0.9700C30—H30B0.9600
C20—H20B0.9700C30—H30C0.9600
N1—C291.451 (3)C28—H28A0.9600
C23—C241.369 (3)C28—H28B0.9600
C23—C221.397 (3)C28—H28C0.9600
C23—H230.9300C29—H29A0.9600
C2—C31.536 (3)C29—H29B0.9600
C2—H20.9800C29—H29C0.9600
C27—O3—C28117.11 (17)C21—C22—C23117.56 (16)
N1—C18—C22113.60 (14)C21—C22—C18121.13 (16)
N1—C18—C19101.61 (15)C23—C22—C18121.27 (15)
C22—C18—C19112.16 (14)C9—C4—C5119.19 (19)
N1—C18—H18109.7C9—C4—N2120.04 (17)
C22—C18—H18109.7C5—C4—N2120.76 (18)
C19—C18—H18109.7C14—C13—C12119.6 (2)
C3—N2—C4134.35 (16)C14—C13—H13120.2
C3—N2—C195.01 (15)C12—C13—H13120.2
C4—N2—C1130.64 (16)O1—C3—N2132.0 (2)
C27—C19—C20108.89 (15)O1—C3—C2135.7 (2)
C27—C19—C18111.95 (15)N2—C3—C292.30 (15)
C20—C19—C18107.48 (14)C8—C9—C4120.37 (19)
C27—C19—C16116.38 (14)C8—C9—H9119.8
C20—C19—C16107.51 (15)C4—C9—H9119.8
C18—C19—C16104.19 (14)C13—C14—C15120.2 (2)
N1—C17—C16105.50 (15)C13—C14—H14119.9
N1—C17—H17A110.6C15—C14—H14119.9
C16—C17—H17A110.6C7—O2—C30117.9 (2)
N1—C17—H17B110.6C1—C16—C17113.12 (16)
C16—C17—H17B110.6C1—C16—C19117.20 (15)
H17A—C17—H17B108.8C17—C16—C19103.09 (15)
C12—C11—C10120.6 (2)C1—C16—H16107.7
C12—C11—H11119.7C17—C16—H16107.7
C10—C11—H11119.7C19—C16—H16107.7
C21—O5—C20114.68 (14)C24—C25—C26119.22 (18)
N2—C1—C16112.79 (15)C24—C25—H25120.4
N2—C1—C287.56 (14)C26—C25—H25120.4
C16—C1—C2119.87 (15)C10—C15—C14120.8 (2)
N2—C1—H1111.5C10—C15—H15119.6
C16—C1—H1111.5C14—C15—H15119.6
C2—C1—H1111.5C25—C26—C21119.68 (19)
C15—C10—C11118.39 (19)C25—C26—H26120.2
C15—C10—C2120.73 (18)C21—C26—H26120.2
C11—C10—C2120.88 (18)C13—C12—C11120.3 (2)
O5—C20—C19111.42 (16)C13—C12—H12119.8
O5—C20—H20A109.3C11—C12—H12119.8
C19—C20—H20A109.3C5—C6—C7120.3 (2)
O5—C20—H20B109.3C5—C6—H6119.8
C19—C20—H20B109.3C7—C6—H6119.8
H20A—C20—H20B108.0C6—C5—C4120.02 (19)
C29—N1—C17111.89 (16)C6—C5—H5120.0
C29—N1—C18114.70 (18)C4—C5—H5120.0
C17—N1—C18104.17 (13)C25—C24—C23121.57 (18)
C24—C23—C22120.31 (16)C25—C24—Br118.84 (15)
C24—C23—H23119.8C23—C24—Br119.59 (14)
C22—C23—H23119.8O2—C30—H30A109.5
C10—C2—C3117.03 (15)O2—C30—H30B109.5
C10—C2—C1118.78 (16)H30A—C30—H30B109.5
C3—C2—C185.10 (15)O2—C30—H30C109.5
C10—C2—H2111.2H30A—C30—H30C109.5
C3—C2—H2111.2H30B—C30—H30C109.5
C1—C2—H2111.2O3—C28—H28A109.5
O2—C7—C8115.7 (2)O3—C28—H28B109.5
O2—C7—C6124.6 (2)H28A—C28—H28B109.5
C8—C7—C6119.6 (2)O3—C28—H28C109.5
O5—C21—C26115.94 (16)H28A—C28—H28C109.5
O5—C21—C22122.46 (16)H28B—C28—H28C109.5
C26—C21—C22121.56 (17)N1—C29—H29A109.5
O4—C27—O3123.86 (17)N1—C29—H29B109.5
O4—C27—C19124.76 (17)H29A—C29—H29B109.5
O3—C27—C19111.37 (17)N1—C29—H29C109.5
C7—C8—C9120.4 (2)H29A—C29—H29C109.5
C7—C8—H8119.8H29B—C29—H29C109.5
C9—C8—H8119.8
N1—C18—C19—C27160.79 (14)N1—C18—C22—C2382.7 (2)
C22—C18—C19—C2777.54 (19)C19—C18—C22—C23162.77 (16)
N1—C18—C19—C2079.68 (16)C3—N2—C4—C9155.5 (2)
C22—C18—C19—C2041.99 (19)C1—N2—C4—C923.8 (3)
N1—C18—C19—C1634.21 (16)C3—N2—C4—C525.4 (3)
C22—C18—C19—C16155.88 (14)C1—N2—C4—C5155.29 (18)
C3—N2—C1—C16122.88 (16)C4—N2—C3—O12.0 (3)
C4—N2—C1—C1657.6 (2)C1—N2—C3—O1177.5 (2)
C3—N2—C1—C21.36 (14)C4—N2—C3—C2179.15 (19)
C4—N2—C1—C2179.14 (18)C1—N2—C3—C21.38 (14)
C12—C11—C10—C150.7 (3)C10—C2—C3—O157.5 (3)
C12—C11—C10—C2178.30 (19)C1—C2—C3—O1177.5 (2)
C21—O5—C20—C1953.2 (2)C10—C2—C3—N2121.22 (17)
C27—C19—C20—O558.75 (18)C1—C2—C3—N21.30 (13)
C18—C19—C20—O562.71 (18)C7—C8—C9—C41.0 (3)
C16—C19—C20—O5174.35 (13)C5—C4—C9—C81.1 (3)
C16—C17—N1—C29165.70 (18)N2—C4—C9—C8178.07 (18)
C16—C17—N1—C1841.2 (2)C12—C13—C14—C150.3 (3)
C22—C18—N1—C2969.9 (2)C8—C7—O2—C30176.1 (3)
C19—C18—N1—C29169.48 (16)C6—C7—O2—C302.9 (4)
C22—C18—N1—C17167.51 (16)N2—C1—C16—C1746.8 (2)
C19—C18—N1—C1746.84 (18)C2—C1—C16—C1754.0 (2)
C15—C10—C2—C3130.1 (2)N2—C1—C16—C19166.55 (15)
C11—C10—C2—C350.9 (3)C2—C1—C16—C1965.7 (2)
C15—C10—C2—C1130.03 (19)N1—C17—C16—C1145.59 (17)
C11—C10—C2—C149.0 (2)N1—C17—C16—C1918.0 (2)
N2—C1—C2—C10119.46 (17)C27—C19—C16—C18.8 (2)
C16—C1—C2—C10125.54 (18)C20—C19—C16—C1131.17 (17)
N2—C1—C2—C31.21 (12)C18—C19—C16—C1114.96 (17)
C16—C1—C2—C3116.21 (17)C27—C19—C16—C17133.75 (17)
C20—O5—C21—C26159.63 (18)C20—C19—C16—C17103.88 (17)
C20—O5—C21—C2222.6 (2)C18—C19—C16—C179.99 (18)
C28—O3—C27—O42.6 (3)C11—C10—C15—C141.3 (3)
C28—O3—C27—C19178.39 (16)C2—C10—C15—C14177.70 (18)
C20—C19—C27—O4116.7 (2)C13—C14—C15—C100.8 (3)
C18—C19—C27—O42.0 (3)C24—C25—C26—C211.5 (3)
C16—C19—C27—O4121.6 (2)O5—C21—C26—C25176.88 (19)
C20—C19—C27—O362.25 (19)C22—C21—C26—C250.9 (3)
C18—C19—C27—O3179.05 (15)C14—C13—C12—C110.9 (3)
C16—C19—C27—O359.4 (2)C10—C11—C12—C130.4 (3)
O2—C7—C8—C9178.98 (19)O2—C7—C6—C5177.9 (2)
C6—C7—C8—C90.1 (3)C8—C7—C6—C51.1 (3)
O5—C21—C22—C23174.34 (16)C7—C6—C5—C41.0 (3)
C26—C21—C22—C233.3 (3)C9—C4—C5—C60.1 (3)
O5—C21—C22—C183.3 (3)N2—C4—C5—C6179.07 (18)
C26—C21—C22—C18179.12 (19)C26—C25—C24—C231.4 (3)
C24—C23—C22—C213.4 (3)C26—C25—C24—Br177.57 (16)
C24—C23—C22—C18179.01 (17)C22—C23—C24—C251.1 (3)
N1—C18—C22—C2199.8 (2)C22—C23—C24—Br179.94 (14)
C19—C18—C22—C2114.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20B···O4i0.972.433.366 (3)161
C14—H14···O5ii0.932.563.309 (3)138
Symmetry codes: (i) x, y1/2, z+2; (ii) x, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20B···O4i0.972.433.366 (3)161
C14—H14···O5ii0.932.563.309 (3)138
Symmetry codes: (i) x, y1/2, z+2; (ii) x, y+1/2, z+2.
 

Acknowledgements

SA thanks the UGC-India for financial support.

References

First citationBrakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547–585.  Web of Science CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2200–o2201.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds