organic compounds
(R)-(−)-Quinuclidin-3-ol
aInstitut de Chimie Moleculaire de l'Universite de Bourgogne - ICMUB, UMR CNRS 6302, Universite de Bourgogne, 9, Av. Alain Savary, 21078 Dijon Cedex, France, and bCordenPharma – Synkem, 47 rue de Longvic, 21301 Chenove, France
*Correspondence e-mail: yoann.rousselin@u-bourgogne.fr
The structure of the title compound [alternatively called (R)-(−)-1-azabicyclo[2.2.2]octan-3-ol], C7H13NO, at 100 K has hexagonal (P61) symmetry. The structure shows a twist along the C—N pseudo-threefold axis. In the crystal, molecules are linked via O—H⋯N hydrogen bonds, forming infinite chains along the c-axis direction. The crystal studied was twinned by (twin law: 010, 100, 00-1; population: 0.925:0.075)
CCDC reference: 963962
Related literature
The title compound is a key building block for the syntheses of muscarinic receptor ligands, including solifenacin (Naito et al., 2005), revatropate (Alabaster, 1997) and talsaclidine (Leusch et al., 2000). For properties of the title compound, see: Bosak et al. (2005); Carroll et al. (1991); Frackenpohl & Hoffmann (2000); Day & Motherwell (2006); Malone & Armstrong (2006); Siczek & Lis (2008); Sterling et al. (1988). For puckering parameters, see: Cremer & Pople (1975); For see: Flack (1983); The was determined using TwinRotMat implemented in PLATON (Spek, 2009).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2012); cell SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 963962
10.1107/S1600536813026998/bg2517sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813026998/bg2517Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813026998/bg2517Isup3.cml
All H atoms, on carbon atom or oxygen atom, were placed at calculated positions using a riding model with C-H = 1 Å (methine), 0.99 Å (methylene) or O-H = 0.84 Å with Uiso(H) = 1.2Ueq(CH), Uiso(H) = 1.2Ueq(CH2) or Uiso(H) = 1.5Ueq(OH).
TWIN/BASF σ(I)) and from 4.96%, 0.2 (9) to 2.34%, 0.01 (4).
type was used to determine from using the Flack method. (Flack, 1983). The structure display a and the was found by using TwinRotMat implemented in Platon (Spek, 2009). The use of (0 1 0 1 0 0 0 0 -1) with a population of 0.925/0.075 reduced the R1(for I> 2Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C7H13NO | Dx = 1.271 Mg m−3 |
Mr = 127.18 | Melting point: 492(2) K |
Hexagonal, P61 | Cu Kα1 radiation, λ = 1.54178 Å |
a = 6.2076 (3) Å | µ = 0.67 mm−1 |
c = 29.8731 (13) Å | T = 100 K |
V = 996.91 (11) Å3 | Prism, clear light colourless |
Z = 6 | 0.58 × 0.44 × 0.32 mm |
F(000) = 420 |
Bruker D8 VENTURE diffractometer | 1240 independent reflections |
Radiation source: sealed X-ray tube, high brilliance microfocus sealed tube, Cu | 1240 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 1024 x 1024 pixels mm-1 | θmax = 69.2°, θmin = 4.4° |
ϕ and ω scans | h = −7→7 |
Absorption correction: numerical (SADABS; Bruker, 2012) | k = −7→7 |
Tmin = 0.58, Tmax = 0.74 | l = −34→35 |
15447 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2) + (0.0394P)2 + 0.1183P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.064 | (Δ/σ)max < 0.001 |
S = 1.15 | Δρmax = 0.23 e Å−3 |
1240 reflections | Δρmin = −0.12 e Å−3 |
85 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0156 (15) |
0 constraints | Absolute structure: Parsons & Flack (2004). |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (4) |
C7H13NO | Z = 6 |
Mr = 127.18 | Cu Kα1 radiation |
Hexagonal, P61 | µ = 0.67 mm−1 |
a = 6.2076 (3) Å | T = 100 K |
c = 29.8731 (13) Å | 0.58 × 0.44 × 0.32 mm |
V = 996.91 (11) Å3 |
Bruker D8 VENTURE diffractometer | 1240 independent reflections |
Absorption correction: numerical (SADABS; Bruker, 2012) | 1240 reflections with I > 2σ(I) |
Tmin = 0.58, Tmax = 0.74 | Rint = 0.026 |
15447 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters constrained |
wR(F2) = 0.064 | Δρmax = 0.23 e Å−3 |
S = 1.15 | Δρmin = −0.12 e Å−3 |
1240 reflections | Absolute structure: Parsons & Flack (2004). |
85 parameters | Absolute structure parameter: 0.01 (4) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.1928 (2) | 0.4528 (2) | 0.48963 (4) | 0.0175 (3) | |
H1 | −0.2253 | 0.4264 | 0.4622 | 0.026* | |
N1 | 0.3057 (3) | 0.6832 (3) | 0.56404 (5) | 0.0157 (4) | |
C2 | 0.5095 (3) | 0.8018 (3) | 0.48879 (6) | 0.0166 (4) | |
H2A | 0.5325 | 0.9500 | 0.4722 | 0.020* | |
H2B | 0.6378 | 0.7625 | 0.4786 | 0.020* | |
C4 | 0.0565 (3) | 0.6495 (3) | 0.49520 (5) | 0.0149 (4) | |
H4 | 0.0812 | 0.7999 | 0.4785 | 0.018* | |
C1 | 0.5354 (4) | 0.8550 (4) | 0.53973 (6) | 0.0208 (4) | |
H1A | 0.6752 | 0.8380 | 0.5515 | 0.025* | |
H1B | 0.5744 | 1.0283 | 0.5450 | 0.025* | |
C7 | 0.2139 (3) | 0.3542 (3) | 0.50634 (5) | 0.0159 (4) | |
H7A | 0.3369 | 0.3067 | 0.4966 | 0.019* | |
H7B | 0.0450 | 0.2111 | 0.5013 | 0.019* | |
C5 | 0.0986 (4) | 0.7091 (4) | 0.54597 (5) | 0.0188 (4) | |
H5A | 0.1340 | 0.8814 | 0.5510 | 0.023* | |
H5B | −0.0557 | 0.5956 | 0.5624 | 0.023* | |
C3 | 0.2487 (3) | 0.5801 (3) | 0.47977 (6) | 0.0141 (4) | |
H3 | 0.2279 | 0.5406 | 0.4471 | 0.017* | |
C6 | 0.2509 (4) | 0.4253 (4) | 0.55649 (6) | 0.0204 (4) | |
H6A | 0.0984 | 0.3095 | 0.5732 | 0.024* | |
H6B | 0.3897 | 0.4068 | 0.5684 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0134 (6) | 0.0222 (6) | 0.0150 (6) | 0.0076 (5) | −0.0012 (4) | −0.0004 (5) |
N1 | 0.0176 (7) | 0.0155 (8) | 0.0128 (7) | 0.0074 (6) | −0.0005 (6) | −0.0014 (5) |
C2 | 0.0149 (8) | 0.0186 (9) | 0.0145 (8) | 0.0069 (7) | 0.0009 (7) | 0.0010 (6) |
C4 | 0.0150 (8) | 0.0161 (8) | 0.0138 (8) | 0.0079 (7) | −0.0002 (6) | 0.0006 (7) |
C1 | 0.0176 (9) | 0.0215 (9) | 0.0164 (9) | 0.0045 (8) | −0.0020 (6) | −0.0034 (7) |
C7 | 0.0150 (8) | 0.0151 (8) | 0.0177 (8) | 0.0077 (7) | −0.0012 (6) | −0.0028 (7) |
C5 | 0.0207 (9) | 0.0237 (9) | 0.0153 (8) | 0.0135 (8) | −0.0006 (7) | −0.0042 (7) |
C3 | 0.0135 (8) | 0.0158 (8) | 0.0124 (8) | 0.0068 (7) | −0.0011 (6) | −0.0024 (7) |
C6 | 0.0292 (9) | 0.0186 (9) | 0.0159 (9) | 0.0139 (8) | −0.0003 (8) | 0.0013 (7) |
O1—H1 | 0.8400 | C1—H1A | 0.9900 |
O1—C4 | 1.423 (2) | C1—H1B | 0.9900 |
N1—C1 | 1.475 (2) | C7—H7A | 0.9900 |
N1—C5 | 1.475 (2) | C7—H7B | 0.9900 |
N1—C6 | 1.479 (2) | C7—C3 | 1.530 (2) |
C2—H2A | 0.9900 | C7—C6 | 1.546 (2) |
C2—H2B | 0.9900 | C5—H5A | 0.9900 |
C2—C1 | 1.548 (2) | C5—H5B | 0.9900 |
C2—C3 | 1.536 (2) | C3—H3 | 1.0000 |
C4—H4 | 1.0000 | C6—H6A | 0.9900 |
C4—C5 | 1.552 (2) | C6—H6B | 0.9900 |
C4—C3 | 1.528 (2) | ||
C4—O1—H1 | 109.5 | C3—C7—H7A | 110.1 |
C1—N1—C6 | 108.86 (15) | C3—C7—H7B | 110.1 |
C5—N1—C1 | 108.73 (14) | C3—C7—C6 | 107.96 (13) |
C5—N1—C6 | 108.72 (14) | C6—C7—H7A | 110.1 |
H2A—C2—H2B | 108.4 | C6—C7—H7B | 110.1 |
C1—C2—H2A | 110.0 | N1—C5—C4 | 112.56 (14) |
C1—C2—H2B | 110.0 | N1—C5—H5A | 109.1 |
C3—C2—H2A | 110.0 | N1—C5—H5B | 109.1 |
C3—C2—H2B | 110.0 | C4—C5—H5A | 109.1 |
C3—C2—C1 | 108.29 (15) | C4—C5—H5B | 109.1 |
O1—C4—H4 | 109.6 | H5A—C5—H5B | 107.8 |
O1—C4—C5 | 107.46 (13) | C2—C3—H3 | 109.9 |
O1—C4—C3 | 112.96 (14) | C4—C3—C2 | 108.41 (14) |
C5—C4—H4 | 109.6 | C4—C3—C7 | 109.25 (14) |
C3—C4—H4 | 109.6 | C4—C3—H3 | 109.9 |
C3—C4—C5 | 107.45 (13) | C7—C3—C2 | 109.45 (14) |
N1—C1—C2 | 111.72 (14) | C7—C3—H3 | 109.9 |
N1—C1—H1A | 109.3 | N1—C6—C7 | 112.19 (14) |
N1—C1—H1B | 109.3 | N1—C6—H6A | 109.2 |
C2—C1—H1A | 109.3 | N1—C6—H6B | 109.2 |
C2—C1—H1B | 109.3 | C7—C6—H6A | 109.2 |
H1A—C1—H1B | 107.9 | C7—C6—H6B | 109.2 |
H7A—C7—H7B | 108.4 | H6A—C6—H6B | 107.9 |
O1—C4—C5—N1 | 122.04 (17) | C5—C4—C3—C2 | −59.75 (17) |
O1—C4—C3—C2 | −178.09 (13) | C5—C4—C3—C7 | 59.46 (17) |
O1—C4—C3—C7 | −58.88 (17) | C3—C2—C1—N1 | −0.9 (2) |
C1—N1—C5—C4 | 59.38 (18) | C3—C4—C5—N1 | 0.20 (19) |
C1—N1—C6—C7 | −59.78 (19) | C3—C7—C6—N1 | 0.4 (2) |
C1—C2—C3—C4 | 60.54 (19) | C6—N1—C1—C2 | 59.72 (19) |
C1—C2—C3—C7 | −58.55 (18) | C6—N1—C5—C4 | −59.01 (19) |
C5—N1—C1—C2 | −58.6 (2) | C6—C7—C3—C2 | 58.56 (18) |
C5—N1—C6—C7 | 58.53 (19) | C6—C7—C3—C4 | −60.01 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.84 | 2.00 | 2.8366 (19) | 176 |
Symmetry code: (i) y−1, −x+y, z−1/6. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.84 | 2.00 | 2.8366 (19) | 175.7 |
Symmetry code: (i) y−1, −x+y, z−1/6. |
Acknowledgements
We thank Ms Marie-Jose Penouilh for the NMR and ESI mass spectra.
References
Alabaster, V. A. (1997). Life Sci. 60, 1053–1060. CrossRef CAS PubMed Web of Science Google Scholar
Bosak, A., Primozic, I., Orsulic, M., Tomic, S. & Simeon-Rudolf, V. (2005). Croat. Chem. Acta, 78, 121–128. CAS Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carroll, F. I., Abraham, P., Gaetano, K., Mascarella, S. W., Wohl, R. A., Lind, J. & Petzoldt, K. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 3017–3026. CSD CrossRef Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Day, M. G. & Motherwell, W. D. S. (2006). Cryst. Growth Des. 6, 1985–1990. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Frackenpohl, J. & Hoffmann, H. M. R. (2000). J. Org. Chem. 65, 3982–3996. Web of Science CSD CrossRef PubMed CAS Google Scholar
Leusch, A., Tröger, W., Greischel, A. & Roth, W. (2000). Xenobiotica, 30, 797–813. CrossRef PubMed CAS Google Scholar
Malone, K. Y. & Armstrong, E. P. (2006). Pharmacotherapy, 26, 1694–1702. Web of Science PubMed Google Scholar
Naito, R., Yonetoku, Y., Okamoto, Y., Toyoshima, A., Ikeda, K. & Takeuchi, M. (2005). J. Med. Chem. 48, 6597–6606. Web of Science CrossRef PubMed CAS Google Scholar
Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siczek, M. & Lis, T. (2008). Acta Cryst. E64, o842. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sterling, G. H., Doukas, P. H., Sheldon, R. J. & O?Neill, J. J. (1988). Biochem. Pharmacol. 37, 379–384. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
(R)-(-)-quinuclidin-3-ol (Figure 1) is a key building block for the syntheses of muscarinic receptor ligands, including solifenacin (M3 receptor antagonist),(Naito et al., 2005) revatropate (M3 receptor antagonist),(Alabaster, 1997) and talsaclidine (M1 receptor agonist),(Leusch et al., 2000).
The asymetric unit of the crystal (Figure 1) consists of one single (R)-(-)-quinuclidin-3-ol molecule.
The quinuclidinol moiety has pseudo-threefold symmetry about the N1-C3 axis with C6-N1-C1, C1-N1-C5 and C5-N1-N6 angles of 108.86 (15)°, 108.73 (14)° and 108.72 (14)° respectively, and N1-C1-C2-C3, N1-C6-C7-C3 and N1-C5-C4-C3 torsion angles of -0.9 (3)°, 0.4 (2)° and 0.2 (2)° respectively.
The three piperidine rings formed by (N1, C1, C2, C3, C4, C5), (N1, C5, C4, C3, C7, C6) and (N1, C6, C7, C3, C2, C1) adopt a boat conformation with total puckering amplitutdes QT of 0.8218 (0) (with Θ = 91.84 (0)° and ϕ = -0.2 (0)°), QT of 0.8141 (1) (with Θ = 91.55 (0)° and ϕ = 0.19 (0)°) and QT of 0.8123 (0) (with Θ = 90.95 (0)° and ϕ = -0.17 (0)°), respectively (Cremer & Pople, (1975)).
There is a hydrogen bond (Table 1) which links molecules into infinite chains along the c axis (Figure 2).