organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Uronium 3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and cKunthavai Naacchiyaar Govt. Arts College (W), Thanjavur 613 007, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, kan_uma6@yahoo.com

(Received 21 September 2013; accepted 25 October 2013; online 31 October 2013)

In the title compound, CH5N2O+·C7H5O6S, the dihedral angle between the benzene ring and the mean plane of the uronium cation is 76.02 (8)°. The carboxyl group in the anion is twisted by 1.47 (9)° from the benzene ring. In the crystal, the cation is linked to the anion by weak O—H⋯O and N—H⋯O hydrogen bonds and ππ inter­actions [centroid–centroid distance = 3.8859 (8) Å], forming a three-dimensional network.

Related literature

For the biological activity of urea derivatives, see: Sliskovic et al. (1999[Sliskovic, D. R., Krause, B. R. & Bocan, T. M. A. (1999). Annu. Rep. Med. Chem. 34, 101-110.]); Furlong et al. (2000[Furlong, E. T., Burkhardt, M. R., Gates, P. M., Werner, S. L. & Battaglin, W. A. (2000). Sci. Total Environ. 248, 135-146.]); Houghton et al. (1995[Houghton, P. J., Sosinski, J., Thakar, J. H., Border, G. B. & Grindey, G. B. (1995). Biochem. Pharmacol. 49, 661-668.]). For related structures, see: Krishnakumar et al. (2012[Krishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268.]); Sudhahar et al. (2013[Sudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.]); Worsham & Busing (1969[Worsham, J. E. & Busing, W. R. (1969). Acta Cryst. B25, 572-578.]); Nelyubina et al. (2007[Nelyubina, Y. V., Lyssenko, K. A., Golovanov, D. G. & Antipin, Yu. A. (2007). CrystEngComm. 9, 991-996.]).

[Scheme 1]

Experimental

Crystal data
  • CH5N2O+·C7H5O6S

  • Mr = 278.24

  • Triclinic, [P \overline 1]

  • a = 7.2248 (4) Å

  • b = 8.7718 (5) Å

  • c = 10.1549 (5) Å

  • α = 85.504 (3)°

  • β = 71.087 (2)°

  • γ = 68.659 (2)°

  • V = 566.50 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 295 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.911, Tmax = 0.939

  • 14246 measured reflections

  • 4079 independent reflections

  • 3432 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.05

  • 4079 reflections

  • 185 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.82 (1) 1.83 (1) 2.5966 (14) 154 (18)
O7—H7⋯O6 0.82 (1) 1.85 (1) 2.6629 (14) 169 (18)
N1—H1A⋯O4 0.84 (1) 1.96 (1) 2.7979 (16) 175 (16)
O1—H1⋯O5i 0.83 (1) 1.84 (1) 2.6511 (12) 167 (18)
N1—H1B⋯O5ii 0.85 (1) 1.95 (1) 2.7976 (16) 178 (15)
N2—H2B⋯O6ii 0.86 (1) 2.22 (1) 3.0712 (16) 172 (15)
N2—H2A⋯O3iii 0.85 (1) 2.19 (1) 3.0347 (16) 173 (15)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Urea derivatives are known to exhibit anticholesterolemic, herbicidal and antitumor activities (Sliskovic et al., 1999; Furlong et al., 2000; Houghton et al., 1995). Herein, we report the crystal structure of the title compound (I, Fig. 1). The asymmetric unit consists of one CH5N2O+ cation and one C7H5O6S- anion. In the title compound, the geometric parameters of the uronium cation (Worsham & Busing, 1969; Nelyubina et al., 2007) and 3-carboxy-4-hydroxybenzenesulfonate anion (Krishnakumar et al., 2012; Sudhahar et al., 2013) are comparable with the reported structures.

The dihedral angle between the benzene ring and the mean plane of the uronium fragment is 76.02 (8)°. In the anion, the carboxyl group makes the dihedral angle of 1.47 (9)° with the benzene ring. In the molecular structure, cation and anion are linked by O—H···O and N—H···O hydrogen bonds, and the molecular conformation of the anion is controlled by weak O—H···O hydrogen bond (Fig. 1). The crystal structure exhibits weak intermolecular O—H···O, N—H···O (Table 1 and Fig. 2) and π···π [Cg1···Cg1i distance: 3.8859 (8) Å; (i) x, 1-y, 1-z; Cg1 is the centroid of the ring C1···C6] interactions, to form a three dimensional network.

Related literature top

For the biological activity of urea derivatives, see: Sliskovic et al. (1999); Furlong et al. (2000); Houghton et al. (1995). For related structures, see: Krishnakumar et al. (2012); Sudhahar et al. (2013); Worsham & Busing (1969); Nelyubina et al. (2007).

Experimental top

Urea (CH4N2O, 3.003 g) and 5-sulfosalicylic acid (C7H6O6S, 12.711 g, 1:1 ratio) were mixed in water and the resulting solution was allowed for slow evaporation at room temperature. Good quality crystals, suitable for X-ray intensity data collection, were collected after 2 weeks.

Refinement top

H atoms bonded to O and N heteroatoms were placed from difference maps and refined with free coordinates, although restrictions were applied on bond lengths: N—H = 0.86 (1) Å and O—H = 0.82 (1) Å. Isotropic displacement parameters for these H atoms were calculated as Uiso(H) = 1.5Ueq(O) for O—H bonds and Uiso(H) = 1.2Ueq(N) for N—H bonds. H atoms for CH groups were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The packing of (I), viewed down b axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
Uronium 3-carboxy-4-hydroxybenzenesulfonate top
Crystal data top
CH5N2O+·C7H5O6SZ = 2
Mr = 278.24F(000) = 288
Triclinic, P1Dx = 1.631 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2248 (4) ÅCell parameters from 7318 reflections
b = 8.7718 (5) Åθ = 2.1–32.8°
c = 10.1549 (5) ŵ = 0.32 mm1
α = 85.504 (3)°T = 295 K
β = 71.087 (2)°Block, colourless
γ = 68.659 (2)°0.30 × 0.24 × 0.20 mm
V = 566.50 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4079 independent reflections
Radiation source: fine-focus sealed tube3432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scanθmax = 33.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.911, Tmax = 0.939k = 1313
14246 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.1089P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4079 reflectionsΔρmax = 0.41 e Å3
185 parametersΔρmin = 0.40 e Å3
7 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.105 (7)
Primary atom site location: structure-invariant direct methods
Crystal data top
CH5N2O+·C7H5O6Sγ = 68.659 (2)°
Mr = 278.24V = 566.50 (5) Å3
Triclinic, P1Z = 2
a = 7.2248 (4) ÅMo Kα radiation
b = 8.7718 (5) ŵ = 0.32 mm1
c = 10.1549 (5) ÅT = 295 K
α = 85.504 (3)°0.30 × 0.24 × 0.20 mm
β = 71.087 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4079 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3432 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.939Rint = 0.028
14246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0377 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.41 e Å3
4079 reflectionsΔρmin = 0.40 e Å3
185 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22603 (17)0.52320 (13)0.56728 (12)0.0301 (2)
C20.28443 (18)0.45643 (14)0.43261 (12)0.0324 (2)
C30.3015 (2)0.29542 (15)0.41388 (13)0.0376 (3)
H30.33630.25240.32460.045*
C40.26724 (19)0.20039 (14)0.52622 (13)0.0347 (2)
H40.28010.09280.51320.042*
C50.21286 (17)0.26557 (12)0.66054 (12)0.0288 (2)
C60.19033 (17)0.42571 (13)0.68131 (12)0.0301 (2)
H60.15140.46870.77120.036*
C70.20231 (19)0.69528 (14)0.58615 (14)0.0343 (2)
C80.5164 (2)0.26399 (16)1.00316 (13)0.0378 (3)
N10.6134 (2)0.16284 (17)0.89415 (14)0.0474 (3)
N20.6150 (2)0.32507 (16)1.05987 (13)0.0431 (3)
O10.1437 (2)0.74360 (11)0.71788 (11)0.0490 (3)
O20.23382 (18)0.78366 (11)0.48953 (11)0.0473 (2)
O30.32586 (18)0.54310 (12)0.31773 (10)0.0459 (2)
O40.39451 (15)0.02256 (11)0.79035 (11)0.0417 (2)
O50.05090 (15)0.05458 (11)0.78561 (11)0.0417 (2)
O60.08949 (15)0.24191 (11)0.92865 (9)0.0380 (2)
O70.31385 (16)0.31219 (15)1.06119 (12)0.0513 (3)
S10.18626 (4)0.13680 (3)0.80111 (3)0.03090 (10)
H1A0.551 (2)0.1153 (18)0.8654 (16)0.037*
H1B0.7463 (14)0.1303 (19)0.8589 (15)0.037*
H2A0.543 (2)0.3875 (17)1.1326 (12)0.037*
H2B0.7490 (14)0.2929 (19)1.0274 (16)0.037*
H10.129 (3)0.8404 (12)0.7270 (18)0.046*
H3A0.303 (3)0.6342 (14)0.3493 (18)0.046*
H70.253 (3)0.278 (2)1.0221 (17)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0310 (5)0.0228 (4)0.0369 (6)0.0100 (4)0.0100 (4)0.0027 (4)
C20.0333 (5)0.0287 (5)0.0338 (6)0.0102 (4)0.0095 (4)0.0006 (4)
C30.0466 (6)0.0317 (5)0.0328 (6)0.0125 (5)0.0105 (5)0.0068 (4)
C40.0412 (6)0.0245 (5)0.0382 (6)0.0114 (4)0.0110 (5)0.0070 (4)
C50.0300 (4)0.0222 (4)0.0341 (5)0.0099 (4)0.0083 (4)0.0037 (4)
C60.0342 (5)0.0237 (4)0.0327 (5)0.0115 (4)0.0082 (4)0.0053 (4)
C70.0361 (5)0.0244 (5)0.0434 (6)0.0117 (4)0.0123 (5)0.0015 (4)
C80.0418 (6)0.0372 (6)0.0358 (6)0.0163 (5)0.0127 (5)0.0067 (5)
N10.0385 (6)0.0541 (7)0.0480 (7)0.0165 (5)0.0089 (5)0.0101 (5)
N20.0458 (6)0.0439 (6)0.0433 (6)0.0191 (5)0.0152 (5)0.0014 (5)
O10.0766 (7)0.0265 (4)0.0465 (5)0.0241 (5)0.0149 (5)0.0053 (4)
O20.0630 (6)0.0306 (4)0.0512 (6)0.0213 (4)0.0176 (5)0.0064 (4)
O30.0634 (6)0.0374 (5)0.0356 (5)0.0196 (5)0.0130 (4)0.0036 (4)
O40.0428 (5)0.0284 (4)0.0487 (5)0.0056 (4)0.0155 (4)0.0018 (4)
O50.0445 (5)0.0310 (4)0.0515 (5)0.0216 (4)0.0064 (4)0.0068 (4)
O60.0445 (5)0.0331 (4)0.0337 (4)0.0155 (4)0.0052 (3)0.0066 (3)
O70.0402 (5)0.0632 (7)0.0490 (6)0.0176 (5)0.0095 (4)0.0137 (5)
S10.03538 (15)0.02207 (13)0.03448 (16)0.01185 (10)0.00736 (11)0.00307 (9)
Geometric parameters (Å, º) top
C1—C61.3966 (16)C8—O71.3029 (16)
C1—C21.4010 (16)C8—N11.3047 (17)
C1—C71.4766 (15)C8—N21.3104 (18)
C2—O31.3523 (15)N1—H1A0.841 (9)
C2—C31.3951 (17)N1—H1B0.852 (9)
C3—C41.3695 (18)N2—H2A0.850 (9)
C3—H30.9300N2—H2B0.858 (9)
C4—C51.3976 (15)O1—H10.826 (9)
C4—H40.9300O3—H3A0.824 (9)
C5—C61.3791 (14)O4—S11.4468 (10)
C5—S11.7544 (12)O5—S11.4602 (9)
C6—H60.9300O6—S11.4654 (9)
C7—O21.2165 (16)O7—H70.821 (9)
C7—O11.3189 (16)
C6—C1—C2119.27 (10)O1—C7—C1113.41 (11)
C6—C1—C7121.23 (10)O7—C8—N1121.64 (12)
C2—C1—C7119.50 (11)O7—C8—N2115.88 (12)
O3—C2—C3117.87 (11)N1—C8—N2122.48 (13)
O3—C2—C1122.19 (10)C8—N1—H1A121.2 (11)
C3—C2—C1119.95 (11)C8—N1—H1B120.5 (11)
C4—C3—C2120.39 (11)H1A—N1—H1B117.5 (15)
C4—C3—H3119.8C8—N2—H2A117.9 (11)
C2—C3—H3119.8C8—N2—H2B118.8 (11)
C3—C4—C5119.82 (10)H2A—N2—H2B123.0 (15)
C3—C4—H4120.1C7—O1—H1112.4 (12)
C5—C4—H4120.1C2—O3—H3A103.8 (13)
C6—C5—C4120.59 (11)C8—O7—H7115.2 (13)
C6—C5—S1120.71 (9)O4—S1—O5112.06 (6)
C4—C5—S1118.63 (8)O4—S1—O6112.49 (6)
C5—C6—C1119.95 (10)O5—S1—O6111.64 (5)
C5—C6—H6120.0O4—S1—C5106.92 (6)
C1—C6—H6120.0O5—S1—C5106.35 (6)
O2—C7—O1123.37 (11)O6—S1—C5106.94 (5)
O2—C7—C1123.22 (11)
C6—C1—C2—O3178.47 (11)C7—C1—C6—C5179.73 (10)
C7—C1—C2—O31.84 (18)C6—C1—C7—O2179.30 (12)
C6—C1—C2—C31.51 (17)C2—C1—C7—O21.02 (18)
C7—C1—C2—C3178.18 (11)C6—C1—C7—O10.71 (16)
O3—C2—C3—C4178.12 (12)C2—C1—C7—O1178.98 (11)
C1—C2—C3—C41.86 (19)C6—C5—S1—O4106.66 (10)
C2—C3—C4—C50.64 (19)C4—C5—S1—O470.32 (10)
C3—C4—C5—C60.94 (18)C6—C5—S1—O5133.45 (9)
C3—C4—C5—S1176.05 (10)C4—C5—S1—O549.56 (10)
C4—C5—C6—C11.28 (17)C6—C5—S1—O614.04 (11)
S1—C5—C6—C1175.65 (8)C4—C5—S1—O6168.98 (9)
C2—C1—C6—C50.05 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.82 (1)1.83 (1)2.5966 (14)154 (18)
O7—H7···O60.82 (1)1.85 (1)2.6629 (14)169 (18)
N1—H1A···O40.84 (1)1.96 (1)2.7979 (16)175 (16)
O1—H1···O5i0.83 (1)1.84 (1)2.6511 (12)167 (18)
N1—H1B···O5ii0.85 (1)1.95 (1)2.7976 (16)178 (15)
N2—H2B···O6ii0.86 (1)2.22 (1)3.0712 (16)172 (15)
N2—H2A···O3iii0.85 (1)2.19 (1)3.0347 (16)173 (15)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.824 (9)1.831 (11)2.5966 (14)154 (18)
O7—H7···O60.821 (9)1.852 (10)2.6629 (14)169 (18)
N1—H1A···O40.841 (9)1.960 (9)2.7979 (16)175 (16)
O1—H1···O5i0.826 (9)1.841 (10)2.6511 (12)167 (18)
N1—H1B···O5ii0.852 (9)1.947 (9)2.7976 (16)178 (15)
N2—H2B···O6ii0.858 (9)2.220 (9)3.0712 (16)172 (15)
N2—H2A···O3iii0.850 (9)2.189 (9)3.0347 (16)173 (15)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y, z+1.
 

Acknowledgements

The authors thank the SAIF, IIT Madras, for the data collection. MKK thanks the Council of Scientific and Industrial Research, New Delhi, India, for providing financial support [project No. 03 (1200)/11/EMR-II].

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFurlong, E. T., Burkhardt, M. R., Gates, P. M., Werner, S. L. & Battaglin, W. A. (2000). Sci. Total Environ. 248, 135–146.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHoughton, P. J., Sosinski, J., Thakar, J. H., Border, G. B. & Grindey, G. B. (1995). Biochem. Pharmacol. 49, 661–668.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKrishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268.  CSD CrossRef IUCr Journals Google Scholar
First citationNelyubina, Y. V., Lyssenko, K. A., Golovanov, D. G. & Antipin, Yu. A. (2007). CrystEngComm. 9, 991–996.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliskovic, D. R., Krause, B. R. & Bocan, T. M. A. (1999). Annu. Rep. Med. Chem. 34, 101–110.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.  CSD CrossRef IUCr Journals Google Scholar
First citationWorsham, J. E. & Busing, W. R. (1969). Acta Cryst. B25, 572–578.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds