metal-organic compounds
Bis[4-(dimethylamino)pyridinium] tetrachloridocuprate(II)
aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Constantine 1 25000, Constantine, Algeria, and bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
The 7H11N2)2[CuCl4], comprises half a tetrahedral tetrachloridocuprate anion, being located on a twofold axis, and a protonated 4-(dimethylamino)pyridine cation. The geometry around the CuII ion is highly distorted with the range of Cl—Cu—Cl angles being 94.94 (1)–141.03 (1)°. The is stabilized by N—H⋯Cl and C—H⋯Cl hydrogen bonds. In the three-dimensional network, cations and anions pack in the lattice so as to generate chains of [CuCl4]2− anions separated by two orientations of cation layers, which are interlocked through π–π stacking contacts between pairs of pyridine rings, with centroid–centroid distances of 3.7874 (7) Å.
of the title salt, (CCCDC reference: 966114
Related literature
For general background to organic-inorganic systems, see: Bouacida (2008). For related 4-dimethylaminopyridinium metal(II) chloride salts, see: Khadri et al. (2013). For the geometry of four-coordinated tetrahalocuprate(II) ions, see: Awwadi et al. (2007); Choi et al. (2002); Diaz et al. (1999); Haddad et al. (2006); Harlow et al. (1975); Marzotto et al. (2001); Parent et al. (2007).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 966114
10.1107/S1600536813028006/bq2389sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813028006/bq2389Isup2.hkl
4-dimethylaminopyridine and CuCl2·2H2O in a molar ratio of 1:1 were dissolved in sufficient acidified water (HCl, 37%). Evaporation of obtained solution at room temperature yields yellow crystals of the title compound after one week which crystals suitable for X-ray diffraction were carefully isolated.
All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and N) with C—H = 0.96 Å (methyl) or C—H = 0.93 Å (aromatic) N—H = 0.86 Å and with Uiso(H) = 1.2 Ueq(Caryl or N )and Uiso(H) = 1.5 Ueq(Cmethyl).
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. A view of molecule structure of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. (Brandenburg & Berndt, 2001) Partial packing viewed via b axis showing structure as alternating layers of CuCl4 tetrahedral and protonated 4-Dimethylaminopyridine along the c axis and Hydrogen bonds interactions [N—H···Cl and C—H···Cl], as dashed lines. | |
Fig. 3. (Brandenburg & Berndt, 2001) Partial packing of (I) showing π-π stacking interactions as red dashed lines. |
(C7H11N2)2[CuCl4] | F(000) = 924 |
Mr = 451.71 | Dx = 1.549 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6282 reflections |
a = 12.3750 (8) Å | θ = 2.5–34.7° |
b = 12.1901 (8) Å | µ = 1.68 mm−1 |
c = 14.1713 (9) Å | T = 150 K |
β = 115.023 (1)° | Cube, yellow |
V = 1937.1 (2) Å3 | 0.13 × 0.12 × 0.10 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 3895 independent reflections |
Radiation source: sealed tube | 3389 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ϕ and ω scans | θmax = 34.7°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −19→19 |
Tmin = 0.675, Tmax = 0.747 | k = −18→18 |
12787 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.059 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0283P)2 + 0.9756P] where P = (Fo2 + 2Fc2)/3 |
3895 reflections | (Δ/σ)max = 0.001 |
107 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
(C7H11N2)2[CuCl4] | V = 1937.1 (2) Å3 |
Mr = 451.71 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 12.3750 (8) Å | µ = 1.68 mm−1 |
b = 12.1901 (8) Å | T = 150 K |
c = 14.1713 (9) Å | 0.13 × 0.12 × 0.10 mm |
β = 115.023 (1)° |
Bruker APEXII CCD diffractometer | 3895 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 3389 reflections with I > 2σ(I) |
Tmin = 0.675, Tmax = 0.747 | Rint = 0.017 |
12787 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 0 restraints |
wR(F2) = 0.059 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.55 e Å−3 |
3895 reflections | Δρmin = −0.22 e Å−3 |
107 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.43961 (8) | 0.14134 (8) | −0.05308 (7) | 0.0225 (2) | |
N2 | 0.24689 (8) | 0.09752 (8) | 0.12016 (7) | 0.0250 (3) | |
C1 | 0.37610 (8) | 0.12756 (8) | 0.00275 (7) | 0.0179 (2) | |
C2 | 0.39370 (8) | 0.19580 (8) | 0.08966 (7) | 0.0202 (2) | |
C3 | 0.32794 (9) | 0.17919 (9) | 0.14518 (8) | 0.0229 (3) | |
C4 | 0.22731 (9) | 0.03122 (9) | 0.03815 (9) | 0.0259 (3) | |
C5 | 0.28831 (9) | 0.04393 (8) | −0.02169 (8) | 0.0222 (2) | |
C11 | 0.53277 (10) | 0.22510 (10) | −0.02403 (9) | 0.0286 (3) | |
C12 | 0.41514 (11) | 0.07546 (10) | −0.14600 (9) | 0.0280 (3) | |
Cu1 | 0.00000 | 0.05740 (1) | 0.25000 | 0.0173 (1) | |
Cl1 | 0.07732 (2) | −0.06512 (2) | 0.17693 (2) | 0.0251 (1) | |
Cl2 | 0.15211 (2) | 0.17785 (2) | 0.29261 (2) | 0.0211 (1) | |
H2 | 0.20730 | 0.08760 | 0.15680 | 0.0300* | |
H2A | 0.45010 | 0.25170 | 0.10860 | 0.0240* | |
H3 | 0.33920 | 0.22490 | 0.20110 | 0.0270* | |
H4 | 0.17090 | −0.02440 | 0.02220 | 0.0310* | |
H5 | 0.27260 | −0.00200 | −0.07840 | 0.0270* | |
H11A | 0.49760 | 0.29640 | −0.02970 | 0.0430* | |
H11B | 0.57180 | 0.22070 | −0.06980 | 0.0430* | |
H11C | 0.59000 | 0.21310 | 0.04640 | 0.0430* | |
H12A | 0.42520 | −0.00080 | −0.12750 | 0.0420* | |
H12B | 0.46940 | 0.09570 | −0.17540 | 0.0420* | |
H12C | 0.33470 | 0.08820 | −0.19620 | 0.0420* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0217 (4) | 0.0262 (4) | 0.0203 (4) | −0.0016 (3) | 0.0097 (3) | 0.0010 (3) |
N2 | 0.0215 (4) | 0.0318 (5) | 0.0241 (4) | −0.0019 (3) | 0.0120 (3) | 0.0016 (3) |
C1 | 0.0164 (4) | 0.0182 (4) | 0.0172 (4) | 0.0003 (3) | 0.0052 (3) | 0.0015 (3) |
C2 | 0.0200 (4) | 0.0194 (4) | 0.0192 (4) | −0.0025 (3) | 0.0063 (3) | −0.0007 (3) |
C3 | 0.0226 (4) | 0.0250 (5) | 0.0200 (4) | 0.0010 (3) | 0.0079 (3) | −0.0012 (3) |
C4 | 0.0217 (4) | 0.0265 (5) | 0.0276 (5) | −0.0067 (4) | 0.0087 (4) | −0.0001 (4) |
C5 | 0.0210 (4) | 0.0215 (4) | 0.0217 (4) | −0.0036 (3) | 0.0067 (3) | −0.0032 (3) |
C11 | 0.0245 (5) | 0.0341 (6) | 0.0282 (5) | −0.0058 (4) | 0.0122 (4) | 0.0049 (4) |
C12 | 0.0320 (5) | 0.0322 (6) | 0.0216 (4) | 0.0056 (4) | 0.0132 (4) | 0.0010 (4) |
Cu1 | 0.0164 (1) | 0.0169 (1) | 0.0192 (1) | 0.0000 | 0.0082 (1) | 0.0000 |
Cl1 | 0.0269 (1) | 0.0203 (1) | 0.0353 (1) | −0.0061 (1) | 0.0200 (1) | −0.0087 (1) |
Cl2 | 0.0205 (1) | 0.0197 (1) | 0.0232 (1) | −0.0035 (1) | 0.0095 (1) | −0.0029 (1) |
Cu1—Cl1i | 2.2487 (3) | C2—C3 | 1.3653 (16) |
Cu1—Cl2i | 2.2588 (3) | C4—C5 | 1.3618 (17) |
Cu1—Cl1 | 2.2487 (3) | C2—H2A | 0.9300 |
Cu1—Cl2 | 2.2588 (3) | C3—H3 | 0.9300 |
N1—C1 | 1.3409 (15) | C4—H4 | 0.9300 |
N1—C12 | 1.4606 (15) | C5—H5 | 0.9300 |
N1—C11 | 1.4627 (16) | C11—H11A | 0.9600 |
N2—C3 | 1.3498 (15) | C11—H11B | 0.9600 |
N2—C4 | 1.3507 (15) | C11—H11C | 0.9600 |
N2—H2 | 0.8600 | C12—H12B | 0.9600 |
C1—C2 | 1.4246 (13) | C12—H12C | 0.9600 |
C1—C5 | 1.4217 (15) | C12—H12A | 0.9600 |
Cl1i—Cu1—Cl2i | 94.94 (1) | C3—C2—H2A | 120.00 |
Cl1—Cu1—Cl2i | 141.03 (1) | C2—C3—H3 | 119.00 |
Cl1—Cu1—Cl2 | 94.94 (1) | N2—C3—H3 | 120.00 |
Cl1—Cu1—Cl1i | 96.76 (1) | N2—C4—H4 | 119.00 |
Cl1i—Cu1—Cl2 | 141.03 (1) | C5—C4—H4 | 119.00 |
Cl2—Cu1—Cl2i | 98.91 (1) | C1—C5—H5 | 120.00 |
C1—N1—C12 | 120.89 (10) | C4—C5—H5 | 120.00 |
C1—N1—C11 | 120.68 (9) | H11A—C11—H11B | 109.00 |
C11—N1—C12 | 118.41 (10) | H11A—C11—H11C | 110.00 |
C3—N2—C4 | 120.68 (10) | N1—C11—H11A | 109.00 |
C4—N2—H2 | 120.00 | N1—C11—H11B | 109.00 |
C3—N2—H2 | 120.00 | N1—C11—H11C | 109.00 |
C2—C1—C5 | 116.81 (9) | H11B—C11—H11C | 109.00 |
N1—C1—C2 | 121.57 (9) | H12B—C12—H12C | 109.00 |
N1—C1—C5 | 121.62 (9) | N1—C12—H12A | 109.00 |
C1—C2—C3 | 120.08 (9) | N1—C12—H12B | 109.00 |
N2—C3—C2 | 121.05 (10) | N1—C12—H12C | 109.00 |
N2—C4—C5 | 121.52 (11) | H12A—C12—H12B | 109.00 |
C1—C5—C4 | 119.84 (9) | H12A—C12—H12C | 109.00 |
C1—C2—H2A | 120.00 | ||
C11—N1—C1—C2 | 2.21 (15) | N1—C1—C2—C3 | −179.66 (10) |
C11—N1—C1—C5 | −177.56 (10) | C5—C1—C2—C3 | 0.11 (14) |
C12—N1—C1—C2 | −175.95 (10) | N1—C1—C5—C4 | 178.72 (10) |
C12—N1—C1—C5 | 4.28 (16) | C2—C1—C5—C4 | −1.06 (15) |
C4—N2—C3—C2 | −1.18 (16) | C1—C2—C3—N2 | 1.00 (16) |
C3—N2—C4—C5 | 0.20 (17) | N2—C4—C5—C1 | 0.93 (17) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Cl1 | 0.86 | 2.55 | 3.2264 (11) | 136 |
N2—H2···Cl2 | 0.86 | 2.55 | 3.2760 (10) | 143 |
C2—H2A···Cl1ii | 0.93 | 2.67 | 3.5790 (11) | 167 |
C5—H5···Cl2iii | 0.93 | 2.80 | 3.6501 (11) | 152 |
C11—H11B···Cl2iv | 0.96 | 2.82 | 3.6850 (13) | 150 |
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x, −y, z−1/2; (iv) x+1/2, −y+1/2, z−1/2. |
Cu1—Cl1i | 2.2487 (3) | Cu1—Cl1 | 2.2487 (3) |
Cu1—Cl2i | 2.2588 (3) | Cu1—Cl2 | 2.2588 (3) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Cl1 | 0.8600 | 2.5500 | 3.2264 (11) | 136.00 |
N2—H2···Cl2 | 0.8600 | 2.5500 | 3.2760 (10) | 143.00 |
C2—H2A···Cl1ii | 0.9300 | 2.6700 | 3.5790 (11) | 167.00 |
C5—H5···Cl2iii | 0.9300 | 2.8000 | 3.6501 (11) | 152.00 |
C11—H11B···Cl2iv | 0.9600 | 2.8200 | 3.6850 (13) | 150.00 |
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x, −y, z−1/2; (iv) x+1/2, −y+1/2, z−1/2. |
Acknowledgements
We are grateful to all personel of the LCATM laboratory, Université Oum El Bouaghi, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) via the PNR programme for financial support.
References
Awwadi, F. F., Willett, R. D. & Twamly, B. (2007). Cryst. Growth Des. 7, 624–632. Web of Science CSD CrossRef CAS Google Scholar
Bouacida, S. (2008). PhD thesis, Montouri–Constantine University, Algeria. Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Choi, S.-N., Lee, Y.-M., Lee, H.-W., Kang, S. K. & Kim, Y.-I. (2002). Acta Cryst. E58, m583–m585. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Diaz, I., Fernandes, V., Belsky, V. K. & Martinez, J. L. (1999). Z. Naturforsch. Teil B, 54, 718–724. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Haddad, S. F., Aidamen, M. A. & Willett, R. D. (2006). Inorg. Chim. Acta, 359, 424–432. Web of Science CrossRef CAS Google Scholar
Harlow, R. L., Wells, W. J., Watt, G. W. & Simonsen, S. H. (1975). Inorg. Chem. 14, 1786–1772. CSD CrossRef Web of Science Google Scholar
Khadri, A., Bouchene, R., Bouacida, S., Merazig, H. & Roisnel, T. (2013). Acta Cryst. E69, m190. CSD CrossRef IUCr Journals Google Scholar
Marzotto, A., Clemente, D. A., Benetollo, F. & Valle, G. (2001). Polyhedron, 20, 171–177. Web of Science CSD CrossRef CAS Google Scholar
Parent, A. R., Landee, C. P. & Turnbull, M. M. (2007). Inorg. Chim. Acta, 360, 1943–1953. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The role of weak intermolecular interactions in the stabilization of hybrid organic-inorganic systems is one of the main targets of our investigation in crystal engineering study (Bouacida, 2008). In continuation of our recent research on 4-dimethylaminopyridinium (HDMAP) metal halide salts (Khadri et al., 2013), the X-ray crystal structures of new one with tetrachlorocuprate (II) anion is reported.
Electronic subshell d9 of Cu(II) is responsible for distortions of symmetry of the coordination polyhedron. This deals with the Jahn-Teller effect. The shape of the four-coordinated tetrahalocuprate (II) ions changes from square planar (Harlow et al., 1975) to distorted tetrahedral (Diaz et al., 1999) and the geometry of [CuX4]2- species is influenced by the crystal-packing forces resulted from the size and the form of counter cations (Diaz et al., 1999; Parent et al., 2007), hydrogen bonding to cations (Haddad et al., 2006; Marzotto et al., 2001; Choi et al., 2002), and halide-halide interactions in solid (Awwadi et al., 2007). The degree of distortion of [CuX4]2- coordination polyhedra is determined by the mean value of the flattering or trans-angle θ. The asymmetric unit of the title compound, shown in figure 1, contains one half of the copper chloride salt, the other half is generated by a twofold rotation axis (4 e) on which Cu(II) is situated. The [CuCl4]2- ions are highly distorted with a mean trans angle of 141.02° as a result of hydrogen bonding interactions with two nearly planar HDMAP cations (0.0295 Å mean deviation). The pyridinium nitrogen forms bifurcated hydrogen bond to two chloride ligands Cl1 and Cl2 and the created organic-inorganic hybrid compound (Fig. 2) is further assembled by C—H···Cl hydrogen bonding interactions (Table 2). In the three dimension network (Fig. 3), cations and anions pack in the lattice to generate chains of [CuX4]2- anions separated by two orientations of cation layers which are interlocked through π-π stacking contacts between pairs of pyridine rings with distances centroid-centroid of 3.7874 (7) Å. All these interactions bonds link the layers together, forming a three-dimensional network and reinforcing the cohesion of ionic structure. Additionel hydrogen bond parameters are listed in table 1.