organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Iso­propyl-1-{2-[(1-methyl-1H-tetra­zol-5-yl)sulfan­yl]acet­yl}-2,6-di­phenyl­piperidin-4-one hemihydrate

aResearch Development Centre, Orchid Chemicals and Pharmaceuticals Ltd, Sozhinganallur, Chennai 600 119, India, bDepartment of Chemistry, Presidency College (Autonomous), Chennai 600 005, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 4 September 2013; accepted 25 September 2013; online 2 October 2013)

In the title compound, C24H27N5O2S·0.5H2O, the piperidine ring adopts a distorted boat conformation. The phenyl rings subtend dihedral angles of 69.7 (1) and 88.7 (1)° with the best plane through the piperidine moiety. In the crystal, symmetry-related mol­ecules are linked through a network of C—H⋯O and C—H⋯N inter­actions, the former connecting them into zigzag chains along the c-axis direction and the latter forming an R22(4)motif. The dimer formation (C—H⋯N) and the repetition of symmetry-related molecules (C—H⋯O) along the b-axis direction stabilize the packing mode. The water mol­ecule is located on a twofold rotation axis.

Related literature

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009[Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577-592.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H27N5O2S·0.5H2O

  • Mr = 458.57

  • Monoclinic, C 2/c

  • a = 28.7522 (9) Å

  • b = 11.1809 (4) Å

  • c = 16.5584 (5) Å

  • β = 115.303 (2)°

  • V = 4812.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.972

  • 22058 measured reflections

  • 6013 independent reflections

  • 4157 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.146

  • S = 1.04

  • 6013 reflections

  • 297 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25C⋯O1i 0.96 2.47 3.406 (3) 166
C18—H18⋯O1ii 0.93 2.54 3.312 (2) 140
C25—H25B⋯N4iii 0.96 2.54 3.472 (3) 165
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In a way to find piperidin-4-one based lead drug molecules for the antimicrobial therapy, various piperidin-4-ones were prepared by condensing N-chloroacetyl-2,6-diphenylpiperidin-4-one with 5-mercapto-(1-methyltetrazole) (Aridoss et al., 2009). 5-Mercapto-(1-methyl tetrazole) is the active part of a number of cephalosporanic drugs like Cefamandole, Cefoperazone, Cefmetazole sodium & Cefotetan and responsible for its activity. The present investigation was undertaken to establish the structure and conformation of the title compound by X-ray crystallographic methods.

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983): q2=0.662 (2) Å, q3 = 0.079 (2) Å, ϕ2 = 76.86 (2)° and Δs(N1 & C4)= 74.11 (2)°.

The methyltetrazol ring is planar with the maximum deviation -0.003 (2) Å for N4 atom. The endocyclic bond lengths of N2–N3=1.362 (4)°, N3–N4= 1.278 (4) Å & N4–N5 = 1.348 (3) Å, clearly indicate that they are alternate single and double bonds.

The carbonyl group is almost anti-periplanar to C2 and C6, [C2—C3—C4—O1 = 155.9 (2)°; C6—C5—C4—O1= 151.1 (2)°]. The dihedral angles between the best plane through the piperidine ring and the phenyl rings are 69.7 (1)° & 88.7 (1)°. The two phenyl rings are oriented to each other with a dihedral angle of 70.5 (1)°.

Symmetry related molecules are linked through a network of intermolecular C—H···O and C—H···N interactions. C18–H18···O1 and C25–H25B···O1 connect the molecules to zigzag chains. Another motif R22(4), involving the weak interaction C25—H25A···N4 is shown in Fig. 2 (Bernstein et al., 1995).

Related literature top

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To anhydrous DMF(10 ml), N-Chloroacetyl-3-isopropyl-2,6-diphenylpiperidin-4-one (1 mole), 5-Mercapto-1-methyltetrazole(1 mole) followed by potassium carbonate (1.5 mole) was added and stirred for 1 hr at room temperature. The reaction mass was heated to 60°C and stirred and monitored using TLC. After completion of reaction, the reaction mass was quenched into water and the product was extracted with dichloromethane. The dichloromethane layer distilled completely and to the residue methanol was added and kept in overnight. The solid obtained was filtered and dried at 60° C under vacuum. Single crystals were obtained by re-crystallization using ethanol.

Refinement top

H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms. The ADP value for the water molecules is rather high. Since the H atoms of the solvent water molecule could not be located, they were not included in the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down c axis.
3-Isopropyl-1-{2-[(1-methyl-1H-tetrazol-5-yl)sulfanyl]acetyl}-2,6-diphenylpiperidin-4-one hemihydrate top
Crystal data top
C24H27N5O2S·0.5H2OF(000) = 1944
Mr = 458.57Dx = 1.266 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4157 reflections
a = 28.7522 (9) Åθ = 2.5–28.5°
b = 11.1809 (4) ŵ = 0.17 mm1
c = 16.5584 (5) ÅT = 293 K
β = 115.303 (2)°Block, white crystalline
V = 4812.4 (3) Å30.22 × 0.19 × 0.17 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
6013 independent reflections
Radiation source: fine-focus sealed tube4157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3837
Tmin = 0.964, Tmax = 0.972k = 1414
22058 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0657P)2 + 3.1292P]
where P = (Fo2 + 2Fc2)/3
6013 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C24H27N5O2S·0.5H2OV = 4812.4 (3) Å3
Mr = 458.57Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.7522 (9) ŵ = 0.17 mm1
b = 11.1809 (4) ÅT = 293 K
c = 16.5584 (5) Å0.22 × 0.19 × 0.17 mm
β = 115.303 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6013 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4157 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.972Rint = 0.026
22058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
6013 reflectionsΔρmin = 0.25 e Å3
297 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.36794 (6)0.31060 (16)0.37251 (12)0.0412 (4)
H20.36030.24570.32890.049*
C30.40052 (7)0.40262 (18)0.35071 (12)0.0492 (4)
H30.43390.36590.36350.059*
C40.41000 (7)0.51029 (18)0.41040 (13)0.0519 (5)
C50.37256 (7)0.52979 (16)0.45051 (12)0.0465 (4)
H5A0.37150.61470.46170.056*
H5B0.38560.48940.50780.056*
C60.31739 (6)0.48676 (14)0.39456 (11)0.0388 (4)
H60.30120.54170.34410.047*
C70.28781 (6)0.49375 (15)0.45121 (11)0.0402 (4)
C80.25431 (7)0.58770 (17)0.43993 (14)0.0519 (5)
H80.24850.64370.39510.062*
C90.22951 (9)0.5988 (2)0.49479 (18)0.0661 (6)
H90.20710.66250.48680.079*
C100.23757 (9)0.5170 (2)0.56082 (17)0.0682 (6)
H100.22110.52530.59810.082*
C110.27031 (9)0.4222 (2)0.57168 (15)0.0638 (6)
H110.27550.36570.61590.077*
C120.29535 (8)0.41052 (17)0.51762 (13)0.0508 (4)
H120.31750.34640.52570.061*
C130.39463 (6)0.25381 (16)0.46536 (12)0.0439 (4)
C140.36763 (7)0.16991 (17)0.48954 (14)0.0525 (5)
H140.33450.14890.44900.063*
C150.38885 (9)0.1164 (2)0.57293 (15)0.0640 (6)
H150.36980.06110.58830.077*
C160.43792 (9)0.1451 (2)0.63289 (16)0.0708 (6)
H160.45220.10970.68910.085*
C170.46572 (8)0.2261 (2)0.60943 (16)0.0712 (7)
H170.49910.24500.64980.085*
C180.44445 (7)0.28039 (19)0.52588 (14)0.0570 (5)
H180.46380.33490.51060.068*
C190.37600 (8)0.4421 (2)0.25143 (14)0.0598 (5)
H190.34410.48490.24020.072*
C200.36228 (12)0.3358 (3)0.18807 (16)0.0836 (8)
H20A0.34810.36390.12750.125*
H20B0.33740.28670.19680.125*
H20C0.39270.28960.20000.125*
C210.41134 (12)0.5283 (3)0.2321 (2)0.1060 (11)
H21A0.44320.48880.24340.159*
H21B0.41810.59710.27010.159*
H21C0.39500.55300.17070.159*
C220.27371 (6)0.31101 (15)0.30215 (11)0.0386 (4)
C230.22425 (6)0.37998 (17)0.27937 (12)0.0456 (4)
H23A0.22830.46200.26430.055*
H23B0.21590.38080.33030.055*
C240.12585 (7)0.41117 (17)0.17409 (13)0.0499 (4)
C250.06530 (10)0.3638 (2)0.01369 (17)0.0818 (8)
H25A0.09210.36670.00620.123*
H25B0.03520.40300.02920.123*
H25C0.05730.28190.01990.123*
N10.31787 (5)0.36569 (12)0.35824 (9)0.0368 (3)
N20.12550 (7)0.48754 (19)0.23410 (14)0.0695 (5)
N30.08016 (8)0.5478 (2)0.19371 (18)0.0833 (6)
N40.05421 (7)0.51015 (18)0.11397 (18)0.0799 (6)
N50.08241 (6)0.42381 (15)0.09937 (12)0.0600 (5)
O10.44618 (6)0.57684 (16)0.42809 (13)0.0792 (5)
O20.27217 (5)0.21064 (12)0.27106 (9)0.0508 (3)
S10.173492 (17)0.30767 (4)0.18556 (3)0.04999 (15)
O1W0.00000.7061 (7)0.25000.373 (7)
H1W0.01720.66920.22980.560*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0302 (8)0.0449 (9)0.0444 (9)0.0009 (7)0.0121 (7)0.0003 (7)
C30.0349 (9)0.0609 (12)0.0488 (10)0.0035 (8)0.0152 (8)0.0055 (8)
C40.0369 (9)0.0564 (11)0.0538 (11)0.0119 (8)0.0110 (8)0.0054 (8)
C50.0403 (9)0.0427 (9)0.0481 (9)0.0116 (7)0.0109 (8)0.0033 (7)
C60.0345 (8)0.0355 (8)0.0397 (8)0.0034 (6)0.0093 (7)0.0020 (6)
C70.0379 (8)0.0378 (9)0.0405 (8)0.0080 (7)0.0125 (7)0.0056 (6)
C80.0477 (10)0.0447 (10)0.0582 (11)0.0021 (8)0.0178 (9)0.0059 (8)
C90.0559 (12)0.0567 (13)0.0906 (16)0.0078 (10)0.0360 (12)0.0249 (12)
C100.0721 (14)0.0690 (14)0.0807 (15)0.0302 (12)0.0491 (13)0.0313 (12)
C110.0796 (15)0.0617 (13)0.0586 (12)0.0225 (11)0.0377 (12)0.0074 (10)
C120.0568 (11)0.0444 (10)0.0514 (10)0.0058 (8)0.0234 (9)0.0009 (8)
C130.0315 (8)0.0431 (9)0.0488 (9)0.0015 (7)0.0091 (7)0.0029 (7)
C140.0369 (9)0.0475 (10)0.0594 (11)0.0039 (8)0.0076 (9)0.0079 (8)
C150.0550 (12)0.0554 (12)0.0684 (13)0.0029 (10)0.0138 (11)0.0173 (10)
C160.0609 (13)0.0701 (14)0.0577 (12)0.0018 (11)0.0028 (11)0.0188 (11)
C170.0433 (11)0.0793 (15)0.0615 (13)0.0053 (11)0.0057 (10)0.0118 (11)
C180.0340 (9)0.0624 (12)0.0614 (12)0.0061 (8)0.0077 (9)0.0094 (10)
C190.0508 (11)0.0727 (14)0.0510 (11)0.0044 (10)0.0170 (9)0.0103 (10)
C200.096 (2)0.0965 (19)0.0498 (12)0.0058 (16)0.0236 (13)0.0015 (12)
C210.104 (2)0.139 (3)0.0702 (16)0.043 (2)0.0331 (16)0.0237 (17)
C220.0305 (8)0.0454 (9)0.0335 (7)0.0032 (7)0.0076 (6)0.0004 (7)
C230.0312 (8)0.0503 (10)0.0426 (9)0.0025 (7)0.0036 (7)0.0051 (8)
C240.0332 (9)0.0517 (10)0.0541 (10)0.0021 (8)0.0085 (8)0.0071 (8)
C250.0601 (14)0.0748 (16)0.0668 (14)0.0057 (12)0.0146 (12)0.0038 (12)
N10.0279 (6)0.0386 (7)0.0373 (7)0.0025 (5)0.0077 (5)0.0008 (5)
N20.0495 (10)0.0756 (13)0.0749 (12)0.0097 (9)0.0185 (9)0.0033 (10)
N30.0576 (12)0.0761 (14)0.1063 (17)0.0158 (11)0.0254 (12)0.0021 (13)
N40.0472 (10)0.0623 (12)0.1054 (17)0.0130 (9)0.0089 (11)0.0096 (11)
N50.0376 (8)0.0515 (9)0.0681 (11)0.0017 (7)0.0009 (8)0.0113 (8)
O10.0542 (9)0.0838 (11)0.0987 (12)0.0338 (8)0.0320 (9)0.0138 (9)
O20.0399 (7)0.0483 (7)0.0540 (7)0.0035 (5)0.0104 (6)0.0138 (6)
S10.0327 (2)0.0534 (3)0.0470 (3)0.00136 (19)0.00093 (18)0.0049 (2)
O1W0.275 (9)0.202 (7)0.68 (2)0.0000.242 (13)0.000
Geometric parameters (Å, º) top
C2—N11.489 (2)C16—C171.370 (3)
C2—C131.532 (2)C16—H160.9300
C2—C31.535 (2)C17—C181.390 (3)
C2—H20.9800C17—H170.9300
C3—C41.507 (3)C18—H180.9300
C3—C191.551 (3)C19—C201.522 (3)
C3—H30.9800C19—C211.530 (3)
C4—O11.209 (2)C19—H190.9800
C4—C51.503 (3)C20—H20A0.9600
C5—C61.533 (2)C20—H20B0.9600
C5—H5A0.9700C20—H20C0.9600
C5—H5B0.9700C21—H21A0.9600
C6—N11.484 (2)C21—H21B0.9600
C6—C71.514 (2)C21—H21C0.9600
C6—H60.9800C22—O21.228 (2)
C7—C81.383 (3)C22—N11.357 (2)
C7—C121.385 (3)C22—C231.517 (2)
C8—C91.379 (3)C23—S11.8052 (17)
C8—H80.9300C23—H23A0.9700
C9—C101.367 (4)C23—H23B0.9700
C9—H90.9300C24—N21.313 (3)
C10—C111.378 (3)C24—N51.338 (2)
C10—H100.9300C24—S11.741 (2)
C11—C121.374 (3)C25—N51.452 (3)
C11—H110.9300C25—H25A0.9600
C12—H120.9300C25—H25B0.9600
C13—C141.382 (3)C25—H25C0.9600
C13—C181.385 (2)N2—N31.362 (3)
C14—C151.384 (3)N3—N41.279 (3)
C14—H140.9300N4—N51.347 (3)
C15—C161.372 (3)O1W—H1W0.8163
C15—H150.9300
N1—C2—C13111.48 (14)C17—C16—H16120.2
N1—C2—C3109.35 (14)C15—C16—H16120.2
C13—C2—C3114.81 (14)C16—C17—C18120.61 (19)
N1—C2—H2106.9C16—C17—H17119.7
C13—C2—H2106.9C18—C17—H17119.7
C3—C2—H2106.9C13—C18—C17120.36 (19)
C4—C3—C2109.80 (15)C13—C18—H18119.8
C4—C3—C19109.92 (17)C17—C18—H18119.8
C2—C3—C19113.18 (15)C20—C19—C21110.3 (2)
C4—C3—H3107.9C20—C19—C3111.99 (19)
C2—C3—H3107.9C21—C19—C3111.05 (18)
C19—C3—H3107.9C20—C19—H19107.8
O1—C4—C5120.56 (19)C21—C19—H19107.8
O1—C4—C3123.12 (19)C3—C19—H19107.8
C5—C4—C3116.29 (15)C19—C20—H20A109.5
C4—C5—C6116.04 (15)C19—C20—H20B109.5
C4—C5—H5A108.3H20A—C20—H20B109.5
C6—C5—H5A108.3C19—C20—H20C109.5
C4—C5—H5B108.3H20A—C20—H20C109.5
C6—C5—H5B108.3H20B—C20—H20C109.5
H5A—C5—H5B107.4C19—C21—H21A109.5
N1—C6—C7113.78 (13)C19—C21—H21B109.5
N1—C6—C5110.17 (14)H21A—C21—H21B109.5
C7—C6—C5108.64 (14)C19—C21—H21C109.5
N1—C6—H6108.0H21A—C21—H21C109.5
C7—C6—H6108.0H21B—C21—H21C109.5
C5—C6—H6108.0O2—C22—N1123.69 (16)
C8—C7—C12118.77 (18)O2—C22—C23119.90 (15)
C8—C7—C6119.93 (16)N1—C22—C23116.41 (14)
C12—C7—C6121.23 (16)C22—C23—S1108.28 (12)
C9—C8—C7120.4 (2)C22—C23—H23A110.0
C9—C8—H8119.8S1—C23—H23A110.0
C7—C8—H8119.8C22—C23—H23B110.0
C10—C9—C8120.5 (2)S1—C23—H23B110.0
C10—C9—H9119.7H23A—C23—H23B108.4
C8—C9—H9119.7N2—C24—N5108.97 (18)
C9—C10—C11119.5 (2)N2—C24—S1127.57 (15)
C9—C10—H10120.3N5—C24—S1123.46 (16)
C11—C10—H10120.3N5—C25—H25A109.5
C12—C11—C10120.5 (2)N5—C25—H25B109.5
C12—C11—H11119.8H25A—C25—H25B109.5
C10—C11—H11119.8N5—C25—H25C109.5
C11—C12—C7120.4 (2)H25A—C25—H25C109.5
C11—C12—H12119.8H25B—C25—H25C109.5
C7—C12—H12119.8C22—N1—C6121.37 (13)
C14—C13—C18118.14 (17)C22—N1—C2118.73 (14)
C14—C13—C2118.02 (15)C6—N1—C2119.27 (13)
C18—C13—C2123.84 (17)C24—N2—N3105.37 (19)
C13—C14—C15121.32 (18)N4—N3—N2111.0 (2)
C13—C14—H14119.3N3—N4—N5106.89 (18)
C15—C14—H14119.3C24—N5—N4107.78 (19)
C16—C15—C14120.0 (2)C24—N5—C25130.34 (19)
C16—C15—H15120.0N4—N5—C25121.86 (18)
C14—C15—H15120.0C24—S1—C2396.05 (9)
C17—C16—C15119.6 (2)
N1—C2—C3—C459.75 (18)C2—C13—C18—C17179.1 (2)
C13—C2—C3—C466.4 (2)C16—C17—C18—C130.4 (4)
N1—C2—C3—C1963.5 (2)C4—C3—C19—C20176.12 (19)
C13—C2—C3—C19170.36 (17)C2—C3—C19—C2053.0 (2)
C2—C3—C4—O1155.9 (2)C4—C3—C19—C2160.0 (3)
C19—C3—C4—O179.0 (2)C2—C3—C19—C21176.8 (2)
C2—C3—C4—C522.2 (2)O2—C22—C23—S114.3 (2)
C19—C3—C4—C5102.97 (19)N1—C22—C23—S1166.62 (12)
O1—C4—C5—C6151.13 (19)O2—C22—N1—C6179.37 (15)
C3—C4—C5—C630.8 (2)C23—C22—N1—C60.3 (2)
C4—C5—C6—N145.1 (2)O2—C22—N1—C29.8 (2)
C4—C5—C6—C7170.36 (15)C23—C22—N1—C2171.18 (14)
N1—C6—C7—C8135.30 (16)C7—C6—N1—C2261.59 (19)
C5—C6—C7—C8101.58 (18)C5—C6—N1—C22176.13 (14)
N1—C6—C7—C1247.8 (2)C7—C6—N1—C2127.61 (15)
C5—C6—C7—C1275.3 (2)C5—C6—N1—C25.3 (2)
C12—C7—C8—C90.9 (3)C13—C2—N1—C22107.47 (17)
C6—C7—C8—C9176.10 (17)C3—C2—N1—C22124.49 (16)
C7—C8—C9—C100.2 (3)C13—C2—N1—C681.48 (17)
C8—C9—C10—C110.7 (3)C3—C2—N1—C646.55 (19)
C9—C10—C11—C121.0 (3)N5—C24—N2—N30.1 (2)
C10—C11—C12—C70.3 (3)S1—C24—N2—N3179.61 (17)
C8—C7—C12—C110.7 (3)C24—N2—N3—N40.3 (3)
C6—C7—C12—C11176.30 (17)N2—N3—N4—N50.6 (3)
N1—C2—C13—C1455.1 (2)N2—C24—N5—N40.4 (2)
C3—C2—C13—C14179.87 (17)S1—C24—N5—N4179.29 (15)
N1—C2—C13—C18125.88 (19)N2—C24—N5—C25177.7 (2)
C3—C2—C13—C180.8 (3)S1—C24—N5—C252.5 (3)
C18—C13—C14—C152.1 (3)N3—N4—N5—C240.6 (3)
C2—C13—C14—C15178.76 (19)N3—N4—N5—C25177.7 (2)
C13—C14—C15—C161.1 (4)N2—C24—S1—C2319.8 (2)
C14—C15—C16—C170.4 (4)N5—C24—S1—C23160.54 (17)
C15—C16—C17—C180.7 (4)C22—C23—S1—C24176.64 (13)
C14—C13—C18—C171.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25C···O1i0.962.473.406 (3)166
C18—H18···O1ii0.932.543.312 (2)140
C25—H25B···N4iii0.962.543.472 (3)165
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25C···O1i0.962.473.406 (3)166.2
C18—H18···O1ii0.932.543.312 (2)140.4
C25—H25B···N4iii0.962.543.472 (3)164.7
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

SG wishes to thank Orchid Chemicals and Pharmaceuticals Limited (www.orchidpharma.com), Chennai, India, for consent to perform the research. PS thanks the UGC, New Delhi, for financial support in the form of a Research Fellowship in Science for Meritorious Students.

References

First citationAridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds