organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Bis(furan-2-yl)pyrazino­[2,3-f][1,10]phenanthroline

aSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: cgzheng@jiangnan.edu.cn

(Received 9 September 2013; accepted 24 September 2013; online 5 October 2013)

The mol­ecule of the title compound, C22H12N4O2, is located on a twofold rotation axis. The dihedral angle between the furan and pyrazine rings is 34.8 (7)°, and that between the furan rings is 46.92 (7)°. A ππ stacking interaction occurs between adjacent pyrazino[2,3-f][1,10]phenanthroline units, with an interplanar distance of 3.5862 (12) Å.

Related literature

For the properties of 2,3-dithienyl­pyrazino­[2,3-f][1,10]phenanthroline, see: Bencini et al. (1999[Bencini, A., Bernardo, M. A., Bianchi, A., Fusi, V., Giorgi, C., Pina, F. & Valtancoli, B. (1999). Eur. J. Inorg. Chem. pp. 1911-1918.]); Li et al. (2010[Li, X. X., Guo, Y., Chi, H. J., Dong, Y. Z. & Hong, B. (2010). Mater. Chem. Phys. 123, 289-292.]). For the structure of 2,3-bis­(thio­phen-2-yl)pyrazino­[2,3-f][1,10]phenanthroline, see: Zheng et al. (2012[Zheng, C.-G., Kong, J., Zhang, P. & Dong, W.-X. (2012). Acta Cryst. E68, o1443.]) and for the structure of 3-carb­oxy­pyrazino­[2,3-f][1,10]-phenanthrolin-9-ium-2-carb­oxyl­ate see: Zhang et al. (2010[Zhang, X.-N., Fu, F., Li, D.-S. & Meng, C.-X. (2010). Acta Cryst. E66, o740.]).

[Scheme 1]

Experimental

Crystal data
  • C22H12N4O2

  • Mr = 364.36

  • Orthorhombic, P b c n

  • a = 7.0994 (14) Å

  • b = 25.014 (5) Å

  • c = 9.4083 (19) Å

  • V = 1670.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.26 × 0.21 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.983

  • 7791 measured reflections

  • 1565 independent reflections

  • 1382 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.114

  • S = 1.18

  • 1565 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,3-Di(furan-2-yl)pyrazino[2,3-f][1,10]phenanthroline as a ligand has been extensively used as ligand in both analytical and preparative coordination chemistry (Bencini et al., 1999; Li et al. 2010), due to its rigid structure and fluorescence property.

The structure of 2,3-di(furan-2-yl)pyrazino[2,3-f][1,10]phenanthroline, C22H12N4O2, has orthorhombic (Pbcn) symmetry. The dihedral angles between the furan ring and the pyrazine ring is 34.77 (67)°.

Related literature top

For the properties of 2,3-dithienylpyrazine[2,3-f][1,10]phenanthroline, see: Bencini et al. (1999); Li et al. (2010). For the structure of 2,3-bis(thiophen-2-yl)pyrazine[2,3-f][1,10]phenanthroline, see: Zheng et al. (2012) and for the structure of 3-carboxypyrazino[2,3-f][1,10]-phenanthrolin-9-ium-2-carboxylate see: Zhang et al. (2010).

Experimental top

The title compound was synthesized by using 1,10-phenanthroline and 2-furaldehyde as the starting material according to the published route (Li et al., 2010). The single crystals were obtained by recrystallization from the mixture of methanol and dichloromethane at room temperature.

Refinement top

All H atoms were located in a difference map but placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distance of 0.93 Å, and with Uiso(H)=1.2Uiso(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex showing 30% probability displacement ellipsoids and the atom-numbering scheme.
2,3-Bis(furan-2-yl)pyrazino[2,3-f][1,10]phenanthroline top
Crystal data top
C22H12N4O2F(000) = 752
Mr = 364.36Dx = 1.449 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6163 reflections
a = 7.0994 (14) Åθ = 3.3–27.5°
b = 25.014 (5) ŵ = 0.10 mm1
c = 9.4083 (19) ÅT = 293 K
V = 1670.8 (6) Å3Block, yellow
Z = 40.26 × 0.21 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
1565 independent reflections
Radiation source: fine-focus sealed tube1382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 88
Tmin = 0.975, Tmax = 0.983k = 2130
7791 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.050P)2 + 0.3579P]
where P = (Fo2 + 2Fc2)/3
1565 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H12N4O2V = 1670.8 (6) Å3
Mr = 364.36Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 7.0994 (14) ŵ = 0.10 mm1
b = 25.014 (5) ÅT = 293 K
c = 9.4083 (19) Å0.26 × 0.21 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
1565 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1382 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.035
7791 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.18Δρmax = 0.16 e Å3
1565 reflectionsΔρmin = 0.19 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14263 (19)0.43286 (5)0.35255 (15)0.0303 (4)
C60.0687 (2)0.47894 (6)0.30306 (18)0.0284 (4)
C20.1413 (2)0.52917 (6)0.35808 (18)0.0297 (4)
O10.19388 (17)0.29767 (4)0.25670 (14)0.0391 (4)
C30.2798 (2)0.53071 (7)0.46419 (19)0.0337 (4)
H30.32500.49920.50380.040*
C70.0756 (2)0.38724 (6)0.30014 (17)0.0295 (4)
C10.0746 (2)0.57801 (6)0.30375 (18)0.0302 (4)
N20.1436 (2)0.62587 (6)0.34706 (16)0.0373 (4)
C80.1713 (2)0.33906 (6)0.35072 (18)0.0307 (4)
C90.2526 (3)0.32685 (7)0.4760 (2)0.0377 (5)
H90.25740.34830.55660.045*
C40.3478 (3)0.57901 (7)0.5089 (2)0.0394 (5)
H40.43960.58100.57920.047*
C50.2760 (3)0.62534 (7)0.4462 (2)0.0408 (5)
H50.32440.65800.47620.049*
C110.2910 (3)0.25895 (7)0.3286 (2)0.0401 (5)
H110.32540.22610.29040.048*
C100.3295 (3)0.27471 (7)0.4608 (2)0.0401 (5)
H100.39420.25530.52960.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0335 (8)0.0231 (7)0.0344 (8)0.0012 (6)0.0021 (6)0.0002 (6)
C60.0291 (8)0.0233 (8)0.0329 (9)0.0000 (7)0.0015 (7)0.0003 (7)
C20.0295 (8)0.0248 (9)0.0348 (9)0.0002 (6)0.0006 (7)0.0028 (7)
O10.0482 (7)0.0258 (6)0.0433 (7)0.0083 (5)0.0033 (6)0.0036 (5)
C30.0337 (9)0.0267 (9)0.0409 (10)0.0023 (7)0.0052 (8)0.0012 (7)
C70.0329 (8)0.0243 (8)0.0313 (9)0.0006 (7)0.0007 (7)0.0006 (7)
C10.0317 (8)0.0240 (8)0.0348 (9)0.0012 (7)0.0022 (7)0.0021 (7)
N20.0404 (8)0.0249 (8)0.0465 (9)0.0024 (6)0.0053 (7)0.0025 (6)
C80.0335 (9)0.0205 (8)0.0380 (10)0.0008 (6)0.0003 (8)0.0012 (7)
C90.0423 (10)0.0297 (10)0.0412 (10)0.0029 (8)0.0065 (9)0.0010 (8)
C40.0378 (10)0.0339 (10)0.0465 (11)0.0014 (8)0.0097 (8)0.0058 (8)
C50.0434 (10)0.0268 (10)0.0523 (12)0.0044 (8)0.0067 (9)0.0072 (8)
C110.0407 (10)0.0232 (9)0.0564 (12)0.0065 (8)0.0031 (9)0.0041 (8)
C100.0380 (10)0.0334 (11)0.0490 (12)0.0056 (8)0.0017 (9)0.0111 (9)
Geometric parameters (Å, º) top
N1—C71.331 (2)C1—N21.356 (2)
N1—C61.349 (2)C1—C1i1.465 (3)
C6—C6i1.396 (3)N2—C51.325 (2)
C6—C21.453 (2)C8—C91.347 (2)
C2—C31.402 (2)C9—C101.421 (2)
C2—C11.406 (2)C9—H90.9300
O1—C111.368 (2)C4—C51.396 (3)
O1—C81.371 (2)C4—H40.9300
C3—C41.367 (2)C5—H50.9300
C3—H30.9300C11—C101.333 (3)
C7—C7i1.429 (3)C11—H110.9300
C7—C81.463 (2)C10—H100.9300
C7—N1—C6117.74 (15)C9—C8—O1110.07 (15)
N1—C6—C6i121.24 (9)C9—C8—C7132.06 (16)
N1—C6—C2118.53 (16)O1—C8—C7117.81 (14)
C6i—C6—C2120.17 (10)C8—C9—C10106.51 (16)
C3—C2—C1118.10 (15)C8—C9—H9126.7
C3—C2—C6121.75 (15)C10—C9—H9126.7
C1—C2—C6120.14 (16)C3—C4—C5118.34 (17)
C11—O1—C8105.93 (14)C3—C4—H4120.8
C4—C3—C2119.40 (16)C5—C4—H4120.8
C4—C3—H3120.3N2—C5—C4124.37 (16)
C2—C3—H3120.3N2—C5—H5117.8
N1—C7—C7i120.87 (9)C4—C5—H5117.8
N1—C7—C8114.83 (15)C10—C11—O1110.82 (16)
C7i—C7—C8124.29 (9)C10—C11—H11124.6
N2—C1—C2122.43 (16)O1—C11—H11124.6
N2—C1—C1i117.94 (10)C11—C10—C9106.66 (16)
C2—C1—C1i119.63 (10)C11—C10—H10126.7
C5—N2—C1117.32 (15)C9—C10—H10126.7
C7—N1—C6—C6i2.2 (3)C1i—C1—N2—C5178.75 (19)
C7—N1—C6—C2179.43 (14)C11—O1—C8—C90.52 (19)
N1—C6—C2—C32.5 (3)C11—O1—C8—C7178.19 (15)
C6i—C6—C2—C3179.73 (19)N1—C7—C8—C933.1 (3)
N1—C6—C2—C1176.70 (15)C7i—C7—C8—C9148.3 (2)
C6i—C6—C2—C10.5 (3)N1—C7—C8—O1143.91 (15)
C1—C2—C3—C41.4 (3)C7i—C7—C8—O134.7 (3)
C6—C2—C3—C4177.83 (17)O1—C8—C9—C100.5 (2)
C6—N1—C7—C7i2.9 (3)C7—C8—C9—C10177.69 (18)
C6—N1—C7—C8175.76 (14)C2—C3—C4—C50.1 (3)
C3—C2—C1—N22.1 (3)C1—N2—C5—C40.3 (3)
C6—C2—C1—N2177.09 (15)C3—C4—C5—N21.0 (3)
C3—C2—C1—C1i177.92 (18)C8—O1—C11—C100.4 (2)
C6—C2—C1—C1i2.9 (3)O1—C11—C10—C90.1 (2)
C2—C1—N2—C51.3 (3)C8—C9—C10—C110.2 (2)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H12N4O2
Mr364.36
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)7.0994 (14), 25.014 (5), 9.4083 (19)
V3)1670.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.21 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7791, 1565, 1382
Rint0.035
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.114, 1.18
No. of reflections1565
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

The authors are grateful for financial support from the Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.

References

First citationBencini, A., Bernardo, M. A., Bianchi, A., Fusi, V., Giorgi, C., Pina, F. & Valtancoli, B. (1999). Eur. J. Inorg. Chem. pp. 1911–1918.  CrossRef Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X. X., Guo, Y., Chi, H. J., Dong, Y. Z. & Hong, B. (2010). Mater. Chem. Phys. 123, 289–292.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-N., Fu, F., Li, D.-S. & Meng, C.-X. (2010). Acta Cryst. E66, o740.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZheng, C.-G., Kong, J., Zhang, P. & Dong, W.-X. (2012). Acta Cryst. E68, o1443.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds