organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3aR,6S,7aR)-7a-Chloro-6-methyl-2-(4-nitro­phenyl­sulfon­yl)-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­­oxy­iso­indole

aDepartment of Chemistry, Faculty of Arts and Sciences, Niĝde University, TR-51240 Niĝde, Turkey, and bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, TR-55139 Samsun, Turkey
*Correspondence e-mail: etemel@omu.edu.tr

(Received 20 September 2013; accepted 23 September 2013; online 9 October 2013)

In the title compound, C15H15ClN2O5S, the tetra­hydro­furan ring adopts an envelope conformation with the O atom as the flap. The pyrrolidine ring adopts an envelope conformation with the chlorine-substituted C atom as the flap. In the crystal, two types of C—H⋯O hydrogen bonds generate R22(20) and R44(26) rings, with adjacent rings running parallel to ac plane. Further C—H⋯O hydrogen bonds form a C(6) chain, linking the mol­ecules in the b-axis direction.

Related literature

For chemical background to protecting groups, see: Greene & Wuts (1999[Greene, T. W. & Wuts, P. G. M. (1999). Protective Groups in Organic Synthesis, 3rd ed. New York: John Wiley & Sons, Inc.]); Romanski et al. (2012[Romanski, J., Nowak, P., Kosinski, K. & Jurczak, J. (2012). Tetrahedron Lett. 53, 5287-5289.]); Chan & White (2004[Chan, W. C. & White, P. D. (2004). In Fmoc Solid Phase Peptide Synthesis. Oxford University Press.]); Yasushi & Higuchi (2006[Yasushi, K. & Higuchi, T. (2006). FEMS Microbiol. Lett. 24, 225-229.]); Blanc & Bochet (2007[Blanc, A. & Bochet, C. G. (2007). Org. Lett. 9, 2649-2651.]); Demircan & Parsons (2002[Demircan, A. & Parsons, P. J. (2002). Heterocycl. Commun. 8, 531-536.]); Demirtaş et al. (2002[Demirtaş, I., Büyükkıdan, B. & Elmastaş, M. (2002). Turk. J. Chem. 26, 889-896.]); Katritzky et al. (2004[Katritzky, A. R., Hoffmann, S. & Suzuki, K. (2004). Arkivoc, xii, 14-22.]); Merlin et al. (1988[Merlin, P., Braekman, J. C. & Daloze, D. (1988). Tetrahedron Lett. 29, 1691-1694.]); Büyükgüngör et al. (2005[Büyükgüngör, O., Koşar, B., Demircan, A. & Turaç, E. (2005). Acta Cryst. E61, o1441-o1442.]); Koşar et al. (2006a[Koşar, B., Demircan, A., Karaarslan, M. & Büyükgüngör, O. (2006a). Acta Cryst. E62, o765-o767.],b[Koşar, B., Göktürk, E., Demircan, A. & Büyükgüngör, O. (2006b). Acta Cryst. E62, o4192-o4193.]); Karaarslan et al. (2007[Karaarslan, M., Göktürk, E. & Demircan, A. (2007). J. Chem. Res. 2, 117-120.]); Demircan et al. (2011[Demircan, A., Şahin, E., Beyazova, G., Karaaslan, M. & Hökelek, T. (2011). Acta Cryst. E67, o1085-o1086.]); Temel et al. (2011[Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304-o1305.], 2012[Temel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102-o1103.]). For puckering parameters, see: Cremer & Pople, (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15ClN2O5S

  • Mr = 370.80

  • Monoclinic, P 21 /c

  • a = 8.6049 (5) Å

  • b = 7.1949 (3) Å

  • c = 26.8195 (15) Å

  • β = 101.186 (4)°

  • V = 1628.89 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 296 K

  • 0.48 × 0.24 × 0.02 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.894, Tmax = 0.992

  • 13941 measured reflections

  • 3449 independent reflections

  • 1564 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.192

  • S = 0.89

  • 3449 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.46 3.205 (6) 138
C7—H7A⋯O2ii 0.97 2.51 3.219 (6) 129
C9—H9⋯O4iii 0.93 2.52 3.388 (6) 155
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.] ); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The use of protective groups has been popular in synthetic pathways (Romanski et al., 2012; Chan & White, 2004; Yasushi and Higuchi, 2006; Blanc and Bochet, 2007). Many protective groups have been, developed to block other reactive sites of a molecule like NH, OH, SH, aldehyde etc. They should be easily removable (Greene & Wuts, 1999). Bulky protective groups on nitrogen like tert-butoxy carboxylate (Demircan and Parsons, 2002), the trityl group (Demirtaş et al., 2002), tosyl (Katritzky et al., 2004), mesyl (Merlin et al., 1988) predominates in cycloaddition reactions over relatively small protective groups such as methyl, ethyl groups.

We have been working on intramolecular Diels Alder reaction (IMDAF) of compounds with a furan core using different side chains containing a heteroatom like oxygen, sulfur and nitrogen. Isoindole derivatives have been often synthesized and analyzed in our group using bulky protective groups (Büyükgüngör et al., 2005; Koşar et al., 2006a; Koşar et al., 2006b; Karaarslan et al., 2007; Demircan et al., 2011). Tosyl and mesyl groups have been previously used and reported in a series of sulfonamides (Temel et al., 2012; Temel et al., 2011). We now here report our further finding that cycloadduct, 3 with p-nosyl group was generated at the intermediate via, 2 in aqueous condition without any other solvent system.

The title compound contains epoxyisoindole and phenyl rings linked through N—S—C bridge (Fig. 2). Tetrahydrofuran rings, pyrrolidine ring and six-membered ring that generate epoxyisoindole moiety are puckered. Both tetrahydrofuran rings adopt an envelope conformation with the puckering parameters of Q=0.516 (5) Å, ϕ=182.8 (6)° for O5/C8–11 and Q=0.611 (5) Å, ϕ=3.5 (5)° for O5/C8,13,12,11, respectively. The other five-membered ring, pyrrolidine, has the puckering parameters of Q=0.288 (5) Å and ϕ=277.2 (9)°. The six-membered ring, C8–13, has a boat conformation, according to the puckering parameters [Q=0.928 (5) Å, θ=87.5 (3)° and ϕ=180.8 (3)°] (Cremer & Pople, 1975).

The crystal packing of is stabilized by C—H···O hydrogen bonds. While the C7—H7A···O2 hydrogen bonds generate R22(20) rings, the combination of C7—H7A···O2 and C9—H9···O4 hydrogen bonds generate R44(26) rings (Fig. 4). These adjacent rings are running parallel to ac-plane. Additionally, C3—H3···O3 hydrogen bonds forming a C(6) chain link the molecules through b axis (Fig 3) (Bernstein et al. 1995).

Related literature top

For chemical background to protecting groups, see: Greene & Wuts (1999); Romanski et al. (2012); Chan & White (2004); Yasushi & Higuchi (2006); Blanc & Bochet (2007); Demircan & Parsons (2002); Demirtaş et al. (2002); Katritzky et al. (2004); Merlin et al. (1988); Büyükgüngör et al. (2005); Koşar et al. (2006a,b); Karaarslan et al. (2007); Demircan et al. (2011); Temel et al. (2011, 2012). For puckering parameters, see: Cremer & Pople, (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2-Chloro-N-(furan-2-ylmethyl)prop-2-en-1-amine, 1 (0.32 g, 1.72 mmol) in water (50 ml) was added p-nitrobenzenesulfonyl chloride (0.45 g, 2.06 mmol) portion wise followed by potassium carbonate (0.9 g, 6.45 mol). The reaction mixture was stirred for 48 h at 369 K. Then, the reaction mixture was allowed to warm up to room temperature and NaOH 10% (35 ml) was added. The mixture was then extracted with ethyl acetate (3x35 ml) and brine (35 ml). Combined organic phases were dried over magnesium sulfate, filtered and evaporated. The purification by column chromatography afforded colourless crystals (0.42 g, 66% yield). t.l.c., (Hexane:Ethylacetate); (8:2), Rf: 0.42). Recrystallization was performed in DCM:Hexane. Melting Point: 444–445 K.

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.97, 0.98 and 0.93 Å for CH2, CH and CH(aromatic), respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq (aromatic, methylene or methine C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound.
[Figure 2] Fig. 2. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 3] Fig. 3. Part of the crystal structure of the title compound, showing the formation of C(6) chain.
[Figure 4] Fig. 4. Part of the crystal structure of the title compound, showing the formation of R22(10) and R44(26) rings.
(3aR,6S,7aR)-7a-Chloro-6-methyl-2-(4-nitrophenylsulfonyl)-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole top
Crystal data top
C15H15ClN2O5SF(000) = 768
Mr = 370.80Dx = 1.512 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13941 reflections
a = 8.6049 (5) Åθ = 1.6–27.2°
b = 7.1949 (3) ŵ = 0.39 mm1
c = 26.8195 (15) ÅT = 296 K
β = 101.186 (4)°Plate, colorless
V = 1628.89 (15) Å30.48 × 0.24 × 0.02 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
3449 independent reflections
Radiation source: fine-focus sealed tube1564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
rotation method scansθmax = 26.8°, θmin = 1.6°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1010
Tmin = 0.894, Tmax = 0.992k = 99
13941 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.1022P)2]
where P = (Fo2 + 2Fc2)/3
3449 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C15H15ClN2O5SV = 1628.89 (15) Å3
Mr = 370.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6049 (5) ŵ = 0.39 mm1
b = 7.1949 (3) ÅT = 296 K
c = 26.8195 (15) Å0.48 × 0.24 × 0.02 mm
β = 101.186 (4)°
Data collection top
Stoe IPDS 2
diffractometer
3449 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1564 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.992Rint = 0.090
13941 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 0.89Δρmax = 1.12 e Å3
3449 reflectionsΔρmin = 0.37 e Å3
217 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5887 (5)0.4475 (7)0.44296 (17)0.0556 (12)
C20.5543 (5)0.2605 (7)0.44330 (18)0.0618 (13)
H20.46670.21390.42090.074*
C30.6482 (6)0.1425 (7)0.47633 (17)0.0616 (13)
H30.62570.01610.47640.074*
C40.7759 (5)0.2143 (7)0.50928 (17)0.0579 (12)
C50.8113 (5)0.4015 (8)0.51046 (17)0.0630 (13)
H50.89790.44740.53340.076*
C60.7182 (5)0.5177 (7)0.47768 (18)0.0608 (13)
H60.74050.64430.47830.073*
C70.7168 (6)0.6656 (7)0.34900 (18)0.0594 (12)
H7A0.78320.65010.38240.071*
H7B0.70800.79710.34100.071*
C80.7840 (5)0.5617 (6)0.30954 (17)0.0573 (12)
C90.9556 (6)0.5353 (7)0.3091 (2)0.0727 (15)
H91.03980.55020.33630.087*
C100.9638 (6)0.4871 (8)0.2628 (2)0.0741 (15)
H101.05500.45570.25100.089*
C110.7968 (6)0.4919 (7)0.23212 (18)0.0599 (12)
C120.7102 (6)0.3187 (7)0.2476 (2)0.0691 (14)
H12A0.60750.30120.22570.083*
H12B0.77300.20680.24760.083*
C130.6946 (6)0.3746 (6)0.30125 (18)0.0594 (12)
C140.5329 (5)0.4221 (7)0.31263 (18)0.0613 (12)
H14A0.45920.45370.28160.074*
H14B0.49060.31780.32860.074*
C150.7767 (7)0.5299 (9)0.1765 (2)0.0832 (17)
H15A0.82700.64560.17140.100*
H15B0.66590.53720.16180.100*
H15C0.82440.43140.16050.100*
N10.8795 (6)0.0885 (8)0.54414 (17)0.0793 (13)
N20.5591 (4)0.5831 (5)0.34738 (13)0.0522 (9)
O10.8474 (6)0.0760 (7)0.54284 (18)0.1241 (18)
O20.9903 (6)0.1529 (6)0.57330 (19)0.1193 (17)
O30.4999 (4)0.7806 (5)0.41540 (13)0.0780 (10)
O40.3234 (4)0.5168 (6)0.38233 (13)0.0780 (11)
O50.7281 (4)0.6367 (4)0.25862 (11)0.0637 (9)
S10.47826 (14)0.59405 (19)0.39663 (5)0.0621 (4)
Cl10.79058 (18)0.2099 (2)0.34891 (6)0.0899 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (2)0.063 (3)0.052 (3)0.006 (2)0.007 (2)0.009 (2)
C20.055 (3)0.072 (4)0.054 (3)0.019 (2)0.002 (2)0.012 (2)
C30.072 (3)0.059 (3)0.053 (3)0.020 (2)0.011 (2)0.006 (2)
C40.058 (3)0.066 (3)0.048 (3)0.005 (2)0.007 (2)0.003 (2)
C50.057 (3)0.079 (4)0.049 (3)0.017 (3)0.001 (2)0.004 (3)
C60.062 (3)0.064 (3)0.055 (3)0.015 (2)0.009 (2)0.009 (2)
C70.067 (3)0.049 (3)0.058 (3)0.011 (2)0.001 (2)0.006 (2)
C80.054 (3)0.052 (3)0.061 (3)0.002 (2)0.002 (2)0.004 (2)
C90.057 (3)0.073 (4)0.086 (4)0.014 (3)0.007 (3)0.000 (3)
C100.065 (3)0.069 (4)0.090 (4)0.007 (3)0.018 (3)0.001 (3)
C110.069 (3)0.050 (3)0.061 (3)0.005 (2)0.014 (2)0.003 (2)
C120.066 (3)0.060 (3)0.079 (4)0.002 (3)0.007 (3)0.018 (3)
C130.070 (3)0.045 (3)0.066 (3)0.004 (2)0.018 (2)0.004 (2)
C140.058 (3)0.056 (3)0.066 (3)0.002 (2)0.000 (2)0.018 (2)
C150.100 (4)0.081 (4)0.071 (4)0.009 (3)0.022 (3)0.002 (3)
N10.085 (3)0.083 (4)0.064 (3)0.015 (3)0.001 (2)0.008 (3)
N20.0494 (19)0.054 (2)0.050 (2)0.0019 (18)0.0006 (16)0.0083 (18)
O10.158 (4)0.077 (3)0.110 (4)0.019 (3)0.042 (3)0.016 (3)
O20.111 (3)0.097 (3)0.122 (4)0.026 (3)0.047 (3)0.024 (3)
O30.084 (2)0.073 (2)0.073 (2)0.0175 (19)0.0053 (18)0.0221 (19)
O40.0455 (18)0.107 (3)0.078 (2)0.0014 (18)0.0031 (16)0.012 (2)
O50.076 (2)0.054 (2)0.0566 (19)0.0075 (16)0.0016 (16)0.0036 (15)
S10.0529 (7)0.0696 (9)0.0603 (7)0.0052 (6)0.0027 (5)0.0132 (7)
Cl10.1013 (11)0.0687 (9)0.1046 (12)0.0213 (8)0.0322 (9)0.0296 (8)
Geometric parameters (Å, º) top
C1—C21.378 (7)C10—C111.512 (7)
C1—C61.401 (6)C10—H100.9300
C1—S11.761 (5)C11—O51.450 (5)
C2—C31.372 (7)C11—C151.494 (7)
C2—H20.9300C11—C121.549 (7)
C3—C41.371 (6)C12—C131.524 (7)
C3—H30.9300C12—H12A0.9700
C4—C51.380 (7)C12—H12B0.9700
C4—N11.471 (7)C13—C141.520 (6)
C5—C61.357 (7)C13—Cl11.819 (5)
C5—H50.9300C14—N21.476 (5)
C6—H60.9300C14—H14A0.9700
C7—N21.474 (6)C14—H14B0.9700
C7—C81.500 (7)C15—H15A0.9600
C7—H7A0.9700C15—H15B0.9600
C7—H7B0.9700C15—H15C0.9600
C8—O51.460 (5)N1—O21.202 (6)
C8—C91.492 (7)N1—O11.214 (6)
C8—C131.545 (6)N2—S11.610 (4)
C9—C101.302 (7)O3—S11.433 (4)
C9—H90.9300O4—S11.426 (3)
C2—C1—C6119.5 (4)C15—C11—C12116.5 (4)
C2—C1—S1120.1 (3)C10—C11—C12107.0 (4)
C6—C1—S1120.3 (4)C13—C12—C11100.1 (4)
C3—C2—C1120.5 (4)C13—C12—H12A111.7
C3—C2—H2119.7C11—C12—H12A111.7
C1—C2—H2119.7C13—C12—H12B111.7
C4—C3—C2118.8 (5)C11—C12—H12B111.7
C4—C3—H3120.6H12A—C12—H12B109.5
C2—C3—H3120.6C14—C13—C12120.0 (4)
C3—C4—C5121.9 (5)C14—C13—C8103.0 (4)
C3—C4—N1119.3 (5)C12—C13—C8103.5 (4)
C5—C4—N1118.8 (4)C14—C13—Cl1108.3 (3)
C6—C5—C4119.1 (4)C12—C13—Cl1112.4 (3)
C6—C5—H5120.4C8—C13—Cl1108.7 (3)
C4—C5—H5120.4N2—C14—C13105.7 (4)
C5—C6—C1120.2 (5)N2—C14—H14A110.6
C5—C6—H6119.9C13—C14—H14A110.6
C1—C6—H6119.9N2—C14—H14B110.6
N2—C7—C8104.9 (3)C13—C14—H14B110.6
N2—C7—H7A110.8H14A—C14—H14B108.7
C8—C7—H7A110.8C11—C15—H15A109.5
N2—C7—H7B110.8C11—C15—H15B109.5
C8—C7—H7B110.8H15A—C15—H15B109.5
H7A—C7—H7B108.8C11—C15—H15C109.5
O5—C8—C9100.7 (4)H15A—C15—H15C109.5
O5—C8—C7111.9 (4)H15B—C15—H15C109.5
C9—C8—C7126.0 (4)O2—N1—O1122.8 (5)
O5—C8—C1397.0 (3)O2—N1—C4118.9 (5)
C9—C8—C13110.7 (4)O1—N1—C4118.4 (4)
C7—C8—C13106.6 (4)C7—N2—C14111.2 (3)
C10—C9—C8106.2 (5)C7—N2—S1119.9 (3)
C10—C9—H9126.9C14—N2—S1121.3 (3)
C8—C9—H9126.9C11—O5—C895.8 (3)
C9—C10—C11107.0 (5)O4—S1—O3120.7 (2)
C9—C10—H10126.5O4—S1—N2106.86 (19)
C11—C10—H10126.5O3—S1—N2106.7 (2)
O5—C11—C15112.3 (4)O4—S1—C1107.7 (2)
O5—C11—C10100.6 (4)O3—S1—C1107.3 (2)
C15—C11—C10117.5 (4)N2—S1—C1106.8 (2)
O5—C11—C12100.6 (4)
C6—C1—C2—C31.8 (7)O5—C8—C13—Cl1159.5 (3)
S1—C1—C2—C3174.2 (4)C9—C8—C13—Cl155.2 (5)
C1—C2—C3—C40.6 (7)C7—C8—C13—Cl185.1 (4)
C2—C3—C4—C50.7 (7)C12—C13—C14—N2139.8 (4)
C2—C3—C4—N1178.7 (4)C8—C13—C14—N225.7 (5)
C3—C4—C5—C60.8 (7)Cl1—C13—C14—N289.3 (4)
N1—C4—C5—C6178.6 (4)C3—C4—N1—O2179.2 (5)
C4—C5—C6—C10.4 (7)C5—C4—N1—O21.4 (8)
C2—C1—C6—C51.7 (7)C3—C4—N1—O10.6 (8)
S1—C1—C6—C5174.3 (4)C5—C4—N1—O1180.0 (5)
N2—C7—C8—O583.0 (4)C8—C7—N2—C145.6 (5)
N2—C7—C8—C9154.3 (4)C8—C7—N2—S1155.4 (3)
N2—C7—C8—C1321.9 (5)C13—C14—N2—C713.2 (5)
O5—C8—C9—C1034.8 (5)C13—C14—N2—S1136.2 (3)
C7—C8—C9—C10162.2 (5)C15—C11—O5—C8174.7 (4)
C13—C8—C9—C1067.1 (5)C10—C11—O5—C848.9 (4)
C8—C9—C10—C112.9 (6)C12—C11—O5—C860.7 (4)
C9—C10—C11—O530.0 (5)C9—C8—O5—C1151.2 (4)
C9—C10—C11—C15152.2 (5)C7—C8—O5—C11172.7 (4)
C9—C10—C11—C1274.5 (5)C13—C8—O5—C1161.6 (4)
O5—C11—C12—C1333.9 (4)C7—N2—S1—O4175.4 (3)
C15—C11—C12—C13155.5 (4)C14—N2—S1—O437.8 (4)
C10—C11—C12—C1370.7 (5)C7—N2—S1—O345.1 (4)
C11—C12—C13—C14110.0 (5)C14—N2—S1—O3168.1 (3)
C11—C12—C13—C83.9 (5)C7—N2—S1—C169.4 (4)
C11—C12—C13—Cl1121.0 (4)C14—N2—S1—C177.3 (4)
O5—C8—C13—C1485.8 (4)C2—C1—S1—O428.7 (5)
C9—C8—C13—C14169.9 (4)C6—C1—S1—O4155.3 (4)
C7—C8—C13—C1429.7 (5)C2—C1—S1—O3160.1 (4)
O5—C8—C13—C1239.9 (4)C6—C1—S1—O323.9 (4)
C9—C8—C13—C1264.4 (5)C2—C1—S1—N285.8 (4)
C7—C8—C13—C12155.3 (4)C6—C1—S1—N290.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.463.205 (6)138
C7—H7A···O2ii0.972.513.219 (6)129
C9—H9···O4iii0.932.523.388 (6)155
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.463.205 (6)137.7
C7—H7A···O2ii0.972.513.219 (6)129.4
C9—H9···O4iii0.932.523.388 (6)154.9
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant F.279 of University Research Fund) and also The Scientific & Technological Research Council of Turkey (TÜBİTAK) for the financial support of this work (P·N.: 107 T831).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlanc, A. & Bochet, C. G. (2007). Org. Lett. 9, 2649–2651.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBüyükgüngör, O., Koşar, B., Demircan, A. & Turaç, E. (2005). Acta Cryst. E61, o1441–o1442.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChan, W. C. & White, P. D. (2004). In Fmoc Solid Phase Peptide Synthesis. Oxford University Press.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDemircan, A. & Parsons, P. J. (2002). Heterocycl. Commun. 8, 531–536.  CAS Google Scholar
First citationDemircan, A., Şahin, E., Beyazova, G., Karaaslan, M. & Hökelek, T. (2011). Acta Cryst. E67, o1085–o1086.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDemirtaş, I., Büyükkıdan, B. & Elmastaş, M. (2002). Turk. J. Chem. 26, 889–896.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreene, T. W. & Wuts, P. G. M. (1999). Protective Groups in Organic Synthesis, 3rd ed. New York: John Wiley & Sons, Inc.  Google Scholar
First citationKaraarslan, M., Göktürk, E. & Demircan, A. (2007). J. Chem. Res. 2, 117–120.  CrossRef Google Scholar
First citationKatritzky, A. R., Hoffmann, S. & Suzuki, K. (2004). Arkivoc, xii, 14–22.  CrossRef Google Scholar
First citationKoşar, B., Demircan, A., Karaarslan, M. & Büyükgüngör, O. (2006a). Acta Cryst. E62, o765–o767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoşar, B., Göktürk, E., Demircan, A. & Büyükgüngör, O. (2006b). Acta Cryst. E62, o4192–o4193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMerlin, P., Braekman, J. C. & Daloze, D. (1988). Tetrahedron Lett. 29, 1691–1694.  CrossRef CAS Web of Science Google Scholar
First citationRomanski, J., Nowak, P., Kosinski, K. & Jurczak, J. (2012). Tetrahedron Lett. 53, 5287–5289.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTemel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102–o1103.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationYasushi, K. & Higuchi, T. (2006). FEMS Microbiol. Lett. 24, 225–229.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds