organic compounds
4-Dichloromethyl-4-methyl-5-(nitromethyl)cyclohex-2-enone
aVinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, University of Belgrade, 11001 Belgrade, Serbia, bFaculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia, cFaculty of Metallurgy and Technology, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro, and dFaculty of Sciences, Department of Chemistry, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
*Correspondence e-mail: zeljkoj@ac.me
In the title compound, C9H11Cl2NO3, the six-membered ring adopts a screw-chair conformation. In the crystal, two different C—H⋯O hydrogen bonds involving the same acceptor atom connect the molecules into a chain extending along the c-axis direction.
CCDC reference: 965241
Related literature
For the synthetic procedure, see: Wenkert et al. (1969). For polyfunctionalized products obtained by similar Michael reactions with carbanions, see: Stefanović et al. (1983); Solujić et al. (1991, 1999). For a related see: Yang & Carter (2010).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2013); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995).
Supporting information
CCDC reference: 965241
10.1107/S1600536813027517/bt6936sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813027517/bt6936Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813027517/bt6936Isup3.cml
Following the literature protocol (Wenkert et al., 1969), to freshly prepared sodium methoxide in methanol a nitromethane solution of 4-(dichloromethyl)-4-methylcyclohex-2,5-dienone in dry methanol was added dropwise. After one hour stirring of the obtained solution, the solvent was evaporated and the rest quenched with diluted hydrochloric acid. The obtained mixture was extracted with toluene, the organic layer dried overnight (anh. sodium sulfate) and the solvent evaporated. The crude solid was recrystallized from hot toluene to give pure 4-(dichloromethyl)-4-methyl-5-(nitromethyl)cyclohex-2-enon.
All H atoms were placed at geometrically calculated positions and included in the
in the riding model approximation, with C—H lengths of 0.93 (aromatic CH), 0.96 (CH3), 0.97 (CH2), and 0.98 Å (CH). Uiso of the H atoms were set at 1.5Ueq of the parent C for the methyl group and at 1.2Ueq otherwise.Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995).C9H11Cl2NO3 | F(000) = 520 |
Mr = 252.09 | Dx = 1.496 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2ybc | Cell parameters from 927 reflections |
a = 13.8922 (7) Å | θ = 4.2–70.2° |
b = 10.4531 (9) Å | µ = 5.14 mm−1 |
c = 7.8696 (5) Å | T = 293 K |
β = 101.682 (6)° | Prismatic, colourless |
V = 1119.12 (13) Å3 | 0.11 × 0.10 × 0.05 mm |
Z = 4 |
Agilent Gemini S diffractometer | 2160 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1674 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
Detector resolution: 16.3280 pixels mm-1 | θmax = 72.7°, θmin = 5.3° |
ω scans | h = −16→17 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −12→7 |
Tmin = 0.288, Tmax = 1.000 | l = −9→9 |
4083 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.073 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.214 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0912P)2 + 0.9148P] where P = (Fo2 + 2Fc2)/3 |
2160 reflections | (Δ/σ)max < 0.001 |
137 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
C9H11Cl2NO3 | V = 1119.12 (13) Å3 |
Mr = 252.09 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 13.8922 (7) Å | µ = 5.14 mm−1 |
b = 10.4531 (9) Å | T = 293 K |
c = 7.8696 (5) Å | 0.11 × 0.10 × 0.05 mm |
β = 101.682 (6)° |
Agilent Gemini S diffractometer | 2160 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 1674 reflections with I > 2σ(I) |
Tmin = 0.288, Tmax = 1.000 | Rint = 0.016 |
4083 measured reflections |
R[F2 > 2σ(F2)] = 0.073 | 0 restraints |
wR(F2) = 0.214 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.44 e Å−3 |
2160 reflections | Δρmin = −0.46 e Å−3 |
137 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 'CrysAlisPro (Agilent Technologies, 2013)' |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.42318 (8) | 0.42826 (19) | 0.16338 (17) | 0.1132 (6) | |
Cl2 | 0.37776 (11) | 0.67949 (16) | 0.2702 (2) | 0.1229 (7) | |
N1 | 0.0336 (2) | 0.6681 (4) | 0.1987 (4) | 0.0681 (9) | |
O1 | 0.0509 (4) | 0.7541 (5) | 0.2925 (9) | 0.184 (3) | |
O2 | −0.0380 (4) | 0.6677 (7) | 0.1028 (8) | 0.195 (3) | |
C1 | 0.1041 (3) | 0.5609 (4) | 0.1953 (5) | 0.0634 (9) | |
H1A | 0.1335 | 0.5699 | 0.0942 | 0.076* | |
H1B | 0.0686 | 0.4804 | 0.1849 | 0.076* | |
C2 | 0.1853 (2) | 0.5576 (3) | 0.3579 (4) | 0.0521 (8) | |
H2 | 0.2108 | 0.6447 | 0.3804 | 0.063* | |
C3 | 0.1430 (3) | 0.5148 (5) | 0.5143 (5) | 0.0699 (11) | |
H3A | 0.0917 | 0.5739 | 0.5301 | 0.084* | |
H3B | 0.1135 | 0.4309 | 0.4909 | 0.084* | |
C4 | 0.2196 (4) | 0.5091 (6) | 0.6783 (5) | 0.0854 (13) | |
C5 | 0.3186 (3) | 0.4765 (5) | 0.6616 (5) | 0.0719 (11) | |
H5 | 0.3671 | 0.4682 | 0.7614 | 0.086* | |
C6 | 0.3420 (2) | 0.4579 (4) | 0.5085 (5) | 0.0605 (9) | |
H6 | 0.4067 | 0.4358 | 0.5073 | 0.073* | |
C7 | 0.2720 (2) | 0.4699 (3) | 0.3368 (4) | 0.0506 (8) | |
C8 | 0.3265 (3) | 0.5283 (5) | 0.2041 (5) | 0.0746 (12) | |
H8 | 0.2791 | 0.5396 | 0.0946 | 0.090* | |
C9 | 0.2362 (3) | 0.3356 (4) | 0.2733 (6) | 0.0744 (11) | |
H9A | 0.2912 | 0.2782 | 0.2889 | 0.112* | |
H9B | 0.2057 | 0.3394 | 0.1525 | 0.112* | |
H9C | 0.1895 | 0.3056 | 0.3387 | 0.112* | |
O3 | 0.1993 (4) | 0.5259 (7) | 0.8183 (4) | 0.165 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0604 (7) | 0.1947 (17) | 0.0927 (9) | 0.0257 (8) | 0.0351 (6) | −0.0027 (9) |
Cl2 | 0.0976 (10) | 0.1148 (12) | 0.1631 (15) | −0.0342 (8) | 0.0423 (9) | 0.0388 (10) |
N1 | 0.0521 (17) | 0.086 (2) | 0.0644 (18) | 0.0131 (16) | 0.0081 (14) | 0.0057 (17) |
O1 | 0.140 (4) | 0.128 (4) | 0.239 (6) | 0.069 (3) | −0.066 (4) | −0.086 (4) |
O2 | 0.124 (4) | 0.229 (6) | 0.187 (5) | 0.107 (4) | −0.075 (4) | −0.105 (4) |
C1 | 0.0504 (18) | 0.080 (3) | 0.058 (2) | 0.0105 (17) | 0.0056 (15) | −0.0045 (18) |
C2 | 0.0448 (16) | 0.063 (2) | 0.0486 (16) | 0.0008 (14) | 0.0095 (13) | −0.0015 (14) |
C3 | 0.0533 (19) | 0.100 (3) | 0.061 (2) | 0.0049 (19) | 0.0235 (16) | 0.000 (2) |
C4 | 0.083 (3) | 0.125 (4) | 0.051 (2) | 0.006 (3) | 0.0212 (19) | 0.007 (2) |
C5 | 0.066 (2) | 0.097 (3) | 0.0485 (19) | −0.004 (2) | 0.0008 (16) | 0.0104 (19) |
C6 | 0.0432 (16) | 0.076 (2) | 0.060 (2) | −0.0024 (15) | 0.0035 (14) | 0.0088 (17) |
C7 | 0.0409 (15) | 0.063 (2) | 0.0481 (16) | −0.0011 (13) | 0.0105 (12) | −0.0021 (14) |
C8 | 0.0508 (19) | 0.115 (3) | 0.060 (2) | 0.004 (2) | 0.0181 (16) | 0.013 (2) |
C9 | 0.060 (2) | 0.069 (2) | 0.092 (3) | 0.0047 (18) | 0.0090 (19) | −0.020 (2) |
O3 | 0.131 (3) | 0.317 (8) | 0.0541 (19) | 0.061 (4) | 0.035 (2) | 0.004 (3) |
Cl1—C8 | 1.782 (4) | C3—H3B | 0.9700 |
Cl2—C8 | 1.768 (5) | C4—O3 | 1.204 (5) |
N1—O2 | 1.119 (5) | C4—C5 | 1.448 (6) |
N1—O1 | 1.157 (5) | C5—C6 | 1.324 (5) |
N1—C1 | 1.493 (5) | C5—H5 | 0.9300 |
C1—C2 | 1.525 (5) | C6—C7 | 1.502 (5) |
C1—H1A | 0.9700 | C6—H6 | 0.9300 |
C1—H1B | 0.9700 | C7—C8 | 1.536 (5) |
C2—C3 | 1.534 (5) | C7—C9 | 1.538 (5) |
C2—C7 | 1.549 (5) | C8—H8 | 0.9800 |
C2—H2 | 0.9800 | C9—H9A | 0.9600 |
C3—C4 | 1.498 (6) | C9—H9B | 0.9600 |
C3—H3A | 0.9700 | C9—H9C | 0.9600 |
O2—N1—O1 | 118.3 (4) | C6—C5—C4 | 122.0 (3) |
O2—N1—C1 | 118.8 (4) | C6—C5—H5 | 119.0 |
O1—N1—C1 | 122.8 (4) | C4—C5—H5 | 119.0 |
N1—C1—C2 | 112.3 (3) | C5—C6—C7 | 124.9 (3) |
N1—C1—H1A | 109.2 | C5—C6—H6 | 117.5 |
C2—C1—H1A | 109.2 | C7—C6—H6 | 117.5 |
N1—C1—H1B | 109.2 | C6—C7—C8 | 109.0 (3) |
C2—C1—H1B | 109.2 | C6—C7—C9 | 108.9 (3) |
H1A—C1—H1B | 107.9 | C8—C7—C9 | 108.2 (3) |
C1—C2—C3 | 110.0 (3) | C6—C7—C2 | 109.2 (3) |
C1—C2—C7 | 112.5 (3) | C8—C7—C2 | 109.8 (3) |
C3—C2—C7 | 110.2 (3) | C9—C7—C2 | 111.6 (3) |
C1—C2—H2 | 108.0 | C7—C8—Cl2 | 112.3 (3) |
C3—C2—H2 | 108.0 | C7—C8—Cl1 | 112.5 (3) |
C7—C2—H2 | 108.0 | Cl2—C8—Cl1 | 107.7 (2) |
C4—C3—C2 | 112.5 (3) | C7—C8—H8 | 108.0 |
C4—C3—H3A | 109.1 | Cl2—C8—H8 | 108.0 |
C2—C3—H3A | 109.1 | Cl1—C8—H8 | 108.0 |
C4—C3—H3B | 109.1 | C7—C9—H9A | 109.5 |
C2—C3—H3B | 109.1 | C7—C9—H9B | 109.5 |
H3A—C3—H3B | 107.8 | H9A—C9—H9B | 109.5 |
O3—C4—C5 | 121.3 (4) | C7—C9—H9C | 109.5 |
O3—C4—C3 | 121.7 (5) | H9A—C9—H9C | 109.5 |
C5—C4—C3 | 116.9 (3) | H9B—C9—H9C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O3i | 0.98 | 2.24 | 3.189 (5) | 164 |
C1—H1a···O3i | 0.97 | 2.56 | 3.503 (6) | 164 |
Symmetry code: (i) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O3i | 0.98 | 2.24 | 3.189 (5) | 164 |
C1—H1a···O3i | 0.97 | 2.56 | 3.503 (6) | 164 |
Symmetry code: (i) x, y, z−1. |
Acknowledgements
This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (project Nos. 172014, 172035 and 172034).
References
Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Solujić, S., Sukdolak, S. & Krstić, L. J. (1999). Indian J. Chem. Sect. B, 38, 160–165. Google Scholar
Solujić, S., Sukdolak, S. & Ratković, Z. (1991). Tetrahedron Lett. 32, 4577–4578. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stefanović, M., Jeremić, D., Solujić, S. & Sukdolak, S. (1983). J. Serb. Chem. Soc. 48, 645–653. Google Scholar
Wenkert, E., Haviv, F. & Zeitlin, A. (1969). J. Am. Chem. Soc. 91, 2299–2307. CrossRef CAS Web of Science Google Scholar
Yang, H. & Carter, R. G. (2010). Org. Lett. 12, 3108–3111. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
4-Dichloromethyl-4-methylcyclohexa-2,5-dienone, as a conjugated enone, readily undergo Michael reaction with carbanions, giving synthetically valuable polyfunctionalized products (Wenkert et al., 1969). Utilizing this reaction, some natural products (Stefanović et al., 1983), as well as some bioactive compounds (Solujić et al., 1991; 1999) were successfully synthesized. We report now on synthesis of the title compound (I) by the same reaction using carbanion obtained from nitromethane.
The crystal structure of (I) is shown in Figure 1. None of the oxygen atoms of the nitro group is involved in hydrogen bonding. Similarly, two chlorine atoms also remain without the appropriate intermolecular donor, while there are two bent C—H···Cl intramolecular contacts shorter then the sum of van der Waals radii for H and Cl atoms [C6—H6a = 0.97, H6···Cl1 = 2.76 Å, C6—H6···Cl1 =106 °; C2—H2 = 0.98, H2···Cl2 = 2.66 Å, C2—H2···Cl2 = 112 °]. The most significant interaction in the crystal structure is a bifurcated C—H···O hydrogen bond [C8—H8 = 0.98; H8···O3i = 2.24 Å; C8—H8···O3 = 164° and C1—H1a = 0.97; H1a···O3i = 2.56 Å; C1—H1a···O3 = 164°] (symmetry code: i = x, y, z - 1)] which connects the molecules into chains extended along the c axis (Figure 2).