organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,4R,6S,7S)-5,5-Di­chloro-1,4,8,8-tetra­methyl­tri­cyclo­[5.4.11,7.04,6]dodecan-12-one

aLaboratoire de Chimie Biomoléculaires, Substances Naturelles et Réactivité, URAC16, Faculté des Sciences, Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie de Coordination, 205 Route de Narbone, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: berraho@uca.ma

(Received 7 October 2013; accepted 20 October 2013; online 26 October 2013)

The title compound, C16H24Cl2O, was synthesized in three steps from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from essential oil of the Atlas cedar (cedrus atlantica). The asymmetric unit contains two independent mol­ecules with similar conformations. Each mol­ecule is built up from two fused seven-membered rings and an additional three-membered ring arising from the reaction of himachalene with di­chloro­carbene. The dihedral angles between the mean planes of the two seven-membered rings are 75.03 (9) and 75.02 (9)° in the two independent mol­ecules.

Related literature

For the reactivity of this sesquiterpene, see: El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Lassaba et al. (1997[Lassaba, E., Benharref, A., Giorgi, M. & Pierrot, M. (1997). Acta Cryst. C53, 1943-1945.]). For its biological activity, see: Elhaib et al. (2011[Elhaib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]). For a related structure, see: Benharref et al. (2013[Benharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933-o934.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24Cl2O

  • Mr = 303.25

  • Triclinic, P 1

  • a = 6.5835 (2) Å

  • b = 9.2584 (3) Å

  • c = 12.8428 (5) Å

  • α = 85.140 (3)°

  • β = 84.795 (3)°

  • γ = 89.067 (3)°

  • V = 776.74 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 180 K

  • 0.50 × 0.03 × 0.03 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO . Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.822, Tmax = 0.988

  • 15959 measured reflections

  • 6301 independent reflections

  • 5899 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.070

  • S = 1.05

  • 6301 reflections

  • 351 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 3127 Friedel pairs

  • Absolute structure parameter: 0.05 (3)

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO . Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Our work lies within the framework of the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpenes hydrocarbons, among which is found the compound β-himachalene (Elhaib et al., 2011). The reactivity of this sesquiterpene has been studied extensively by our team, in order to prepare new products having olfactive proprieties suitable for the perfume or cosmetics industry (El Jamili et al., 2002; Benharref et al., 2013). In this paper we present the crystal structure of the title compound, (1R,4R, 6S, 7S)-5,5-dichloro-1,4,8,8- tetramethyl-tricyclo[5.4.11,7.04,6]dodecan-12-one. The asymmetric unit of the title compound contains two independent molecules of similar geometry (Fig. 1). Each molecule contains two fused seven-membered rings, which are fused to a three-membered ring as shown in Fig. 1. In both molecules, one of the seven-membered ring has a chair conformation as indicated by the total puckering amplitude QT = 0.8377 (3) Å and spherical polar angle θ2 = 38.51 (13)° with ϕ2 = -100.60 (20)°, ϕ3 = 93.49 (18), whereas the other seven-membered ring displays screw boat conformation with QT = 1.0334 (20) Å, θ2 = 75.83 (10)°, ϕ2 = 151.23 (10)° and ϕ3 =119.77 (5)° (Cremer & Pople, 1975). Owing to the presence of Cl atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli, 2000) as C1(R), C4(R), C6(S) and C7(S).

Related literature top

For the reactivity of this sesquiterpene, see: El Jamili et al. (2002); Lassaba et al. (1997). For its biological activity, see: Elhaib et al. (2011). For a related structure, see: Benharref et al. (2013). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

To obtain the title compound, BF3—Et2O (1 mL) was added dropwise to a solution of (1S,3R,8S)-2,2-dichloro- 3,7,7,10- tetramethyltricyclo [6.4.0.01,3]dodec-9-ene (Lassaba et al., 1997) (1 g, 3.3 mmol) in 60 ml of dichloromethane at 195 K under nitrogen. The reaction mixture was stirred for two hours at a constant temperature of 195 K and the left at ambient temperature for 24 h. Water (60 ml) was added in order to separate the two phases, and the organic phase was dried and concentrated. The residue obtained was chromatographed on silica-gel eluting with hexane-ethyle acetate (97/3), which allowed the isolation of pure(1R,4R, 6S, 7S)-1,4,8,8- tetramethyltricyclo[5.4.11,7.04,6]dodecan-12-one in a yield of 77% (755 mg, 2.5 mmol). The title compound was recrystallized from its hexane solution.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.
(1R,4R,6S,7S)-5,5-Dichloro-1,4,8,8-tetramethyltricyclo[5.4.11,7.04,6]dodecan-12-one top
Crystal data top
C16H24Cl2OZ = 2
Mr = 303.25F(000) = 324
Triclinic, P1Dx = 1.297 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5835 (2) ÅCell parameters from 6301 reflections
b = 9.2584 (3) Åθ = 3.1–26.4°
c = 12.8428 (5) ŵ = 0.41 mm1
α = 85.140 (3)°T = 180 K
β = 84.795 (3)°Needle, colourless
γ = 89.067 (3)°0.50 × 0.03 × 0.03 mm
V = 776.74 (5) Å3
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
6301 independent reflections
Radiation source: Enhance (Mo) X-ray Source5899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.1978 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1111
Tmin = 0.822, Tmax = 0.988l = 1616
15959 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.0135P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6301 reflectionsΔρmax = 0.19 e Å3
351 parametersΔρmin = 0.15 e Å3
3 restraintsAbsolute structure: Flack & Bernardinelli (2000), 3127 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
C16H24Cl2Oγ = 89.067 (3)°
Mr = 303.25V = 776.74 (5) Å3
Triclinic, P1Z = 2
a = 6.5835 (2) ÅMo Kα radiation
b = 9.2584 (3) ŵ = 0.41 mm1
c = 12.8428 (5) ÅT = 180 K
α = 85.140 (3)°0.50 × 0.03 × 0.03 mm
β = 84.795 (3)°
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
6301 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
5899 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.988Rint = 0.030
15959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.19 e Å3
S = 1.05Δρmin = 0.15 e Å3
6301 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 3127 Friedel pairs
351 parametersAbsolute structure parameter: 0.05 (3)
3 restraints
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies, 2013 )

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.55173 (7)0.67043 (6)0.24182 (4)0.03779 (14)
Cl10.12276 (7)0.65390 (5)0.27094 (4)0.03107 (12)
O10.1568 (2)1.00986 (16)0.33958 (12)0.0348 (3)
C70.1944 (3)0.95465 (19)0.37125 (14)0.0200 (4)
H70.13510.86130.40030.024*
C60.3450 (3)0.9136 (2)0.29500 (14)0.0203 (4)
H60.48890.94350.31510.024*
C50.3277 (3)0.7716 (2)0.24622 (14)0.0228 (4)
C40.2947 (3)0.9096 (2)0.17593 (14)0.0222 (4)
C30.0806 (3)0.9470 (2)0.12878 (15)0.0249 (4)
H3A0.06480.91940.05570.030*
H3B0.01800.88840.16870.030*
C20.0269 (3)1.1079 (2)0.12843 (15)0.0276 (4)
H2A0.11611.16510.08210.033*
H2B0.11541.12140.09740.033*
C10.0476 (3)1.1710 (2)0.23755 (16)0.0257 (4)
C110.2564 (3)1.2460 (2)0.25562 (15)0.0257 (4)
H11A0.25691.33560.20780.031*
H11B0.36201.18140.23540.031*
C100.3185 (3)1.2863 (2)0.36775 (16)0.0307 (4)
H10A0.19501.31340.39990.037*
H10B0.41031.37200.36460.037*
C90.4261 (3)1.1633 (2)0.43734 (15)0.0268 (4)
H9A0.54221.13210.40110.032*
H9B0.48371.20340.50290.032*
C80.3000 (3)1.0280 (2)0.46780 (14)0.0241 (4)
C120.0146 (3)1.0435 (2)0.31871 (14)0.0229 (4)
C140.4603 (3)0.9581 (2)0.10671 (16)0.0324 (5)
H14A0.45430.89900.04670.049*
H14B0.44051.06020.08150.049*
H14C0.59360.94650.14690.049*
C130.1222 (3)1.2827 (2)0.24143 (18)0.0357 (5)
H13A0.11081.32120.31050.054*
H13B0.10801.36210.18700.054*
H13C0.25561.23560.22920.054*
C160.1382 (3)1.0656 (2)0.53919 (17)0.0349 (5)
H16A0.20481.10530.60210.052*
H16B0.04511.13780.50150.052*
H16C0.06120.97800.55970.052*
C150.4447 (3)0.9173 (2)0.52973 (16)0.0332 (5)
H15A0.50860.95920.59230.050*
H15B0.36750.82990.55090.050*
H15C0.55040.89190.48560.050*
Cl30.18678 (7)0.88753 (6)0.83571 (4)0.03989 (14)
Cl40.25097 (7)0.90785 (5)0.82503 (4)0.03505 (13)
O20.5852 (2)0.54459 (17)0.75362 (12)0.0367 (4)
C220.2470 (3)0.6078 (2)0.71903 (14)0.0216 (4)
H220.31550.70150.69380.026*
C230.0593 (3)0.6475 (2)0.79047 (13)0.0203 (4)
H230.07220.61740.76580.024*
C240.0441 (3)0.7881 (2)0.84020 (15)0.0255 (4)
C250.0528 (3)0.6489 (2)0.91026 (14)0.0235 (4)
C260.2462 (3)0.6118 (2)0.96257 (16)0.0292 (5)
H26A0.22710.63761.03610.035*
H26B0.35900.67130.92620.035*
C270.3070 (3)0.4512 (2)0.96203 (15)0.0305 (5)
H27A0.19950.39341.00480.037*
H27B0.43430.43640.99720.037*
C170.3412 (3)0.3893 (2)0.85254 (16)0.0281 (4)
C180.1452 (3)0.3153 (2)0.82720 (15)0.0273 (4)
H18A0.12710.22420.87320.033*
H18B0.02760.37930.84500.033*
C190.1398 (3)0.2793 (2)0.71244 (16)0.0316 (5)
H19A0.27950.25450.68390.038*
H19B0.05350.19310.71090.038*
C200.0575 (3)0.4033 (2)0.64249 (15)0.0283 (4)
H20A0.07690.43240.67560.034*
H20B0.03370.36540.57490.034*
C210.1874 (3)0.54054 (19)0.61824 (14)0.0241 (4)
C280.4060 (3)0.5151 (2)0.77276 (15)0.0250 (4)
C300.1408 (3)0.5985 (2)0.97438 (16)0.0342 (5)
H30A0.16000.65091.03780.051*
H30B0.13070.49420.99430.051*
H30C0.25720.61760.93270.051*
C290.5159 (3)0.2754 (3)0.8552 (2)0.0421 (6)
H29A0.53160.23040.78850.063*
H29B0.48340.20090.91280.063*
H29C0.64340.32300.86580.063*
C320.0631 (3)0.6546 (2)0.55706 (16)0.0352 (5)
H32A0.02810.61660.49210.053*
H32B0.14400.74270.54000.053*
H32C0.06220.67730.60000.053*
C310.3815 (3)0.5080 (2)0.54861 (17)0.0367 (5)
H31A0.46380.43510.58600.055*
H31B0.46040.59710.53170.055*
H31C0.34440.47110.48370.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0375 (3)0.0381 (3)0.0399 (3)0.0163 (2)0.0103 (2)0.0053 (2)
Cl10.0392 (3)0.0217 (3)0.0338 (3)0.00646 (19)0.0096 (2)0.0054 (2)
O10.0234 (8)0.0372 (9)0.0440 (9)0.0007 (6)0.0064 (6)0.0013 (7)
C70.0211 (9)0.0178 (9)0.0215 (9)0.0003 (7)0.0036 (7)0.0023 (7)
C60.0187 (9)0.0205 (10)0.0217 (9)0.0014 (7)0.0008 (7)0.0024 (7)
C50.0226 (9)0.0233 (10)0.0239 (9)0.0027 (8)0.0072 (8)0.0043 (8)
C40.0231 (9)0.0236 (10)0.0207 (9)0.0010 (7)0.0045 (7)0.0037 (7)
C30.0266 (10)0.0281 (11)0.0198 (9)0.0024 (8)0.0023 (7)0.0048 (8)
C20.0272 (10)0.0291 (11)0.0247 (10)0.0011 (8)0.0041 (8)0.0006 (8)
C10.0276 (10)0.0224 (10)0.0261 (9)0.0000 (7)0.0010 (7)0.0008 (8)
C110.0278 (10)0.0203 (10)0.0275 (10)0.0032 (7)0.0013 (8)0.0024 (8)
C100.0367 (11)0.0198 (10)0.0340 (11)0.0047 (8)0.0058 (9)0.0028 (8)
C90.0310 (10)0.0242 (10)0.0245 (10)0.0019 (8)0.0064 (8)0.0068 (8)
C80.0293 (10)0.0219 (9)0.0211 (9)0.0032 (8)0.0009 (7)0.0044 (8)
C120.0234 (10)0.0230 (9)0.0233 (9)0.0013 (7)0.0018 (7)0.0083 (8)
C140.0314 (11)0.0407 (12)0.0257 (10)0.0055 (9)0.0076 (8)0.0023 (9)
C130.0351 (11)0.0317 (12)0.0381 (12)0.0075 (9)0.0057 (9)0.0014 (10)
C160.0458 (13)0.0327 (12)0.0284 (11)0.0061 (10)0.0076 (9)0.0091 (9)
C150.0411 (12)0.0299 (11)0.0279 (10)0.0047 (9)0.0017 (9)0.0015 (9)
Cl30.0376 (3)0.0456 (3)0.0363 (3)0.0189 (2)0.0002 (2)0.0097 (2)
Cl40.0410 (3)0.0226 (3)0.0418 (3)0.0059 (2)0.0005 (2)0.0072 (2)
O20.0224 (7)0.0427 (9)0.0443 (9)0.0031 (6)0.0003 (6)0.0027 (7)
C220.0211 (9)0.0196 (9)0.0240 (9)0.0014 (7)0.0003 (7)0.0042 (8)
C230.0198 (9)0.0224 (10)0.0195 (9)0.0000 (7)0.0032 (7)0.0051 (7)
C240.0247 (10)0.0258 (10)0.0260 (10)0.0028 (8)0.0010 (8)0.0071 (8)
C250.0257 (9)0.0249 (10)0.0208 (9)0.0028 (8)0.0023 (7)0.0067 (8)
C260.0347 (11)0.0326 (12)0.0221 (10)0.0056 (9)0.0088 (8)0.0051 (9)
C270.0364 (11)0.0334 (12)0.0223 (10)0.0049 (9)0.0103 (8)0.0036 (9)
C170.0316 (11)0.0239 (10)0.0289 (11)0.0029 (8)0.0048 (8)0.0000 (8)
C180.0320 (10)0.0207 (10)0.0288 (10)0.0062 (8)0.0037 (8)0.0025 (8)
C190.0410 (12)0.0197 (10)0.0356 (11)0.0063 (9)0.0101 (9)0.0022 (9)
C200.0364 (11)0.0237 (10)0.0265 (10)0.0046 (8)0.0072 (8)0.0068 (8)
C210.0296 (10)0.0222 (10)0.0203 (9)0.0024 (8)0.0001 (7)0.0036 (8)
C280.0245 (10)0.0264 (10)0.0251 (9)0.0020 (8)0.0016 (7)0.0086 (8)
C300.0348 (12)0.0443 (13)0.0230 (10)0.0085 (10)0.0036 (8)0.0053 (9)
C290.0418 (13)0.0338 (13)0.0515 (15)0.0034 (10)0.0157 (11)0.0037 (11)
C320.0481 (13)0.0315 (12)0.0263 (11)0.0062 (10)0.0071 (9)0.0011 (9)
C310.0466 (13)0.0309 (12)0.0312 (11)0.0065 (9)0.0081 (9)0.0078 (9)
Geometric parameters (Å, º) top
Cl2—C51.7679 (18)Cl3—C241.7669 (19)
Cl1—C51.7553 (19)Cl4—C241.757 (2)
O1—C121.213 (2)O2—C281.214 (2)
C7—C121.525 (2)C22—C281.520 (3)
C7—C61.529 (2)C22—C231.530 (2)
C7—C81.566 (2)C22—C211.566 (2)
C7—H71.0000C22—H221.0000
C6—C51.502 (3)C23—C241.496 (3)
C6—C41.538 (2)C23—C251.536 (2)
C6—H61.0000C23—H231.0000
C5—C41.507 (3)C24—C251.512 (3)
C4—C141.507 (3)C25—C301.511 (3)
C4—C31.516 (3)C25—C261.514 (3)
C3—C21.536 (3)C26—C271.534 (3)
C3—H3A0.9900C26—H26A0.9900
C3—H3B0.9900C26—H26B0.9900
C2—C11.557 (3)C27—C171.559 (3)
C2—H2A0.9900C27—H27A0.9900
C2—H2B0.9900C27—H27B0.9900
C1—C121.533 (3)C17—C281.524 (3)
C1—C111.538 (3)C17—C181.543 (3)
C1—C131.542 (3)C17—C291.548 (3)
C11—C101.536 (3)C18—C191.542 (3)
C11—H11A0.9900C18—H18A0.9900
C11—H11B0.9900C18—H18B0.9900
C10—C91.528 (3)C19—C201.520 (3)
C10—H10A0.9900C19—H19A0.9900
C10—H10B0.9900C19—H19B0.9900
C9—C81.534 (3)C20—C211.537 (3)
C9—H9A0.9900C20—H20A0.9900
C9—H9B0.9900C20—H20B0.9900
C8—C161.530 (3)C21—C321.533 (3)
C8—C151.532 (3)C21—C311.533 (3)
C14—H14A0.9800C30—H30A0.9800
C14—H14B0.9800C30—H30B0.9800
C14—H14C0.9800C30—H30C0.9800
C13—H13A0.9800C29—H29A0.9800
C13—H13B0.9800C29—H29B0.9800
C13—H13C0.9800C29—H29C0.9800
C16—H16A0.9800C32—H32A0.9800
C16—H16B0.9800C32—H32B0.9800
C16—H16C0.9800C32—H32C0.9800
C15—H15A0.9800C31—H31A0.9800
C15—H15B0.9800C31—H31B0.9800
C15—H15C0.9800C31—H31C0.9800
C12—C7—C6113.69 (15)C28—C22—C23115.15 (15)
C12—C7—C8111.45 (14)C28—C22—C21111.30 (14)
C6—C7—C8113.02 (14)C23—C22—C21112.01 (14)
C12—C7—H7106.0C28—C22—H22105.9
C6—C7—H7106.0C23—C22—H22105.9
C8—C7—H7106.0C21—C22—H22105.9
C5—C6—C7121.40 (15)C24—C23—C22121.73 (16)
C5—C6—C459.44 (12)C24—C23—C2559.80 (12)
C7—C6—C4124.80 (15)C22—C23—C25124.79 (15)
C5—C6—H6113.6C24—C23—H23113.4
C7—C6—H6113.6C22—C23—H23113.4
C4—C6—H6113.6C25—C23—H23113.4
C6—C5—C461.49 (12)C23—C24—C2561.44 (12)
C6—C5—Cl1119.70 (13)C23—C24—Cl4120.37 (13)
C4—C5—Cl1120.64 (13)C25—C24—Cl4120.24 (14)
C6—C5—Cl2118.54 (14)C23—C24—Cl3117.87 (13)
C4—C5—Cl2119.57 (13)C25—C24—Cl3120.13 (14)
Cl1—C5—Cl2109.78 (10)Cl4—C24—Cl3109.71 (11)
C14—C4—C5117.78 (16)C30—C25—C24117.93 (17)
C14—C4—C3114.32 (16)C30—C25—C26114.40 (16)
C5—C4—C3118.95 (16)C24—C25—C26118.76 (16)
C14—C4—C6117.05 (16)C30—C25—C23117.56 (16)
C5—C4—C659.06 (12)C24—C25—C2358.77 (12)
C3—C4—C6118.82 (15)C26—C25—C23118.41 (16)
C4—C3—C2114.24 (16)C25—C26—C27113.38 (16)
C4—C3—H3A108.7C25—C26—H26A108.9
C2—C3—H3A108.7C27—C26—H26A108.9
C4—C3—H3B108.7C25—C26—H26B108.9
C2—C3—H3B108.7C27—C26—H26B108.9
H3A—C3—H3B107.6H26A—C26—H26B107.7
C3—C2—C1115.69 (15)C26—C27—C17116.55 (16)
C3—C2—H2A108.4C26—C27—H27A108.2
C1—C2—H2A108.4C17—C27—H27A108.2
C3—C2—H2B108.4C26—C27—H27B108.2
C1—C2—H2B108.4C17—C27—H27B108.2
H2A—C2—H2B107.4H27A—C27—H27B107.3
C12—C1—C11113.36 (16)C28—C17—C18112.73 (15)
C12—C1—C13108.50 (16)C28—C17—C29108.98 (17)
C11—C1—C13109.14 (16)C18—C17—C29108.93 (17)
C12—C1—C2106.37 (15)C28—C17—C27107.26 (16)
C11—C1—C2110.02 (16)C18—C17—C27110.05 (16)
C13—C1—C2109.37 (16)C29—C17—C27108.80 (17)
C10—C11—C1116.28 (17)C19—C18—C17115.65 (17)
C10—C11—H11A108.2C19—C18—H18A108.4
C1—C11—H11A108.2C17—C18—H18A108.4
C10—C11—H11B108.2C19—C18—H18B108.4
C1—C11—H11B108.2C17—C18—H18B108.4
H11A—C11—H11B107.4H18A—C18—H18B107.4
C9—C10—C11113.05 (16)C20—C19—C18113.13 (17)
C9—C10—H10A109.0C20—C19—H19A109.0
C11—C10—H10A109.0C18—C19—H19A109.0
C9—C10—H10B109.0C20—C19—H19B109.0
C11—C10—H10B109.0C18—C19—H19B109.0
H10A—C10—H10B107.8H19A—C19—H19B107.8
C10—C9—C8117.89 (16)C19—C20—C21118.06 (16)
C10—C9—H9A107.8C19—C20—H20A107.8
C8—C9—H9A107.8C21—C20—H20A107.8
C10—C9—H9B107.8C19—C20—H20B107.8
C8—C9—H9B107.8C21—C20—H20B107.8
H9A—C9—H9B107.2H20A—C20—H20B107.1
C16—C8—C15108.00 (16)C32—C21—C31107.83 (16)
C16—C8—C9110.18 (16)C32—C21—C20108.17 (16)
C15—C8—C9107.78 (16)C31—C21—C20110.29 (16)
C16—C8—C7109.33 (15)C32—C21—C22107.76 (15)
C15—C8—C7107.83 (15)C31—C21—C22109.32 (15)
C9—C8—C7113.54 (14)C20—C21—C22113.29 (15)
O1—C12—C7119.24 (17)O2—C28—C22119.31 (17)
O1—C12—C1119.90 (17)O2—C28—C17120.21 (17)
C7—C12—C1120.83 (15)C22—C28—C17120.45 (15)
C4—C14—H14A109.5C25—C30—H30A109.5
C4—C14—H14B109.5C25—C30—H30B109.5
H14A—C14—H14B109.5H30A—C30—H30B109.5
C4—C14—H14C109.5C25—C30—H30C109.5
H14A—C14—H14C109.5H30A—C30—H30C109.5
H14B—C14—H14C109.5H30B—C30—H30C109.5
C1—C13—H13A109.5C17—C29—H29A109.5
C1—C13—H13B109.5C17—C29—H29B109.5
H13A—C13—H13B109.5H29A—C29—H29B109.5
C1—C13—H13C109.5C17—C29—H29C109.5
H13A—C13—H13C109.5H29A—C29—H29C109.5
H13B—C13—H13C109.5H29B—C29—H29C109.5
C8—C16—H16A109.5C21—C32—H32A109.5
C8—C16—H16B109.5C21—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C8—C16—H16C109.5C21—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
C8—C15—H15A109.5C21—C31—H31A109.5
C8—C15—H15B109.5C21—C31—H31B109.5
H15A—C15—H15B109.5H31A—C31—H31B109.5
C8—C15—H15C109.5C21—C31—H31C109.5
H15A—C15—H15C109.5H31A—C31—H31C109.5
H15B—C15—H15C109.5H31B—C31—H31C109.5

Experimental details

Crystal data
Chemical formulaC16H24Cl2O
Mr303.25
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)6.5835 (2), 9.2584 (3), 12.8428 (5)
α, β, γ (°)85.140 (3), 84.795 (3), 89.067 (3)
V3)776.74 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.50 × 0.03 × 0.03
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.822, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
15959, 6301, 5899
Rint0.030
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.070, 1.05
No. of reflections6301
No. of parameters351
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15
Absolute structureFlack & Bernardinelli (2000), 3127 Friedel pairs
Absolute structure parameter0.05 (3)

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

References

First citationAgilent (2013). CrysAlis PRO . Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBenharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933–o934.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationElhaib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLassaba, E., Benharref, A., Giorgi, M. & Pierrot, M. (1997). Acta Cryst. C53, 1943–1945.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds