inorganic compounds
Sodium selenite pentahydrate, Na2SeO3·5H2O
aInstitute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at
In the 2SeO3·5H2O [disodium selenate(IV) pentahydrate], two Se, two selenite O atoms and one water O atom are located on a mirror plane, and one water O atom is located on a twofold rotation axis. The coordination of one Na+ cation is distorted trigonal bipyramidal, formed by three equatorial H2O ligands and two axial selenite O atoms. The other Na+ cation has an octahedral coordination by six water molecules. The two independent SeO3 groups form almost undistorted trigonal pyramids, with Se—O bond lengths in the range 1.6856 (7)–1.7202 (10) Å and O—Se—O angles in the range 101.98 (3)–103.11 (5)°, and both are μ2-O:O-bonded to a pair of Na+ cations. Hydrogen bonds involving all water molecules and selenite O atoms consolidate the crystal packing. Although anhydrous Na2SeO3 and Na2TeO3 are isotypic, the title compound is surprisingly not isotypic with Na2TeO3·5H2O. In the tellurite hydrate, all Na+ cations have an octahedral coordination and the TeO3 groups are bonded to Na+ only via one of their three O atoms.
of NaCCDC reference: 967053
Related literature
For the 2TeO3·5H2O, see: Philippot et al. (1979). For of anhydrous Na2SeO3 and Na2TeO3, see: Wickleder (2002); Masse et al. (1980). For the crystal structures of the isotypic series MgSO3·6H2O, MgSeO3·6H2O, MgTeO3·6H2O, and Mg(HPO3)·6H2O, see: Andersen & Lindqvist (1984); Andersen et al. (1984); Powell et al. (1994). For Na2(HPO3)·5H2O, see: Brodalla et al. (1978). For pharmaceutical aspects of Na2SeO3·5H2O, see: European Pharmacopoeia (2013). For van der Waals radii, see: Rowland & Taylor (1996).
of NaExperimental
Crystal data
|
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 967053
10.1107/S1600536813028602/bt6939sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813028602/bt6939Isup2.hkl
Na2SeO3 (p.A. Merck) was dissolved in a small amount of deionized water. The solution was then slowly evaporated at T ≈ 285 K and gave after seeding colourless prsimatic crystals of Na2SeO3.5H2O, which were placed of filter paper in order to remove adherent mother liquor. A crystal was then immediately mounted under Paratone oil on a MiTeGen MicroLoopTM and transferred to a Bruker SMART APEX diffractometer equipped with a Bruker Kryoflex cooler.
All hydrogen atoms were clearly visible in a difference Fourier synthesis and refined satisfactorily without restraints. In the final σ = 0.01 Å) restraints (Sheldrick, 2008). The isotropic Uiso(H) were freely refined.
all water molecules were restrained to have similar O—H and similar intramolecular H···H distances using two SADI (Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).Fig. 1. View of a characteristic part of the crystal structure of Na2SeO3.5H2O. Thermal displacement ellipsoids are shown at the 70% probability level. Symmetry operators are given on the lower right. | |
Fig. 2. Two perspective representations of one Na2SeO3.5H2O layer parallel to (010) at y ~ 1/4, viewed along [010] (top) and along [100] (bottom). Hydrogen bonds are indicated by blue lines. Symmetry operators are given on the lower right. | |
Fig. 3. Projection of the structure of Na2SeO3.5H2O along [100] with hydrogen bonds shown as dashed lines. Symmetry codes and the letter O for oxygen atoms have been omitted for legibility. | |
Fig. 4. Projection of the structure of Na2SeO3.5H2O parallel to [010] with hydrogen bonds shown as dashed lines. Some coinciding sites have been labeled as guidance. | |
Fig. 5. Projection of the structure of Na2SeO3.5H2O parallel to [001] with hydrogen bonds shown as dashed lines. Symmetry codes and the letter O for oxygen atoms have been omitted for legibility. |
Na2SeO3·5H2O | F(000) = 1040 |
Mr = 263.02 | Dx = 2.084 Mg m−3 |
Orthorhombic, Pbcm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2c 2b | Cell parameters from 7917 reflections |
a = 6.5865 (2) Å | θ = 2.4–30.0° |
b = 17.2263 (6) Å | µ = 4.58 mm−1 |
c = 14.7778 (6) Å | T = 100 K |
V = 1676.70 (10) Å3 | Prism, colourless |
Z = 8 | 0.35 × 0.21 × 0.14 mm |
Bruker SMART CCD diffractometer | 2529 independent reflections |
Radiation source: fine-focus sealed tube | 2435 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω and ϕ scans | θmax = 30.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −9→9 |
Tmin = 0.503, Tmax = 0.746 | k = −22→24 |
23979 measured reflections | l = −20→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.015 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.039 | All H-atom parameters refined |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0224P)2 + 0.7143P] where P = (Fo2 + 2Fc2)/3 |
2529 reflections | (Δ/σ)max = 0.003 |
150 parameters | Δρmax = 0.64 e Å−3 |
70 restraints | Δρmin = −0.58 e Å−3 |
Na2SeO3·5H2O | V = 1676.70 (10) Å3 |
Mr = 263.02 | Z = 8 |
Orthorhombic, Pbcm | Mo Kα radiation |
a = 6.5865 (2) Å | µ = 4.58 mm−1 |
b = 17.2263 (6) Å | T = 100 K |
c = 14.7778 (6) Å | 0.35 × 0.21 × 0.14 mm |
Bruker SMART CCD diffractometer | 2529 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 2435 reflections with I > 2σ(I) |
Tmin = 0.503, Tmax = 0.746 | Rint = 0.022 |
23979 measured reflections |
R[F2 > 2σ(F2)] = 0.015 | 70 restraints |
wR(F2) = 0.039 | All H-atom parameters refined |
S = 1.07 | Δρmax = 0.64 e Å−3 |
2529 reflections | Δρmin = −0.58 e Å−3 |
150 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Na1 | 0.51942 (7) | 0.40815 (3) | 0.62757 (3) | 0.01543 (9) | |
Na2 | 0.00865 (7) | 0.34328 (2) | 0.49775 (3) | 0.01121 (8) | |
Se1 | 0.36729 (2) | 0.233898 (8) | 0.7500 | 0.00946 (4) | |
O1 | 0.13882 (15) | 0.28182 (7) | 0.7500 | 0.01128 (19) | |
O2 | 0.48606 (11) | 0.27444 (4) | 0.66069 (5) | 0.01294 (14) | |
Se2 | 0.30596 (2) | 0.578291 (8) | 0.7500 | 0.00853 (4) | |
O3 | 0.08542 (15) | 0.52480 (6) | 0.7500 | 0.01135 (19) | |
O4 | 0.43189 (11) | 0.54110 (4) | 0.66066 (5) | 0.01209 (14) | |
O5W | 0.7537 (2) | 0.41001 (7) | 0.7500 | 0.0182 (2) | |
H5A | 0.840 (3) | 0.4453 (11) | 0.7500 | 0.051 (9)* | |
H5B | 0.821 (4) | 0.3692 (10) | 0.7500 | 0.112 (17)* | |
O6W | 0.16164 (12) | 0.40116 (4) | 0.62475 (6) | 0.01327 (15) | |
H6A | 0.149 (3) | 0.3651 (7) | 0.6612 (9) | 0.030 (5)* | |
H6B | 0.142 (3) | 0.4410 (6) | 0.6550 (10) | 0.038 (5)* | |
O7W | 0.73311 (12) | 0.43467 (5) | 0.50608 (5) | 0.01336 (14) | |
H7A | 0.682 (2) | 0.4442 (10) | 0.4557 (8) | 0.030 (4)* | |
H7B | 0.783 (2) | 0.4762 (7) | 0.5234 (10) | 0.030 (4)* | |
O8W | 0.27783 (17) | 0.2500 | 0.5000 | 0.0132 (2) | |
H8AB | 0.3565 (17) | 0.2526 (12) | 0.5444 (5) | 0.035 (5)* | |
O9W | −0.12523 (11) | 0.24467 (5) | 0.60772 (6) | 0.01310 (15) | |
H9A | −0.053 (2) | 0.2498 (10) | 0.6531 (9) | 0.030 (5)* | |
H9B | −0.2434 (15) | 0.2472 (11) | 0.6262 (11) | 0.035 (5)* | |
O10W | 0.17400 (12) | 0.42733 (5) | 0.39277 (6) | 0.01412 (15) | |
H10A | 0.2910 (15) | 0.4283 (10) | 0.3722 (11) | 0.031 (5)* | |
H10B | 0.099 (2) | 0.4383 (11) | 0.3494 (9) | 0.030 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0141 (2) | 0.0175 (2) | 0.0148 (2) | −0.00088 (16) | 0.00163 (16) | 0.00129 (16) |
Na2 | 0.01154 (18) | 0.01093 (18) | 0.01114 (19) | 0.00028 (14) | −0.00033 (14) | −0.00044 (14) |
Se1 | 0.00905 (7) | 0.01022 (7) | 0.00911 (7) | 0.00145 (4) | 0.000 | 0.000 |
O1 | 0.0073 (4) | 0.0151 (5) | 0.0114 (5) | 0.0017 (4) | 0.000 | 0.000 |
O2 | 0.0110 (3) | 0.0179 (4) | 0.0099 (3) | 0.0010 (3) | 0.0022 (3) | 0.0016 (3) |
Se2 | 0.00845 (7) | 0.00848 (7) | 0.00867 (7) | −0.00085 (4) | 0.000 | 0.000 |
O3 | 0.0080 (4) | 0.0127 (5) | 0.0133 (5) | −0.0022 (4) | 0.000 | 0.000 |
O4 | 0.0111 (3) | 0.0150 (3) | 0.0101 (3) | −0.0005 (3) | 0.0018 (3) | −0.0014 (3) |
O5W | 0.0184 (5) | 0.0175 (6) | 0.0186 (6) | −0.0028 (5) | 0.000 | 0.000 |
O6W | 0.0166 (4) | 0.0106 (4) | 0.0126 (4) | −0.0008 (3) | −0.0011 (3) | −0.0007 (3) |
O7W | 0.0151 (3) | 0.0140 (3) | 0.0110 (3) | 0.0005 (3) | −0.0004 (3) | 0.0001 (3) |
O8W | 0.0116 (5) | 0.0181 (5) | 0.0099 (5) | 0.000 | 0.000 | −0.0010 (4) |
O9W | 0.0092 (3) | 0.0189 (4) | 0.0112 (3) | −0.0001 (3) | 0.0004 (3) | −0.0018 (3) |
O10W | 0.0108 (3) | 0.0183 (4) | 0.0132 (4) | −0.0008 (3) | 0.0001 (3) | 0.0022 (3) |
Na1—O7W | 2.3266 (9) | Se2—O3 | 1.7202 (10) |
Na1—O6W | 2.3600 (9) | O5W—Na1iii | 2.3781 (10) |
Na1—O2 | 2.3650 (9) | O5W—H5A | 0.831 (10) |
Na1—O5W | 2.3781 (10) | O5W—H5B | 0.833 (10) |
Na1—O4 | 2.4119 (9) | O6W—H6A | 0.826 (9) |
Na2—O9Wi | 2.3458 (9) | O6W—H6B | 0.830 (9) |
Na2—O6W | 2.3520 (9) | O7W—Na2iv | 2.4057 (9) |
Na2—O10W | 2.3852 (9) | O7W—H7A | 0.833 (9) |
Na2—O8W | 2.3930 (9) | O7W—H7B | 0.829 (9) |
Na2—O7Wii | 2.4056 (9) | O8W—Na2i | 2.3930 (9) |
Na2—O9W | 2.5108 (9) | O8W—H8AB | 0.837 (8) |
Se1—O2 | 1.6857 (7) | O9W—Na2i | 2.3457 (9) |
Se1—O2iii | 1.6857 (7) | O9W—H9A | 0.825 (9) |
Se1—O1 | 1.7164 (10) | O9W—H9B | 0.826 (9) |
Se2—O4 | 1.6856 (7) | O10W—H10A | 0.828 (9) |
Se2—O4iii | 1.6856 (7) | O10W—H10B | 0.829 (9) |
O7W—Na1—O6W | 126.90 (3) | Na1—O5W—Na1iii | 99.06 (5) |
O7W—Na1—O2 | 114.03 (3) | Na1—O5W—H5A | 116.9 (10) |
O6W—Na1—O2 | 82.02 (3) | Na1iii—O5W—H5A | 116.9 (10) |
O7W—Na1—O5W | 101.06 (4) | Na1—O5W—H5B | 109.6 (13) |
O6W—Na1—O5W | 131.46 (4) | Na1iii—O5W—H5B | 109.6 (13) |
O2—Na1—O5W | 85.18 (4) | H5A—O5W—H5B | 104.6 (15) |
O7W—Na1—O4 | 96.58 (3) | Na2—O6W—Na1 | 117.62 (4) |
O6W—Na1—O4 | 79.24 (3) | Na2—O6W—H6A | 99.2 (11) |
O2—Na1—O4 | 149.39 (3) | Na1—O6W—H6A | 97.2 (12) |
O5W—Na1—O4 | 89.32 (4) | Na2—O6W—H6B | 135.6 (12) |
O9Wi—Na2—O6W | 164.81 (3) | Na1—O6W—H6B | 95.9 (13) |
O9Wi—Na2—O10W | 97.56 (3) | H6A—O6W—H6B | 104.8 (12) |
O6W—Na2—O10W | 93.79 (3) | Na1—O7W—Na2iv | 111.55 (3) |
O9Wi—Na2—O8W | 81.60 (3) | Na1—O7W—H7A | 119.0 (12) |
O6W—Na2—O8W | 87.49 (3) | Na2iv—O7W—H7A | 112.8 (12) |
O10W—Na2—O8W | 94.49 (3) | Na1—O7W—H7B | 99.9 (12) |
O9Wi—Na2—O7Wii | 99.97 (3) | Na2iv—O7W—H7B | 106.4 (12) |
O6W—Na2—O7Wii | 90.29 (3) | H7A—O7W—H7B | 105.4 (12) |
O10W—Na2—O7Wii | 88.88 (3) | H8ABi—O8W—Na2i | 115.7 (11) |
O8W—Na2—O7Wii | 176.07 (3) | H8ABi—O8W—Na2 | 118.9 (12) |
O9Wi—Na2—O9W | 82.01 (3) | Na2i—O8W—Na2 | 84.39 (4) |
O6W—Na2—O9W | 85.46 (3) | H8ABi—O8W—H8AB | 103.5 (14) |
O10W—Na2—O9W | 172.76 (3) | Na2i—O8W—H8AB | 118.9 (12) |
O8W—Na2—O9W | 78.28 (3) | Na2—O8W—H8AB | 115.7 (11) |
O7Wii—Na2—O9W | 98.32 (3) | Na2i—O9W—Na2 | 82.82 (3) |
O2iii—Se1—O2 | 103.06 (5) | Na2i—O9W—H9A | 113.2 (12) |
O2iii—Se1—O1 | 101.98 (3) | Na2—O9W—H9A | 104.5 (12) |
O2—Se1—O1 | 101.98 (3) | Na2i—O9W—H9B | 127.4 (12) |
Se1—O2—Na1 | 127.49 (4) | Na2—O9W—H9B | 120.6 (13) |
O4iii—Se2—O4 | 103.11 (5) | H9A—O9W—H9B | 105.5 (12) |
O4iii—Se2—O3 | 102.24 (3) | Na2—O10W—H10A | 132.5 (12) |
O4—Se2—O3 | 102.24 (3) | Na2—O10W—H10B | 111.7 (12) |
Se2—O4—Na1 | 129.59 (4) | H10A—O10W—H10B | 105.2 (12) |
Symmetry codes: (i) x, −y+1/2, −z+1; (ii) x−1, y, z; (iii) x, y, −z+3/2; (iv) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5W—H5A···O3iv | 0.83 (1) | 2.12 (1) | 2.9468 (16) | 173 (3) |
O5W—H5B···O1iv | 0.83 (1) | 2.58 (2) | 3.3631 (17) | 158 (3) |
O6W—H6A···O1 | 0.83 (1) | 1.95 (1) | 2.7704 (12) | 176 (2) |
O6W—H6B···O3 | 0.83 (1) | 2.05 (1) | 2.8660 (11) | 169 (2) |
O7W—H7A···O4v | 0.83 (1) | 1.89 (1) | 2.7252 (11) | 176 (2) |
O7W—H7B···O10Wv | 0.83 (1) | 2.09 (1) | 2.8740 (12) | 157 (2) |
O8W—H8AB···O2 | 0.84 (1) | 1.96 (1) | 2.7744 (9) | 166 (1) |
O9W—H9A···O1 | 0.83 (1) | 1.99 (1) | 2.8027 (11) | 168 (2) |
O9W—H9B···O2ii | 0.83 (1) | 1.91 (1) | 2.7259 (11) | 168 (2) |
O10W—H10A···O4v | 0.83 (1) | 1.96 (1) | 2.7672 (11) | 164 (2) |
O10W—H10B···O3vi | 0.83 (1) | 2.01 (1) | 2.8374 (11) | 174 (2) |
Symmetry codes: (ii) x−1, y, z; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1; (vi) −x, −y+1, −z+1. |
Na1—O7W | 2.3266 (9) | Na2—O7Wii | 2.4056 (9) |
Na1—O6W | 2.3600 (9) | Na2—O9W | 2.5108 (9) |
Na1—O2 | 2.3650 (9) | Se1—O2 | 1.6857 (7) |
Na1—O5W | 2.3781 (10) | Se1—O2iii | 1.6857 (7) |
Na1—O4 | 2.4119 (9) | Se1—O1 | 1.7164 (10) |
Na2—O9Wi | 2.3458 (9) | Se2—O4 | 1.6856 (7) |
Na2—O6W | 2.3520 (9) | Se2—O4iii | 1.6856 (7) |
Na2—O10W | 2.3852 (9) | Se2—O3 | 1.7202 (10) |
Na2—O8W | 2.3930 (9) |
Symmetry codes: (i) x, −y+1/2, −z+1; (ii) x−1, y, z; (iii) x, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5W—H5A···O3iv | 0.831 (10) | 2.120 (10) | 2.9468 (16) | 173 (3) |
O5W—H5B···O1iv | 0.833 (10) | 2.576 (16) | 3.3631 (17) | 158 (3) |
O6W—H6A···O1 | 0.826 (9) | 1.945 (9) | 2.7704 (12) | 176.1 (17) |
O6W—H6B···O3 | 0.830 (9) | 2.047 (10) | 2.8660 (11) | 168.9 (15) |
O7W—H7A···O4v | 0.833 (9) | 1.893 (9) | 2.7252 (11) | 176.3 (17) |
O7W—H7B···O10Wv | 0.829 (9) | 2.091 (10) | 2.8740 (12) | 157.4 (16) |
O8W—H8AB···O2 | 0.837 (8) | 1.956 (8) | 2.7744 (9) | 165.7 (14) |
O9W—H9A···O1 | 0.825 (9) | 1.989 (9) | 2.8027 (11) | 168.4 (17) |
O9W—H9B···O2ii | 0.826 (9) | 1.912 (10) | 2.7259 (11) | 168.3 (19) |
O10W—H10A···O4v | 0.828 (9) | 1.961 (10) | 2.7672 (11) | 164.2 (18) |
O10W—H10B···O3vi | 0.829 (9) | 2.011 (9) | 2.8374 (11) | 174.3 (18) |
Symmetry codes: (ii) x−1, y, z; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1; (vi) −x, −y+1, −z+1. |
Acknowledgements
The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer and for financial support.
References
Andersen, L. & Lindqvist, O. (1984). Acta Cryst. C40, 584–586. CrossRef CAS Web of Science IUCr Journals Google Scholar
Andersen, L., Lindqvist, O. & Moret, J. (1984). Acta Cryst. C40, 586–589. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brodalla, D., Goeters, C., Kniep, R., Mootz, D. & Wunderlich, H. (1978). Z. Anorg. Allg. Chem. 439, 265–274. CrossRef CAS Web of Science Google Scholar
Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
European Pharmacopoeia (2013). European Pharmacopoeia 7.0, Index No. 2944; EDQM - Council of Europe, 7 allée Kastner, CS 30026, F-67081 Strasbourg, France. Google Scholar
Masse, R., Guitel, J. C. & Tordjman, I. (1980). Mater. Res. Bull. 15, 431–436. CrossRef CAS Web of Science Google Scholar
Philippot, E., Maurin, M. & Moret, J. (1979). Acta Cryst. B35, 1337–1340. CrossRef CAS IUCr Journals Web of Science Google Scholar
Powell, D. R., Smith, S. K., Farrar, T. C. & Ross, F. K. (1994). Acta Cryst. C50, 342–346. CrossRef CAS Web of Science IUCr Journals Google Scholar
Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wickleder, M. S. (2002). Acta Cryst. E58, i103–i104. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During an investigation of some simple salt hydrates the question for the crystal structure of the title compound Na2SeO3.5H2O arose. Although this solid is a commercial commodity, nutrition supplement, fertilizer additive, and therapeutic substance (European Pharmacopoeia, 2013), its crystallography turned out to be barren land. In order to close this gap, a crystal structure determination of the title compound was carried out.
Fig. 1 shows a characteristic part of the structure. The atoms Se1, O1, Se2, O3, O5w and its two hydrogen atoms H5a and H5b are located on a mirror plane at x,y,3/4. The water oxygen O8w is located on a twofold axis at x,1/4,1/2. All other atoms are in the general position. There are two independent selenite groups in the structure. Both have point symmetry Cs–m and an almost undistorted trigonal pyramidal geometry with Se—O bond distances of 1.6857 (7) – 1.7202 (10) Å (mean value 1.697 (2) Å) and O—Se—O angles of 101.98 (3) – 103.11 (5)° (mean value 102.4 (5)°; Fig. 1 and Table 1). Comparable dimensions have been reported for anhydrous Na2SeO3 (Wickleder, 2002), MgSeO3.6H2O (Andersen et al., 1984) and numerous other simple selenites. In the title compound the two selenite groups are bonded to a pair of mirror related Na1 atoms, which have a distorted trigonal dipyramidal coordination by three water molecules (O5w, O6w, O7w) in equatorial positions and two selenite oxygen atoms (O2 of Se1 and O4 of Se2) in apical positions. The two pentagonal bipyramids share a common corner via the water molecule O5w. Thus a compact group {(Na1)2(H2O)5(SeO3)2} is formed, which is reinforced by four internal hydrogen bonds donated by O6w and O6wi to O1 and O3 (Fig. 1). The second sodium atom, Na2, has an octahedral coordination by water molecules only. This Na2(H2O)6 octahedron shares a face with a second Na2 octahedron related by a twofold axis through O8w to form a double octahedron {(Na2)2(H2O)9}. The two building blocks of the structure, {(Na1)2(H2O)5(SeO3)2} and {(Na2)2(H2O)9}, are then mutually linked via four common water molecules (two O6w and two O7w) to form corrugated layers of the composition Na2SeO3.5H2O extending at y ≈ 1/4 and y ≈ 3/4 parallel to (010). A top and a side view of a Na2SeO3.5H2O layer including hydrogen bonds is depicted in Fig. 2. All water molecules have approximately tetrahedral coordination figures, either by two Na and two hydrogen bond acceptors (O5w, O6w, O7w, O8w, O9w) or by one Na, one hydrogen bond donor and two hydrogen bond acceptors (O10w). Hydrogen bond data given in Table 2 show normal values for all water molecules except O5w, which has one weak and one very weak interaction (O···O = 2.9468 (16) and 3.3631 (17) Å) with the selenite oxygen atoms O1 and O3 belonging to the same Na2SeO3.5H2O layer. All other hydrogen bonds have O···O distances in the narrow range of 2.7252 (11) to 2.8660 (11) Å with O—H···O angles between 157 (2)° and 176 (2)°. The water molecules of O5w, O6w, O8w (has two symmetry equivalent H-bonds and therefore only one entry in Table 2), and O9w feature exclusively intra-layer hydrogen bonds. Only O7w and O10w donate four inter-layer hydrogen bonds, which explains the observed good cleavage of the crystals along (010). Figures 3, 4 and 5 show projections of the crystal structure. Fig. 3 gives a view parallel to the a axis, this is parallel to two Na2SeO3.5H2O layers. It reveals that the electron lone-pairs of Se1 and Se2 point to an open space between the layers. The shortest distance between adjacent Se atoms of two different Na2SeO3.5H2O layers is Se1···Se2(1 - x,1/2 - y,3/2 - z) = 3.438 Å and corresponds to a mutual off-set of the two Se by 2.152 Å along [100]. This Se1···Se2 distance is ca 0.2 Å smaller than the sum of the van der Waals radii for two Se (2 × 1.80 Å; Rowland & Taylor, 1996) and might indicate a weak mutual interaction.
The crystal structure of anhydrous Na2SeO3 is known (Wickleder, 2002). This monoclinic structure can be seen as a distorted NaCl lattice (Masse et al., 1980), where Se replacing one out of three Na is shifted along a body diagonal of the NaCl lattice so that it has only three facial instead of six octahedral Se—O bonds while two Na atoms maintain their octahedral NaO6 coordination of the NaCl lattice. In reality the oxygen atoms are shifted more than Na and Se because they compensate arising voids and bond length differences between <Na—O> = 2.48 Å and <Se—O> = 1.70 Å. Anhydrous Na2TeO3 (Masse et al., 1980) is isostructural with Na2SeO3 but is more regular because of the larger size of Te (<Te—O> = 1.88 Å) within the host lattice of the NaO6 octahedra with <Na—O> = 2.50 Å. Both salts furnish on crystallization from water pentahydrates, namely the title compound Na2SeO3.5H2O and Na2TeO3.5H2O. In view of the isomorphism of the anhydrous couple it is somewhat unexpected that Na2TeO3.5H2O does not adopt the crystal structure of the title compound or vice versa. The tellurite hydrate crystallizes in the monoclinic space group C2/c (Philippot et al., 1979). It features a framework structure of the composition Na4(H2O)10(TeO3)2 containing three different kinds of Na. Two of these Na have relative regular octahedral coordination figures by water molecules and form infinite chains Na3(H2O)10 ≡ (H2O)3Na1(H2O)3Na2(H2O)3Na1 with two face- and one edge-sharing links per section. A third kind of Na with a strongly deformed centrosymmetric octahedral coordination by four H2O and two O bridges the chains via four corner-sharing links and carries simultaneously two TeO3 groups bonded to it η1-O-mode, i.e. via only one of their three O atoms. A reasonable alternative for the structures of Na2SeO3.5H2O and Na2TeO3.5H2O could be the structure of Na2(HPO3).5H2O, a phosphonate with a layered structure of Na(H2O)5 square pyramids, Na(H2O)5(O) octahedra, and η1-O-bonded HPO3 groups linked together only via shared edges and corners (Brodalla et al., 1978). In it the P-bonded phosphonate H atom occupies that space which the electron lone-pair lobes of Se or Te would favour. A proof for this concept and good example for a single common structure type of four different pyramidal XO32- anions is the series MgSO3.6H2O (Andersen & Lindqvist, 1984), MgSeO3.6H2O (Andersen et al., 1984), MgTeO3.6H2O (Andersen et al., 1984), and Mg(HPO3).6H2O (Powell et al., 1994) consisting of Mg(H2O)6 octahedra and XO3 pyramids (disregarding the H in HPO3) bound together by an elastic system of hydrogen bonds into a trigonal lattice of space group R3.