organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1707-o1708

4-Hy­dr­oxy-5-(2-meth­­oxy­phen­­oxy)-2,2′-bipyrimidin-6(5H)-one dihydrate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 18 October 2013; accepted 21 October 2013; online 26 October 2013)

The title compound, C15H12N4O4·2H2O, crystallizes with two independent water mol­ecules in the asymmetric unit. The dihedral angles between the mean planes of the benzene and pyrimidine rings and that of the pyrimidin-4-one ring are 85.1 (9) and 82.1 (1)°, respectively. The mean plane of the pyrimidine ring is twisted by 12.8 (8)° from that of the pyrimidin-4-one ring. The dihedral angles between the benzene ring and the mean planes of the pyrimidine and pyrimidin-4-one rings are 85.1 (9) and 82.1 (1)°, respectively.In the crystal, N–H⋯O, O—H⋯N and O—H⋯O hydrogen bonds involving both water mol­ecules are present; these link the mol­ecules into a two-dimensional network parallel to (010). In addition, weak C—H⋯π and ππ [centroid–centroid distance = 3.6183 (8) Å] inter­actions occur.

Related literature

For substituted pyrimidine-2,4-diones as good reversible inhibitors of thymidine phospho­rylase, see: Baker & Rzeszotarki (1967[Baker, B. R. & Rzeszotarki, W. (1967). J. Med. Chem. 10, 1109-1113.]). For the use of 2,2′-bi­pyrimidine as a ligand in inorganic and organometallic chemistry, see: Hunziker & Ludi (1977[Hunziker, M. & Ludi, A. (1977). J. Am. Chem. Soc. 99, 7370-7371]); Fabrice et al. (2008[Fabrice, P., Patr, H., Kamal, B. & Cyri, T. (2008). Inorg. Chim. Acta, 361, 373-379.]). For related structures, see: El-Brollosy et al. (2012[El-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2012). Acta Cryst. E68, o316.]); Fun et al. (2009[Fun, H.-K., Goh, J. H., Reddy, B. P., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o2655-o2656.]); Kaur et al. (2013[Kaur, M., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S., Betz, R., Gerber, T. & Butcher, R. J. (2013). Acta Cryst. E69, o12-o13.]); Ren et al. (2011[Ren, T., Zhang, Z., Zhong, C., Yang, Z. & Shi, Z. (2011). Acta Cryst. E67, o1334.]); Trilleras et al. (2009[Trilleras, J., Quiroga, J., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o134-o139.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N4O4·2H2O

  • Mr = 348.32

  • Monoclinic, P 21 /c

  • a = 9.5817 (3) Å

  • b = 13.9439 (3) Å

  • c = 12.4804 (4) Å

  • β = 109.832 (3)°

  • V = 1568.55 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.99 mm−1

  • T = 173 K

  • 0.45 × 0.32 × 0.24 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.876, Tmax = 1.000

  • 9840 measured reflections

  • 3070 independent reflections

  • 2789 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.03

  • 3070 reflections

  • 252 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2Wi 0.91 (3) 1.67 (3) 2.5651 (15) 172 (2)
N4—H4⋯O1ii 0.88 (2) 2.08 (2) 2.9313 (15) 163.6 (18)
O1W—H1WA⋯O4iii 0.87 (2) 2.05 (2) 2.8917 (16) 163 (2)
O1W—H1WB⋯N2iv 0.89 (3) 2.01 (3) 2.8823 (16) 167 (2)
O2W—H2WA⋯O4 0.86 (2) 1.93 (3) 2.7803 (15) 172 (2)
O2W—H2WB⋯O1Wv 0.91 (3) 1.80 (3) 2.7050 (17) 173 (2)
C4—H4ACg3vi 0.95 2.82 3.4083 (16) 121
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound, C15H12N4O4. 2 H2O, is an intermediate for the synthesis of bosentan. Pyrimidinediones are a class of chemical compounds characterized by a pyrimidine ring substituted with two carbonyl groups. A number of substituted pyrimidine-2,4-diones were synthesized and intensively studied as good reversible inhibitors of thymidine phosphorylase (Baker & Rzeszotarki,1967). 2,2'-Bipyrimidine has been used as a ligand in inorganic and organometallic chemistry (Hunziker & Ludi, 1977; Fabrice et al., 2008). The crystal structures of some related compounds are: four 7-aryl-substituted pyrido[2,3-d]pyrimidine -2,4(1H,3H)-diones: similar molecular structures but different crystal structures (Trilleras et al., 2009), diammonium 1,1',3,3'-tetra methyl-2,2',4,4',6,6'-hexaoxoperhydro-5,5'-bipyrimidine-5,5'-diide monohydrate (Fun et al., 2009), 4,6-dichloro-5-(2-methoxy phenoxy)-2,2'-bipyrimidine (Ren et al., 2011), 6-(3,5-dimethyl benzyl)-5-ethyl-1-[(3-phenylpropoxy) methyl]-1,2,3,4-tetrahydro pyrimidine-2,4-dione (El-Brollosy et al., 2012), 4-tert-butyl- N-[6-(2-hydroxyethoxy)-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin -4-yl]benzene-1-sulfonamide monohydrate (Kaur et al., 2013), have been reported. In view of the importance of the title compound this paper reports its crystal structure.

The title compound crystallizes with two independent water molecules in the asymmetric unit (Fig. 1). In the molecule, the dihedral angle between the mean planes of the phenyl ring and pyrimidine ring and the pyrimidinyl-4-one is 85.1 (9)° and 82.1 (1)°, respectively. The mean plane of the pyrimidine ring is twisted by 12.8 (8)° from that of the pyrimidinyl-4-one ring. In addition, the hydroxy group and methoxy group are twisted from the pyrimidinyl-4-one and phenyl ring by -177.6 (8)° (H3/O3/C8/C7) and -173.3 (4)° (C9/C14/O1/C15), respectively. In the crystal, O—H···N and O—H···O hydrogen bonds involving both water molecules are present. N—H···O hydrogen bonds between molecules help strengthen the crystal lattice (Table. 1). In addition, weak C4—H4A···Cg3 and Cg1–Cg2 ππ intermolecular interactions are observed and contribute to crystal packing (Cg1–Cg2 = 3.6183 (8)Å; Cg1 = N1/C1/N2/C2/C3/C4; Cg2i = N3/C5/N4/C6/C7/C8; symmetry operator (i) -x,1-y,1-z). The hydrogen bonds link the molecules into a 2D network parallel to (0 1 0) (Fig. 2).

Related literature top

For substituted pyrimidine-2,4-diones as good reversible inhibitors of thymidine phosphorylase, see: Baker & Rzeszotarki (1967). For the use of 2,2'-bipyrimidine as a ligand in inorganic and organometallic chemistry, see: Hunziker & Ludi (1977); Fabrice et al. (2008). For related structures, see: El-Brollosy et al. (2012); Fun et al. (2009); Kaur et al. (2013); Ren et al. (2011); Trilleras et al. (2009).

Experimental top

The title compound was obtained as a gift sample from Cadila Pharmaceuticals, Ahmedabad. The title compound (0.5 g) was dissolved in 10 ml of a mixture of dimethylsulphoxide and dimethylformamide (1:1) and stirred for 30 minutes on magnetic stirrer at 308 K. X-ray quality crystals of the title compound were formed after few days (m. p.: 536–540 K).

Refinement top

H3, H4, H1WA, H1WB, H2WA and H2WB were located by a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom. The methyl group was refined as a rotating group.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C15H12N4O4. 2 H2O) showing the labeling scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the C axis. Dashed lines indicate O—H···N and O—H···O hydrogen bonds involving both water molecules and N—H···O hydrogen bonds between the molecules. All of these interactions directly link the molecules into a 2D network along (0 1 0). H atoms not involved in hydrogen bonding have been removed for clarity.
4-Hydroxy-5-(2-methoxyphenoxy)-2,2'-bipyrimidin-6(5H)-one dihydrate top
Crystal data top
C15H12N4O4·2H2OF(000) = 728
Mr = 348.32Dx = 1.475 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.5817 (3) ÅCell parameters from 4761 reflections
b = 13.9439 (3) Åθ = 3.2–72.3°
c = 12.4804 (4) ŵ = 0.99 mm1
β = 109.832 (3)°T = 173 K
V = 1568.55 (8) Å3Irregular, colourless
Z = 40.45 × 0.32 × 0.24 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
3070 independent reflections
Radiation source: Enhance (Cu) X-ray Source2789 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.040
ω scansθmax = 72.5°, θmin = 4.9°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 1111
Tmin = 0.876, Tmax = 1.000k = 1713
9840 measured reflectionsl = 1514
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.4106P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.31 e Å3
3070 reflectionsΔρmin = 0.26 e Å3
252 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0118 (8)
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H12N4O4·2H2OV = 1568.55 (8) Å3
Mr = 348.32Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.5817 (3) ŵ = 0.99 mm1
b = 13.9439 (3) ÅT = 173 K
c = 12.4804 (4) Å0.45 × 0.32 × 0.24 mm
β = 109.832 (3)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
3070 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2789 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 1.000Rint = 0.040
9840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
3070 reflectionsΔρmin = 0.26 e Å3
252 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66810 (10)0.07758 (7)0.72585 (8)0.0234 (2)
O20.83857 (10)0.17796 (7)0.64227 (8)0.0218 (2)
O31.14014 (11)0.20971 (7)0.71581 (8)0.0261 (3)
H31.235 (3)0.2265 (17)0.727 (2)0.059 (7)*
O40.67224 (10)0.27899 (8)0.44713 (8)0.0284 (3)
N10.99634 (13)0.47988 (8)0.33822 (10)0.0233 (3)
N21.24321 (12)0.42848 (8)0.43964 (10)0.0228 (3)
N31.12057 (12)0.31273 (8)0.56724 (9)0.0199 (3)
N40.88527 (12)0.34237 (8)0.43264 (10)0.0214 (3)
C11.09611 (14)0.42507 (9)0.41329 (11)0.0195 (3)
C21.29246 (15)0.49577 (11)0.38523 (12)0.0268 (3)
H21.39650.50220.40230.032*
C31.19918 (17)0.55649 (10)0.30517 (12)0.0284 (3)
H3A1.23660.60400.26750.034*
C41.04900 (16)0.54475 (10)0.28272 (12)0.0261 (3)
H4A0.98120.58380.22640.031*
C51.03430 (14)0.35477 (9)0.47561 (11)0.0189 (3)
C60.80944 (14)0.28493 (9)0.48529 (11)0.0205 (3)
C70.90348 (14)0.23650 (9)0.58376 (11)0.0196 (3)
C81.05471 (14)0.25246 (9)0.62200 (11)0.0198 (3)
C90.79005 (14)0.08924 (9)0.59160 (11)0.0202 (3)
C100.82984 (16)0.05252 (10)0.50337 (12)0.0255 (3)
H100.88940.08950.47150.031*
C110.78253 (18)0.03891 (11)0.46092 (13)0.0314 (3)
H110.80910.06400.39970.038*
C120.69761 (19)0.09249 (11)0.50761 (14)0.0341 (4)
H120.66640.15500.47920.041*
C130.65690 (17)0.05569 (11)0.59662 (13)0.0294 (3)
H130.59800.09310.62850.035*
C140.70226 (14)0.03557 (10)0.63884 (11)0.0211 (3)
C150.59236 (18)0.01817 (12)0.78172 (13)0.0329 (4)
H15A0.58220.05260.84720.049*
H15B0.64920.04090.80800.049*
H15C0.49370.00210.72830.049*
O1W0.50931 (13)0.68034 (8)0.41460 (10)0.0335 (3)
O2W0.41708 (12)0.25759 (10)0.25780 (10)0.0385 (3)
H2WA0.493 (3)0.2699 (16)0.316 (2)0.049 (6)*
H2WB0.445 (3)0.2361 (16)0.199 (2)0.055 (6)*
H40.836 (2)0.3704 (14)0.3675 (18)0.037 (5)*
H1WA0.460 (3)0.7048 (16)0.455 (2)0.050 (6)*
H1WB0.592 (3)0.6557 (17)0.464 (2)0.058 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0213 (5)0.0276 (5)0.0228 (5)0.0045 (4)0.0095 (4)0.0001 (4)
O20.0242 (5)0.0226 (5)0.0198 (5)0.0055 (3)0.0091 (4)0.0022 (3)
O30.0201 (5)0.0306 (5)0.0234 (5)0.0006 (4)0.0017 (4)0.0072 (4)
O40.0149 (5)0.0421 (6)0.0260 (5)0.0032 (4)0.0041 (4)0.0052 (4)
N10.0211 (6)0.0246 (6)0.0225 (6)0.0014 (4)0.0051 (4)0.0012 (4)
N20.0186 (6)0.0276 (6)0.0228 (6)0.0015 (4)0.0080 (4)0.0011 (4)
N30.0162 (5)0.0217 (6)0.0207 (6)0.0004 (4)0.0049 (4)0.0004 (4)
N40.0160 (5)0.0271 (6)0.0195 (6)0.0000 (4)0.0036 (4)0.0034 (4)
C10.0191 (6)0.0214 (6)0.0181 (6)0.0020 (5)0.0062 (5)0.0034 (5)
C20.0213 (7)0.0352 (8)0.0266 (7)0.0055 (5)0.0115 (6)0.0021 (6)
C30.0341 (8)0.0287 (7)0.0249 (7)0.0079 (6)0.0135 (6)0.0001 (5)
C40.0294 (7)0.0245 (7)0.0220 (7)0.0022 (5)0.0056 (5)0.0015 (5)
C50.0163 (6)0.0202 (6)0.0204 (6)0.0004 (4)0.0064 (5)0.0028 (5)
C60.0169 (6)0.0250 (7)0.0196 (6)0.0029 (5)0.0061 (5)0.0025 (5)
C70.0199 (7)0.0204 (6)0.0193 (6)0.0031 (5)0.0076 (5)0.0016 (5)
C80.0196 (6)0.0197 (6)0.0188 (6)0.0010 (5)0.0047 (5)0.0012 (5)
C90.0176 (6)0.0214 (6)0.0187 (6)0.0010 (5)0.0022 (5)0.0001 (5)
C100.0268 (7)0.0274 (7)0.0236 (7)0.0028 (5)0.0101 (5)0.0012 (5)
C110.0385 (8)0.0304 (8)0.0259 (7)0.0003 (6)0.0117 (6)0.0065 (6)
C120.0416 (9)0.0246 (7)0.0333 (8)0.0079 (6)0.0090 (7)0.0081 (6)
C130.0302 (7)0.0274 (7)0.0297 (7)0.0087 (6)0.0090 (6)0.0007 (6)
C140.0176 (6)0.0258 (7)0.0179 (6)0.0007 (5)0.0034 (5)0.0008 (5)
C150.0335 (8)0.0399 (8)0.0299 (8)0.0119 (6)0.0167 (6)0.0000 (6)
O1W0.0237 (6)0.0415 (6)0.0361 (6)0.0028 (4)0.0114 (5)0.0038 (5)
O2W0.0189 (5)0.0652 (8)0.0275 (6)0.0042 (5)0.0028 (5)0.0095 (5)
Geometric parameters (Å, º) top
O1—C141.3676 (16)C4—H4A0.9500
O1—C151.4292 (16)C6—C71.4237 (19)
O2—C71.3765 (15)C7—C81.3812 (18)
O2—C91.3952 (16)C9—C101.3802 (19)
O3—H30.91 (3)C9—C141.3970 (18)
O3—C81.3212 (16)C10—H100.9500
O4—C61.2398 (16)C10—C111.396 (2)
N1—C11.3297 (18)C11—H110.9500
N1—C41.3378 (18)C11—C121.372 (2)
N2—C11.3351 (17)C12—H120.9500
N2—C21.3347 (18)C12—C131.394 (2)
N3—C51.3013 (17)C13—H130.9500
N3—C81.3653 (17)C13—C141.390 (2)
N4—C51.3554 (16)C15—H15A0.9800
N4—C61.3874 (17)C15—H15B0.9800
N4—H40.88 (2)C15—H15C0.9800
C1—C51.4930 (17)O1W—H1WA0.87 (2)
C2—H20.9500O1W—H1WB0.89 (3)
C2—C31.381 (2)O2W—H2WA0.86 (2)
C3—H3A0.9500O2W—H2WB0.91 (3)
C3—C41.379 (2)
C14—O1—C15115.91 (11)O3—C8—N3117.94 (12)
C7—O2—C9115.24 (10)O3—C8—C7119.70 (12)
C8—O3—H3108.2 (15)N3—C8—C7122.35 (12)
C1—N1—C4116.50 (12)O2—C9—C14116.07 (11)
C2—N2—C1115.19 (12)C10—C9—O2123.42 (12)
C5—N3—C8116.97 (11)C10—C9—C14120.45 (12)
C5—N4—C6122.48 (11)C9—C10—H10120.0
C5—N4—H4118.2 (13)C9—C10—C11119.98 (13)
C6—N4—H4119.3 (13)C11—C10—H10120.0
N1—C1—N2126.84 (12)C10—C11—H11120.0
N1—C1—C5115.28 (11)C12—C11—C10119.95 (13)
N2—C1—C5117.86 (11)C12—C11—H11120.0
N2—C2—H2118.5C11—C12—H12119.8
N2—C2—C3123.04 (13)C11—C12—C13120.31 (14)
C3—C2—H2118.5C13—C12—H12119.8
C2—C3—H3A121.7C12—C13—H13119.9
C4—C3—C2116.66 (13)C14—C13—C12120.22 (13)
C4—C3—H3A121.7C14—C13—H13119.9
N1—C4—C3121.72 (13)O1—C14—C9116.50 (12)
N1—C4—H4A119.1O1—C14—C13124.41 (12)
C3—C4—H4A119.1C13—C14—C9119.09 (12)
N3—C5—N4124.06 (12)O1—C15—H15A109.5
N3—C5—C1120.51 (11)O1—C15—H15B109.5
N4—C5—C1115.37 (11)O1—C15—H15C109.5
O4—C6—N4120.94 (12)H15A—C15—H15B109.5
O4—C6—C7125.30 (12)H15A—C15—H15C109.5
N4—C6—C7113.76 (11)H15B—C15—H15C109.5
O2—C7—C6118.15 (11)H1WA—O1W—H1WB107 (2)
O2—C7—C8121.47 (12)H2WA—O2W—H2WB111 (2)
C8—C7—C6120.29 (12)
O2—C7—C8—O31.07 (19)C5—N4—C6—O4176.19 (12)
O2—C7—C8—N3177.80 (11)C5—N4—C6—C73.53 (18)
O2—C9—C10—C11176.86 (13)C6—N4—C5—N32.0 (2)
O2—C9—C14—O12.85 (17)C6—N4—C5—C1175.25 (11)
O2—C9—C14—C13176.50 (12)C6—C7—C8—O3177.58 (12)
O4—C6—C7—O20.1 (2)C6—C7—C8—N31.29 (19)
O4—C6—C7—C8176.55 (13)C7—O2—C9—C1013.23 (18)
N1—C1—C5—N3164.82 (12)C7—O2—C9—C14169.66 (11)
N1—C1—C5—N412.53 (16)C8—N3—C5—N40.20 (19)
N2—C1—C5—N313.60 (18)C8—N3—C5—C1177.32 (11)
N2—C1—C5—N4169.04 (11)C9—O2—C7—C676.38 (14)
N2—C2—C3—C40.0 (2)C9—O2—C7—C8107.04 (13)
N4—C6—C7—O2179.77 (10)C9—C10—C11—C120.6 (2)
N4—C6—C7—C83.15 (18)C10—C9—C14—O1179.95 (12)
C1—N1—C4—C32.3 (2)C10—C9—C14—C130.7 (2)
C1—N2—C2—C31.5 (2)C10—C11—C12—C130.7 (2)
C2—N2—C1—N11.32 (19)C11—C12—C13—C140.1 (2)
C2—N2—C1—C5176.90 (11)C12—C13—C14—O1179.89 (13)
C2—C3—C4—N12.0 (2)C12—C13—C14—C90.6 (2)
C4—N1—C1—N20.5 (2)C14—C9—C10—C110.1 (2)
C4—N1—C1—C5178.78 (11)C15—O1—C14—C9173.34 (12)
C5—N3—C8—O3179.40 (11)C15—O1—C14—C135.96 (19)
C5—N3—C8—C70.51 (18)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O2Wi0.91 (3)1.67 (3)2.5651 (15)172 (2)
N4—H4···O1ii0.88 (2)2.08 (2)2.9313 (15)163.6 (18)
O1W—H1WA···O4iii0.87 (2)2.05 (2)2.8917 (16)163 (2)
O1W—H1WB···N2iv0.89 (3)2.01 (3)2.8823 (16)167 (2)
O2W—H2WA···O40.86 (2)1.93 (3)2.7803 (15)172 (2)
O2W—H2WB···O1Wv0.91 (3)1.80 (3)2.7050 (17)173 (2)
C4—H4A···Cg3vi0.952.823.4083 (16)121
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1; (v) x+1, y1/2, z+1/2; (vi) x, y1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O2Wi0.91 (3)1.67 (3)2.5651 (15)172 (2)
N4—H4···O1ii0.88 (2)2.08 (2)2.9313 (15)163.6 (18)
O1W—H1WA···O4iii0.87 (2)2.05 (2)2.8917 (16)163 (2)
O1W—H1WB···N2iv0.89 (3)2.01 (3)2.8823 (16)167 (2)
O2W—H2WA···O40.86 (2)1.93 (3)2.7803 (15)172 (2)
O2W—H2WB···O1Wv0.91 (3)1.80 (3)2.7050 (17)173 (2)
C4—H4A···Cg3vi0.952.823.4083 (16)121
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1; (v) x+1, y1/2, z+1/2; (vi) x, y1/2, z3/2.
 

Acknowledgements

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBaker, B. R. & Rzeszotarki, W. (1967). J. Med. Chem. 10, 1109–1113.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2012). Acta Cryst. E68, o316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFabrice, P., Patr, H., Kamal, B. & Cyri, T. (2008). Inorg. Chim. Acta, 361, 373–379.  Google Scholar
First citationFun, H.-K., Goh, J. H., Reddy, B. P., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o2655–o2656.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHunziker, M. & Ludi, A. (1977). J. Am. Chem. Soc. 99, 7370–7371  CrossRef CAS Web of Science Google Scholar
First citationKaur, M., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S., Betz, R., Gerber, T. & Butcher, R. J. (2013). Acta Cryst. E69, o12–o13.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRen, T., Zhang, Z., Zhong, C., Yang, Z. & Shi, Z. (2011). Acta Cryst. E67, o1334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrilleras, J., Quiroga, J., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o134–o139.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1707-o1708
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds