organic compounds
3-Methyl-4-(2-phenyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)furazan
aA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St, 119991 Moscow, Russian Federation, bSouth-Russia State Technical University, 346428 Novocherkassk, Russian Federation, and cN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russian Federation
*Correspondence e-mail: kirshik@yahoo.com
In the title molecule, C14H10N6O, the planes of the methylfurazan fragment and the phenyl ring attached to the triazolopyrimidine bicycle are twisted from the mean plane of the bicycle at angles of 45.92 (5) and 5.45 (4)°, respectively. In the crystal, π–π interactions, indicated by short distances [in the range 3.456 (3)–3.591 (3) Å] between the centroids of the five- and six-membered rings of neighbouring molecules, link the molecules into stacks propagating along the c-axis direction.
CCDC reference: 965650
Related literature
For applications of enaminones in synthesis, see: Kulinich & Ischenko (2009); Stanovnik & Svete (2004). For the synthesis of triazolopyrimidines from enaminopropenones, see: Abdelhamid et al. (2012, 2013); Behbehani & Ibrahim (2012). For X-ray studies of [1,2,4]triazolo[a]pyrimidines, see: Lipkind et al. (2011); Shikhaliev et al. (2008); Lokaj et al. (2006) and of furazan derivatives, see: Sheremetev et al. (2004, 2006, 2012, 2013); Suponitsky et al. (2009a,b). For normal values of bond lengths in organic compounds, see: Allen et al. (1987) and for a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010) and PLATON (Spek, 2009).
Supporting information
CCDC reference: 965650
10.1107/S1600536813027700/cv5430sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813027700/cv5430Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813027700/cv5430Isup3.cml
The crystals of the title compound suitable for X-ray analysis were grown by slow evaporation of tetraclormethane solution of the title compound.
All the reagents were of analytical grade, purchased from commercial sources, and used as received. Infrared spectra were determined in KBr pellets on a Perkin-Elmer Model 577 spectrometer. Mass-spectra were recorded on a Varian MAT-311 A instrument. The 1H and 13C NMR spectra were recorded at 300.13 and 75.47 MHz, respectively. The δ, p.p.m.) are expressed relative to the of the solvent-d. Melting points were determined on Gallenkamp melting point apparatus and are uncorrected.
values (3-(Dimethylamino)-1-(4-methylfurazan-3-yl)prop-2-en-1-one (1a). A mixture of 2-acetyl-3-methylfurazan (35 g, 0.277 mol) and dimethylformamide dimethylacetal (35 g, 0.294 mol) was refluxed in o-xylene (150 ml) for 3 h. The reaction mixture was then cooled and diluted with petroleum ether. The solid formed was collected by filtration and crystallized from ethanol. Yield 50.1 g (71%), mp 91–92 °C. IR (KBr), ν, cm-1: 1649, 1580, 1551, 1493, 1465, 1422, 1394, 1353, 1271, 1124, 1066, 1032, 1010, 981, 904, 882, 793, 776, 759. 1H MNR (CDCl3, δ, p.p.m.): 2.49 (s, 3H, CH3), 2.98 (s, 3H, CH3), 3.12 (s, 3H, CH3), 5.76 (d, 1H, CH), 7.74 (d, 1H, CH); 13C MNR (CDCl3, δ, p.p.m.): 9.2, 37.3, 45.2, 93.2, 151.4, 152.4, 154.4, 177.8. MS: m/z 181 (M+). Anal. Calcd. for C8H11N3O2 (181.19): C, 53.03; H, 6.12; N, 23.19. Found: C, 53.09; H, 6.07; N, 23.08.
3-Methyl-4-(2-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)-furazan (3a). A mixture of compound 1a (0.36 g, 2 mmol), 3-amino-5-phenyl-1,2,4-triazole 2a (0.32 g, 2 mmol) and acetic acid (5 ml) was refluxed for 8 h. After cooling the product separated was collected by filtration and recrystallized from MeCN. Yield 0.36 g (65%), mp 209–210°C. IR (KBr), ν, cm-1: 1619, 1578, 1544, 1513, 1453, 1441, 1408, 1350, 1327, 1285, 1263, 1205, 1130, 1071, 964, 904, 844, 822, 773; 1H MNR (DMSO-d6, δ, p.p.m.): 2.62 (3H, CH3), 7.54 (3H, Ph), 7.78 (1H, CH), 8.20 (2H, Ph), 9.03 (1H, CH); 13C NMR (DMSO-d6, δ, p.p.m.): 10.01, 111.5, 127.5, 128.7, 129.5, 131.08, 134.5, 147.3, 151.2, 153.8, 156.4, 166.5. Anal. Calcd. for C14H10N6O (278.27): C, 60.43; H, 3.62; N, 30.20. Found: C, 60.56; H, 3.69; N, 30.07.
All H atoms were geometrically positioned (C—H 095–0.98 Å), and refined as riding, with Uiso(H) = 1.2–1.5 Ueq(C).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).C14H10N6O | F(000) = 576 |
Mr = 278.28 | Dx = 1.461 Mg m−3 |
Monoclinic, P21/c | Melting point = 483–482 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 11.1397 (6) Å | Cell parameters from 7123 reflections |
b = 15.6579 (8) Å | θ = 2.3–31.0° |
c = 7.3952 (4) Å | µ = 0.10 mm−1 |
β = 101.332 (1)° | T = 120 K |
V = 1264.76 (12) Å3 | Prizm, colourless |
Z = 4 | 0.32 × 0.28 × 0.26 mm |
Bruker APEXII CCD diffractometer | 3456 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.030 |
Graphite monochromator | θmax = 31.0°, θmin = 1.9° |
ϕ and ω scans | h = −16→16 |
16844 measured reflections | k = −22→21 |
4041 independent reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0678P)2 + 0.3512P] where P = (Fo2 + 2Fc2)/3 |
4041 reflections | (Δ/σ)max < 0.001 |
191 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C14H10N6O | V = 1264.76 (12) Å3 |
Mr = 278.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.1397 (6) Å | µ = 0.10 mm−1 |
b = 15.6579 (8) Å | T = 120 K |
c = 7.3952 (4) Å | 0.32 × 0.28 × 0.26 mm |
β = 101.332 (1)° |
Bruker APEXII CCD diffractometer | 3456 reflections with I > 2σ(I) |
16844 measured reflections | Rint = 0.030 |
4041 independent reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.42 e Å−3 |
4041 reflections | Δρmin = −0.28 e Å−3 |
191 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.56608 (7) | 0.23558 (5) | 0.09319 (14) | 0.0282 (2) | |
N1 | 1.00892 (7) | −0.06092 (5) | 0.21751 (12) | 0.01583 (17) | |
N2 | 0.82706 (8) | −0.11973 (6) | 0.02377 (12) | 0.01834 (18) | |
N3 | 0.84903 (7) | 0.02462 (5) | 0.13466 (11) | 0.01300 (16) | |
N4 | 0.93391 (7) | 0.07409 (5) | 0.24376 (11) | 0.01399 (16) | |
N5 | 0.58150 (8) | 0.14848 (6) | 0.09470 (14) | 0.0227 (2) | |
N6 | 0.67069 (8) | 0.27675 (6) | 0.06085 (15) | 0.0239 (2) | |
C1 | 1.02813 (8) | 0.01935 (6) | 0.28809 (13) | 0.01377 (17) | |
C2 | 0.89448 (9) | −0.05739 (6) | 0.12102 (13) | 0.01468 (18) | |
C3 | 0.71487 (9) | −0.09738 (6) | −0.05783 (14) | 0.01883 (19) | |
H3A | 0.6646 | −0.1399 | −0.1265 | 0.023* | |
C4 | 0.66417 (9) | −0.01483 (6) | −0.05042 (13) | 0.01698 (19) | |
H4A | 0.5829 | −0.0031 | −0.1129 | 0.020* | |
C5 | 0.73399 (8) | 0.04786 (6) | 0.04821 (13) | 0.01414 (17) | |
C6 | 1.14510 (8) | 0.04615 (6) | 0.40276 (13) | 0.01413 (17) | |
C7 | 1.23825 (9) | −0.01412 (6) | 0.45314 (14) | 0.01694 (19) | |
H7A | 1.2241 | −0.0721 | 0.4178 | 0.020* | |
C8 | 1.35164 (9) | 0.01047 (7) | 0.55480 (15) | 0.0205 (2) | |
H8A | 1.4147 | −0.0307 | 0.5887 | 0.025* | |
C9 | 1.37265 (10) | 0.09538 (8) | 0.60680 (16) | 0.0247 (2) | |
H9A | 1.4504 | 0.1124 | 0.6748 | 0.030* | |
C10 | 1.27942 (10) | 0.15534 (7) | 0.55890 (17) | 0.0262 (2) | |
H10A | 1.2935 | 0.2132 | 0.5960 | 0.031* | |
C11 | 1.16591 (9) | 0.13117 (7) | 0.45715 (15) | 0.0202 (2) | |
H11A | 1.1027 | 0.1724 | 0.4247 | 0.024* | |
C12 | 0.69232 (9) | 0.13591 (6) | 0.06503 (13) | 0.01574 (18) | |
C13 | 0.74940 (9) | 0.21662 (6) | 0.04368 (14) | 0.01690 (19) | |
C14 | 0.87253 (9) | 0.23617 (7) | 0.00342 (15) | 0.0197 (2) | |
H14A | 0.8730 | 0.2945 | −0.0444 | 0.030* | |
H14B | 0.8910 | 0.1958 | −0.0887 | 0.030* | |
H14C | 0.9345 | 0.2310 | 0.1169 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0170 (4) | 0.0169 (4) | 0.0508 (5) | 0.0032 (3) | 0.0073 (3) | −0.0001 (3) |
N1 | 0.0163 (4) | 0.0127 (4) | 0.0189 (4) | 0.0008 (3) | 0.0044 (3) | −0.0004 (3) |
N2 | 0.0204 (4) | 0.0139 (4) | 0.0210 (4) | −0.0017 (3) | 0.0048 (3) | −0.0031 (3) |
N3 | 0.0129 (3) | 0.0107 (3) | 0.0156 (3) | −0.0004 (3) | 0.0032 (3) | −0.0006 (3) |
N4 | 0.0126 (3) | 0.0128 (3) | 0.0164 (4) | −0.0012 (3) | 0.0023 (3) | −0.0010 (3) |
N5 | 0.0162 (4) | 0.0155 (4) | 0.0359 (5) | 0.0014 (3) | 0.0036 (4) | 0.0000 (3) |
N6 | 0.0185 (4) | 0.0154 (4) | 0.0372 (5) | 0.0013 (3) | 0.0040 (4) | 0.0016 (4) |
C1 | 0.0139 (4) | 0.0129 (4) | 0.0153 (4) | 0.0001 (3) | 0.0050 (3) | 0.0010 (3) |
C2 | 0.0169 (4) | 0.0114 (4) | 0.0168 (4) | 0.0007 (3) | 0.0058 (3) | −0.0004 (3) |
C3 | 0.0205 (4) | 0.0147 (4) | 0.0211 (4) | −0.0034 (3) | 0.0038 (4) | −0.0034 (3) |
C4 | 0.0164 (4) | 0.0158 (4) | 0.0182 (4) | −0.0022 (3) | 0.0022 (3) | −0.0011 (3) |
C5 | 0.0138 (4) | 0.0133 (4) | 0.0154 (4) | −0.0002 (3) | 0.0031 (3) | 0.0011 (3) |
C6 | 0.0126 (4) | 0.0144 (4) | 0.0160 (4) | 0.0000 (3) | 0.0045 (3) | 0.0017 (3) |
C7 | 0.0157 (4) | 0.0165 (4) | 0.0192 (4) | 0.0016 (3) | 0.0049 (3) | 0.0037 (3) |
C8 | 0.0145 (4) | 0.0233 (5) | 0.0233 (5) | 0.0013 (4) | 0.0026 (4) | 0.0067 (4) |
C9 | 0.0168 (4) | 0.0266 (5) | 0.0283 (5) | −0.0043 (4) | −0.0016 (4) | 0.0042 (4) |
C10 | 0.0222 (5) | 0.0192 (5) | 0.0340 (6) | −0.0043 (4) | −0.0018 (4) | −0.0021 (4) |
C11 | 0.0169 (4) | 0.0159 (4) | 0.0269 (5) | 0.0005 (3) | 0.0020 (4) | −0.0009 (4) |
C12 | 0.0140 (4) | 0.0136 (4) | 0.0184 (4) | 0.0003 (3) | 0.0004 (3) | 0.0006 (3) |
C13 | 0.0172 (4) | 0.0132 (4) | 0.0193 (4) | 0.0003 (3) | 0.0012 (3) | 0.0011 (3) |
C14 | 0.0203 (4) | 0.0154 (4) | 0.0243 (5) | −0.0012 (3) | 0.0068 (4) | 0.0030 (4) |
O1—N5 | 1.3742 (12) | C5—C12 | 1.4678 (13) |
O1—N6 | 1.3929 (12) | C6—C11 | 1.3968 (14) |
N1—C2 | 1.3342 (12) | C6—C7 | 1.3979 (13) |
N1—C1 | 1.3616 (12) | C7—C8 | 1.3914 (14) |
N2—C3 | 1.3236 (13) | C7—H7A | 0.9500 |
N2—C2 | 1.3497 (12) | C8—C9 | 1.3910 (16) |
N3—N4 | 1.3583 (11) | C8—H8A | 0.9500 |
N3—C5 | 1.3643 (12) | C9—C10 | 1.3931 (16) |
N3—C2 | 1.3912 (12) | C9—H9A | 0.9500 |
N4—C1 | 1.3449 (12) | C10—C11 | 1.3909 (14) |
N5—C12 | 1.3106 (13) | C10—H10A | 0.9500 |
N6—C13 | 1.3095 (13) | C11—H11A | 0.9500 |
C1—C6 | 1.4693 (13) | C12—C13 | 1.4373 (13) |
C3—C4 | 1.4160 (14) | C13—C14 | 1.4914 (14) |
C3—H3A | 0.9500 | C14—H14A | 0.9800 |
C4—C5 | 1.3702 (13) | C14—H14B | 0.9800 |
C4—H4A | 0.9500 | C14—H14C | 0.9800 |
Cg1···Cg1i | 3.456 (2) | Cg1···Cg3ii | 3.591 (2) |
Cg2···Cg3ii | 3.540 (2) | ||
N5—O1—N6 | 110.69 (8) | C8—C7—C6 | 120.31 (9) |
C2—N1—C1 | 103.20 (8) | C8—C7—H7A | 119.8 |
C3—N2—C2 | 115.36 (9) | C6—C7—H7A | 119.8 |
N4—N3—C5 | 127.33 (8) | C7—C8—C9 | 119.96 (9) |
N4—N3—C2 | 110.41 (8) | C7—C8—H8A | 120.0 |
C5—N3—C2 | 122.26 (8) | C9—C8—H8A | 120.0 |
C1—N4—N3 | 101.55 (7) | C10—C9—C8 | 119.82 (10) |
C12—N5—O1 | 105.55 (8) | C10—C9—H9A | 120.1 |
C13—N6—O1 | 106.41 (8) | C8—C9—H9A | 120.1 |
N4—C1—N1 | 116.01 (8) | C11—C10—C9 | 120.48 (10) |
N4—C1—C6 | 121.32 (8) | C11—C10—H10A | 119.8 |
N1—C1—C6 | 122.66 (8) | C9—C10—H10A | 119.8 |
N1—C2—N2 | 128.91 (9) | C10—C11—C6 | 119.80 (10) |
N1—C2—N3 | 108.82 (8) | C10—C11—H11A | 120.1 |
N2—C2—N3 | 122.27 (9) | C6—C11—H11A | 120.1 |
N2—C3—C4 | 124.87 (9) | N5—C12—C13 | 109.75 (9) |
N2—C3—H3A | 117.6 | N5—C12—C5 | 118.64 (9) |
C4—C3—H3A | 117.6 | C13—C12—C5 | 131.49 (9) |
C5—C4—C3 | 119.05 (9) | N6—C13—C12 | 107.61 (9) |
C5—C4—H4A | 120.5 | N6—C13—C14 | 122.10 (9) |
C3—C4—H4A | 120.5 | C12—C13—C14 | 130.27 (9) |
N3—C5—C4 | 116.17 (9) | C13—C14—H14A | 109.5 |
N3—C5—C12 | 119.63 (8) | C13—C14—H14B | 109.5 |
C4—C5—C12 | 124.20 (9) | H14A—C14—H14B | 109.5 |
C11—C6—C7 | 119.61 (9) | C13—C14—H14C | 109.5 |
C11—C6—C1 | 121.11 (9) | H14A—C14—H14C | 109.5 |
C7—C6—C1 | 119.25 (9) | H14B—C14—H14C | 109.5 |
C5—N3—N4—C1 | −179.38 (9) | N4—C1—C6—C11 | −5.31 (14) |
C2—N3—N4—C1 | 1.14 (9) | N1—C1—C6—C11 | 173.36 (9) |
N6—O1—N5—C12 | 0.26 (12) | N4—C1—C6—C7 | 176.72 (9) |
N5—O1—N6—C13 | −0.33 (12) | N1—C1—C6—C7 | −4.61 (13) |
N3—N4—C1—N1 | −0.77 (10) | C11—C6—C7—C8 | −0.83 (14) |
N3—N4—C1—C6 | 177.98 (8) | C1—C6—C7—C8 | 177.17 (9) |
C2—N1—C1—N4 | 0.08 (11) | C6—C7—C8—C9 | 0.02 (15) |
C2—N1—C1—C6 | −178.65 (8) | C7—C8—C9—C10 | 0.85 (17) |
C1—N1—C2—N2 | −178.95 (10) | C8—C9—C10—C11 | −0.91 (18) |
C1—N1—C2—N3 | 0.65 (10) | C9—C10—C11—C6 | 0.09 (17) |
C3—N2—C2—N1 | 179.64 (9) | C7—C6—C11—C10 | 0.77 (15) |
C3—N2—C2—N3 | 0.09 (14) | C1—C6—C11—C10 | −177.19 (10) |
N4—N3—C2—N1 | −1.19 (10) | O1—N5—C12—C13 | −0.09 (12) |
C5—N3—C2—N1 | 179.29 (8) | O1—N5—C12—C5 | −176.58 (9) |
N4—N3—C2—N2 | 178.44 (8) | N3—C5—C12—N5 | −136.53 (10) |
C5—N3—C2—N2 | −1.08 (14) | C4—C5—C12—N5 | 43.38 (14) |
C2—N2—C3—C4 | 0.60 (15) | N3—C5—C12—C13 | 47.89 (15) |
N2—C3—C4—C5 | −0.33 (15) | C4—C5—C12—C13 | −132.19 (11) |
N4—N3—C5—C4 | −178.14 (9) | O1—N6—C13—C12 | 0.26 (11) |
C2—N3—C5—C4 | 1.30 (13) | O1—N6—C13—C14 | 178.61 (9) |
N4—N3—C5—C12 | 1.79 (14) | N5—C12—C13—N6 | −0.11 (12) |
C2—N3—C5—C12 | −178.78 (8) | C5—C12—C13—N6 | 175.77 (10) |
C3—C4—C5—N3 | −0.63 (13) | N5—C12—C13—C14 | −178.28 (10) |
C3—C4—C5—C12 | 179.46 (9) | C5—C12—C13—C14 | −2.40 (18) |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+2, −y, −z+1. |
Cg1···Cg1i | 3.456 (2) | Cg1···Cg3ii | 3.591 (2) |
Cg2···Cg3ii | 3.540 (2) |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+2, −y, −z+1. |
Acknowledgements
This work was supported financially by the Ministry of Education and Science of Russia through the Federal Target Program "Research and Educational Personnel of Innovative Russia in Years 2009–2013" (grant No. 14.B37.21.1187) and, in part, through State research contract No. 3.2107.2011.
References
Abdelhamid, A. O., Fahmi, A. A. & Halim, K. N. M. (2013). Synth. Commun. 43, 1101–1126. Web of Science CrossRef CAS Google Scholar
Abdelhamid, A. O., Shokry, S. A. & Tawfiek, S. M. (2012). J. Heterocycl. Chem. 49, 116–124. Web of Science CrossRef CAS Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Behbehani, H. & Ibrahim, H. M. (2012). Molecules, 17, 6362–6385. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kulinich, A. B. & Ischenko, A. A. (2009). Russ. Chem. Rev. 78, 141–164 [translated from (2009). Usp. Khim. 78, 151–175]. Google Scholar
Lipkind, D., Rath, N., Chickos, J. S., Pozdeev, V. A. & Verekin, S. P. (2011). J. Phys. Chem. B, 115, 8785–8796. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lokaj, J., Kettmann, V., Katuščák, S., Černuchová, P., Milata, V. & Gregáň, F. (2006). Acta Cryst. E62, o1252–o1253. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheremetev, A. B., Aleksandrova, N. S., Palysaeva, N. V., Struchkova, M. I., Tartakovsky, V. A. & Suponitsky, K. Yu. (2013). Chem. Eur. J. 19, 12446–12457. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheremetev, A. B., Andrianov, V. G., Mantseva, E. V., Shatunova, E. V., Aleksandrova, N. S., Yudin, I. L., Dmitriev, D. E., Averkiev, B. B. & Antipin, M. Yu. (2004). Russ. Chem. Bull. Int. Ed. 53, 596–614 [translated from (2004). Izv. AN, Ser. Khim. pp. 569–586]. Google Scholar
Sheremetev, A. B., Yudin, I. L., Palysaeva, N. V. & Suponitsky, K. Yu. (2012). J. Heterocycl. Chem. 49, 394–401. Web of Science CSD CrossRef CAS Google Scholar
Sheremetev, A. B., Yudin, I. L. & Suponitsky, K. Yu. (2006). Mendeleev Commun. 16, 264–266. Web of Science CSD CrossRef Google Scholar
Shikhaliev, Kh. S., Kryl'skii, D. V., Potapov, A. Yu., Nefedov, S. E. & Sidorenko, O. E. (2008). Russ. Chem. Bull. 57, 1268–1272 [translated from (2008). Izv. AN, Ser. Khim. pp. 1244–1248]. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stanovnik, B. & Svete, J. (2004). Chem. Rev. 104, 2433–2480. Web of Science CrossRef PubMed CAS Google Scholar
Suponitsky, K. Yu., Lyssenko, K. A., Antipin, M. Yu., Aleksandrova, N. S., Sheremetev, A. B. & Novikova, T. S. (2009a). Russ. Chem. Bull. 58, 2129–2136 [translated from (2009). Izv. AN, Ser. Khim. pp. 2065–2071]. Google Scholar
Suponitsky, K. Yu., Masunov, A. E. & Antipin, M. Yu. (2009b). Mendeleev Commun. 19, 311–313. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dimethylaminopropenones have been widely employed as key building blocks in the synthesis of functionalized alkenes, aromatics and heterocycles, especially 1,2,4-triazolopyrimidines with potential medicinal application (Kulinich & Ischenko, 2009; Stanovnik & Svete, 2004). 1,2,4-Triazolopyrimidines can be obtained readily from the cyclocondensation of dimethylaminopropenones with 3-amino-1,2,4-triazoles. The cyclocondensation can, in principle, yield four regioisomers, i.e. 2-R'-5-R-[1,2,4]triazolo[1,5-a]pyrimidine (A), 2-R'-7-R-[1,2,4]triazolo[1,5-a]pyrimidine (B), 3-R'-5-R-[1,2,4]triazolo[4,3-a]pyrimidine (C) and 3-R'-7-R-[1,2,4]triazolo[4,3-a]pyrimidine (D) as depicted in Figure 1. Different structures have been assigned to products of the reaction in various studies: strucuture B (Behbehani & Ibrahim, 2012), C (Abdelhamid et al., 2013) or D (Abdelhamid et al., 2012). Thus recent literature indicated that the unambiguous identification of obtained regioisomer is problematic. However, up to now single-crystal X-ray analyses was not used to verify the assigned structures of the products obtained from cyclocondensation of dimethylaminopropenones with 3-amino-1,2,4-triazoles.
In the present study we found that cyclocondensation of 3-(dimethylamino)-1-(4-methylfurazan-3-yl)prop-2-en-1-one (1a) with 3-amino-5-phenyl-1,2,4-triazole (2a) in acetic acid resulted in formation of 3-methyl-4-(2-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)-furazan (3a), i.e. regioisomer of type B (Figure 2).
According to X-ray data, nearly planar [1,2,4]triazolo[1,5-a]pyrimidine core form interplanar angle of 5.45 (4)° with the phenyl substituent. Methyl substituted furazan ring is rotated out of the triazolopyrimidine plane (torsional angle N3—C5—C12—C13 is equal to -136.53 (10)°) due to sterical repulsion between the methyl group and the triazolopyrimidine bicycle (Figure 3). In accordance with our earlier study on furazan derivatives (Sheremetev et al., 2004, 2006, 2012, 2013; Suponitsky et al., 2009a, 2009b) the O1—N6 and O1—N5 bond lengths of 1.3929 (12) and 1.3742 (12) Å, respectively, are normal. Bond lengths distribution in triazolopyrimidine core is similar to previously studied triazolopyrimidine derivatives (Lipkind et al., 2011; Shikhaliev et al., 2008; Lokaj et al., 2006; Allen, 2002; Allen et al., 1987).
In the crystal structure, along the crystallographic direction c, molecules form columns in which they are related by the center of symmetry and connected by alternating π–π stacking interactions (Figure 4). The stronger stacking interactions (interplanar distance is 3.306 (3) Å, the shortest contacts are C3···C6i 3.3387 (13) Å; C1···C2i 3.3580 (13) Å) connects molecules into dimers which are linked together by weaker stacking interactions (interplanar distance is 3.412 (3) Å, the shortest contacts are C5···C8ii 3.3858 (14) Å; C1···C1ii 3.370 (2) Å). Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 2, -y, -z + 1. Intercentroid distances are given in the Table 1.