organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1617-o1618

N-[2-(2,2-Di­methyl­propanamido)­pyrimidin-4-yl]-2,2-di­methyl­propanamide n-hexane 0.25-solvate hemihydrate

aFaculty of Technology and Chemical Engineering, University of Technology and Life Sciences, Seminaryjna 3, PL-85-326 Bydgoszcz, Poland, bDepartment of Chemistrycv5431, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland, and cStructural Chemistry and Crystallography Group, University of Lodz, Pomorska 163/165, PL-90-236 Łódź, Poland
*Correspondence e-mail: lilach@uni.lodz.pl

(Received 28 September 2013; accepted 2 October 2013; online 5 October 2013)

The asymmetric unit of the title compound, C14H22N4O2·0.25C6H14·0.5H2O, contains two independent mol­ecules of 2,4-bis­(pivaloyl­amino)­pyrimidine (M) with similar conformations, one water mol­ecule and one-half n-hexane solvent mol­ecule situated on an inversion center. In one independent M mol­ecule, one of the two tert-butyl groups is rotationally disordered between two orientations in a 3:2 ratio. The n-hexane solvent mol­ecule is disordered between two conformations in the same ratio. The water mol­ecule bridges two independent M mol­ecules via O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds into a 2M·H2O unit, and these units are further linked by N—H⋯N hydrogen bonds into chains running in the [010] direction. Weak C—H⋯O inter­actions are observed between the adjacent chains.

Related literature

For the related structures of 2,4-bis­(acyl­oamino)­pyrimidines in the solid state and in solution, see: Ośmiałowski et al. (2012[Ośmiałowski, B., Kolehmainen, E., Ikonen, S., Valkonen, A., Kwiatkowski, A., Grela, I. & Haapaniemi, E. (2012). J. Org. Chem. 77, 9609-9619.]). For the related structures of 2,6-bis­(acyl­oamino)­pyridines, see: Ośmiałowski et al. (2010[Ośmiałowski, B., Kolehmainen, E., Gawinecki, R., Dobosz, R. & Kaupinen, R. (2010). J. Phys. Chem. A, 114, 12881-12887.]); Crane (2003[Crane, J. D. (2003). Acta Cryst. E59, o1854-o1855.]).

[Scheme 1]

Experimental

Crystal data
  • 2C14H22N4O2·0.5C6H14·H2O

  • Mr = 617.81

  • Triclinic, [P \overline 1]

  • a = 10.6055 (5) Å

  • b = 12.2181 (6) Å

  • c = 14.9774 (7) Å

  • α = 88.060 (3)°

  • β = 73.093 (4)°

  • γ = 74.179 (3)°

  • V = 1784.36 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 123 K

  • 0.30 × 0.05 × 0.04 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer with an APEXII detector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.997

  • 21621 measured reflections

  • 6422 independent reflections

  • 3597 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.164

  • S = 1.04

  • 6422 reflections

  • 451 parameters

  • 101 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O8A 0.84 (2) 2.08 (2) 2.910 (3) 167 (4)
O1—H1A⋯N1A 0.84 (2) 2.51 (4) 2.958 (4) 115 (3)
O1—H1B⋯O8 0.83 (2) 2.13 (2) 2.943 (3) 168 (4)
O1—H1B⋯N1 0.83 (2) 2.48 (4) 2.931 (4) 115 (3)
N7—H7⋯N3Ai 0.88 (2) 2.32 (2) 3.144 (4) 156 (3)
N13—H13⋯O1 0.87 (2) 2.02 (2) 2.864 (4) 162 (4)
N7A—H7A⋯N3ii 0.87 (2) 2.16 (2) 2.958 (4) 152 (3)
N13A—H13A⋯O1 0.89 (2) 2.02 (2) 2.882 (4) 164 (4)
C5—H5⋯O14iii 0.95 2.37 3.205 (5) 147
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) -x+1, -y+1, -z+1.

Data collection: COLLECT (Bruker, 2008[Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The 2,4-bis(pivaloylamino)pyrimidine is able to form various rotamers in solution (Ośmiałowski et al., 2012). The high flexibility of this molecule with respect to the related pyridine derivatives is caused by the presence of two nitrogen atoms within the aromatic ring. This was confirmed by studies of association of such derivatives with various supramolecular counterparts (Ośmiałowski et al., 2010; 2012). In the crystal structure of the related pyridine derivative (2,6-bis(pivaloylamino)pyridine) a weak N—H···OC interaction was found, which further links the molecules into chain motif (Crane, 2003).

The 2,4-bis(pivaloylamino)pyrimidine was crystallized from n-hexane as hemisolvate monohydrate. In the asymmetric unit there are two independent molecules of the title compound (Figure 1). Water molecule interacts with these molecules via O—H···O, N—H···O and O—H···N intermolecular hydrogen bonds (Table 1) thereby joins them into hydrogen-bonded dimer (Figure 2). It is worth mentioning that water molecule incorporated between two subjected molecules forces those to adopt the Z,E,Z,Z conformation (Ośmiałowski et al., 2012), in which the electron repulsion between heterocyclic nitrogen atoms (N1, N1A) and carbonyl oxygen atoms (O8, O8A) are observed.

Furthermore, each independent molecule forms an intermolecular N—H···N hydrogen bond (Table 1), thus producing infinite chain of dimers running parallel to the [010] direction. Two centrosymmetrically related chains interact each other via weak C—H···O interactions (Table 1).

The partially disordered n-hexane solvent molecule lies on the inversion centre. In the crystal lattice it is surrounded by the terminal t-butyl groups. This arrangement precludes any significant intermolecular interactions with other molecules in crystal.

Related literature top

For the related structures of 2,4-bis(acyloamino)pyrimidines in the solid state and in solution, see: Ośmiałowski et al. (2012). For the related structures of 2,6-bis(acyloamino)pyridines, see: Ośmiałowski et al. (2010); Crane (2003).

Experimental top

The title compound was synthesized according to the method of Ośmiałowski et al. (2012). Crystals suitable for X-ray measurements were obtained by crystallization from n-hexane.

Refinement top

All non-hydrogen atoms were refined anisotropically. One t-butyl group (atoms C16, C17, C18) of molecule 1 as well as some atoms of hexane solvent molecule (C20 and all H-atoms) were refined as disordered over two sets of sites with occupancies fixed at 0.60:0.40. The C—C bond distances within the disordered t-butyl group as well as the C—C distances between disordered atoms within hexane moiety (pairs: C19—C20/C19—C20 and C21—C20/C21—C20A, respectively) were restrained to be approximately equal. Moreover, the Uij components of atoms in two t-butyl groups in molecule 1 were restrained to be similar. Additionally, the ADPs of the C16B atom were restrained to be approximately isotropic.

H atoms bonded to N atoms were located in a difference map and refined with distance restraints of N7—H7 and N13—H13 (molecule 1), N7A—H7A and N13A—H13A (molecule 2) = 0.88 (2) Å, and with Uiso(H) = 1.2Ueq(N). In the water molecule, H atoms were also located in a difference map and refined with distance restraints of O1—H1A and O1—H1B = 0.84 (2) Å, and with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(methyl C).

Computing details top

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Two independent molecules M in (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. Only the major component of disordered t-butyl group is shown. Water and hexane solvent molecules are omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the intermolecular hydrogen-bonds [symmetry codes: (i) x, 1 + y, z; (ii) x, y - 1, z; (iii) 1 - x, 1 - y,1 - z]. Hexane solvent molecule, the minor components of disordered t-butyl group and (C)—H atoms are omitted for clarity.
N-[2-(2,2-Dimethylpropanamido)pyrimidin-4-yl]-2,2-dimethylpropanamide n-hexane 0.25-solvate hemihydrate top
Crystal data top
2C14H22N4O2·0.5C6H14·H2OZ = 2
Mr = 617.81F(000) = 670
Triclinic, P1Dx = 1.150 Mg m3
a = 10.6055 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.2181 (6) ÅCell parameters from 7150 reflections
c = 14.9774 (7) Åθ = 0.4–28.3°
α = 88.060 (3)°µ = 0.08 mm1
β = 73.093 (4)°T = 123 K
γ = 74.179 (3)°Needle, colourless
V = 1784.36 (16) Å30.30 × 0.05 × 0.04 mm
Data collection top
Bruker–Nonius KappaCCD with APEXII detector
diffractometer
6422 independent reflections
Radiation source: fine-focus sealed tube3597 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
Detector resolution: 9 pixels mm-1θmax = 25.3°, θmin = 2.3°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1414
Tmin = 0.977, Tmax = 0.997l = 1617
21621 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0128P)2 + 3.1862P]
where P = (Fo2 + 2Fc2)/3
6422 reflections(Δ/σ)max = 0.001
451 parametersΔρmax = 0.35 e Å3
101 restraintsΔρmin = 0.24 e Å3
Crystal data top
2C14H22N4O2·0.5C6H14·H2Oγ = 74.179 (3)°
Mr = 617.81V = 1784.36 (16) Å3
Triclinic, P1Z = 2
a = 10.6055 (5) ÅMo Kα radiation
b = 12.2181 (6) ŵ = 0.08 mm1
c = 14.9774 (7) ÅT = 123 K
α = 88.060 (3)°0.30 × 0.05 × 0.04 mm
β = 73.093 (4)°
Data collection top
Bruker–Nonius KappaCCD with APEXII detector
diffractometer
6422 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3597 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.997Rint = 0.100
21621 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.079101 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.35 e Å3
6422 reflectionsΔρmin = 0.24 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O80.3412 (3)0.46261 (19)0.05984 (17)0.0307 (6)
O140.4845 (3)0.3749 (2)0.46471 (17)0.0358 (7)
N10.3512 (3)0.5088 (2)0.2372 (2)0.0233 (7)
N30.3818 (3)0.6952 (2)0.2389 (2)0.0285 (8)
N70.3042 (3)0.6391 (2)0.1249 (2)0.0256 (7)
H70.287 (4)0.7128 (17)0.117 (2)0.031*
N130.4056 (3)0.3746 (2)0.3391 (2)0.0262 (7)
H130.395 (4)0.333 (3)0.297 (2)0.031*
C20.3483 (4)0.6108 (3)0.2042 (2)0.0234 (8)
C40.4134 (4)0.6713 (3)0.3196 (3)0.0304 (9)
H40.43240.72960.34960.037*
C50.4204 (4)0.5693 (3)0.3616 (3)0.0266 (9)
H50.44250.55590.41880.032*
C60.3925 (4)0.4870 (3)0.3142 (2)0.0240 (8)
C80.3040 (4)0.5661 (3)0.0571 (2)0.0235 (8)
C90.2520 (4)0.6243 (3)0.0223 (2)0.0241 (8)
C100.3278 (5)0.7128 (4)0.0646 (3)0.0516 (13)
H10A0.31210.77130.01630.077*
H10B0.29350.74830.11570.077*
H10C0.42620.67540.08870.077*
C110.0990 (4)0.6824 (4)0.0157 (3)0.0479 (12)
H11A0.08350.74040.06420.072*
H11B0.05060.62560.04240.072*
H11C0.06440.71840.03520.072*
C120.2773 (5)0.5344 (3)0.0978 (3)0.0490 (12)
H12A0.24450.57060.14930.073*
H12B0.22810.47800.07170.073*
H12C0.37570.49660.12110.073*
C140.4569 (4)0.3226 (3)0.4087 (2)0.0249 (8)
C150.4773 (4)0.1939 (3)0.4109 (3)0.0348 (10)
C160.3527 (12)0.1542 (14)0.4115 (16)0.049 (4)0.6
H16A0.37590.07090.41250.074*0.6
H16B0.32520.17880.35540.074*0.6
H16C0.27690.18730.46720.074*0.6
C170.580 (3)0.145 (2)0.3155 (10)0.051 (4)0.6
H17A0.59680.06160.31250.077*0.6
H17B0.66580.16370.30800.077*0.6
H17C0.54090.17700.26530.077*0.6
C180.5496 (13)0.1468 (16)0.4841 (8)0.055 (4)0.6
H18A0.56310.06420.48580.083*0.6
H18B0.49340.18260.54550.083*0.6
H18C0.63880.16320.46800.083*0.6
C16B0.3332 (17)0.182 (2)0.425 (2)0.049 (5)0.4
H16G0.33560.10150.42670.074*0.4
H16H0.29960.21590.37280.074*0.4
H16I0.27190.22210.48370.074*0.4
C17B0.596 (4)0.128 (3)0.3298 (18)0.057 (6)0.4
H17G0.60420.04670.33440.085*0.4
H17H0.68100.14320.33220.085*0.4
H17I0.57820.15330.27060.085*0.4
C18B0.493 (2)0.162 (2)0.5081 (10)0.057 (5)0.4
H18G0.50700.07970.51410.086*0.4
H18H0.41020.20280.55630.086*0.4
H18I0.57230.18290.51580.086*0.4
O8A0.5012 (3)0.06266 (19)0.11110 (18)0.0308 (6)
O14A0.1719 (3)0.2917 (2)0.2818 (2)0.0401 (7)
N1A0.2274 (3)0.0794 (2)0.2012 (2)0.0241 (7)
N3A0.1930 (3)0.0951 (2)0.1596 (2)0.0291 (8)
N7A0.4086 (3)0.0859 (2)0.1563 (2)0.0278 (7)
H7A0.424 (4)0.1590 (17)0.163 (3)0.033*
N13A0.0596 (3)0.2457 (2)0.2438 (2)0.0278 (7)
H13A0.134 (3)0.268 (3)0.238 (3)0.033*
C2A0.2704 (4)0.0302 (3)0.1724 (2)0.0246 (8)
C4A0.0594 (4)0.0408 (3)0.1783 (3)0.0319 (9)
H4A0.00040.08360.17210.038*
C5A0.0030 (4)0.0726 (3)0.2060 (3)0.0296 (9)
H5A0.09200.10870.21720.035*
C6A0.0941 (4)0.1311 (3)0.2166 (2)0.0258 (9)
C8A0.5165 (4)0.0389 (3)0.1257 (2)0.0236 (8)
C9A0.6589 (4)0.1224 (3)0.1082 (2)0.0245 (8)
C10A0.6809 (4)0.2132 (3)0.0330 (3)0.0382 (10)
H10D0.77250.26620.02190.057*
H10E0.67280.17640.02500.057*
H10F0.61160.25500.05410.057*
C11A0.6756 (4)0.1802 (3)0.1980 (3)0.0378 (10)
H11D0.76740.23330.18520.057*
H11E0.60650.22190.22050.057*
H11F0.66380.12230.24570.057*
C12A0.7650 (4)0.0561 (3)0.0739 (3)0.0340 (10)
H12D0.85720.10830.06190.051*
H12E0.75130.00240.12170.051*
H12F0.75480.01960.01620.051*
C14A0.0697 (4)0.3197 (3)0.2778 (2)0.0283 (9)
C15A0.0712 (4)0.4379 (3)0.3093 (3)0.0303 (9)
C16A0.0042 (5)0.4278 (4)0.3835 (3)0.0526 (13)
H16D0.00240.50390.40340.079*
H16E0.09940.38250.35730.079*
H16F0.04110.39040.43750.079*
C17A0.0004 (4)0.4968 (3)0.2252 (3)0.0396 (11)
H17D0.00070.57250.24550.059*
H17E0.04800.50430.17760.059*
H17F0.09540.45110.19870.059*
C18A0.2197 (4)0.5074 (3)0.3492 (3)0.0453 (11)
H18D0.22270.58350.36990.068*
H18E0.26550.46930.40230.068*
H18F0.26660.51410.30090.068*
O10.3274 (3)0.2837 (2)0.19608 (18)0.0267 (6)
H1A0.367 (4)0.219 (2)0.168 (2)0.040*
H1B0.341 (4)0.336 (3)0.161 (2)0.040*
C190.0268 (6)0.7745 (4)0.3857 (4)0.0705 (16)
H19A0.07980.69730.39350.106*0.6
H19B0.03540.78540.31930.106*0.6
H19C0.06990.78510.42050.106*0.6
H19D0.06470.69240.38940.106*0.4
H19E0.07940.80030.32780.106*0.4
H19F0.06920.79060.38650.106*0.4
C200.0808 (9)0.8604 (8)0.4226 (8)0.062 (3)0.6
H20A0.13410.82120.46440.074*0.6
H20B0.14550.88500.36900.074*0.6
C20B0.0356 (16)0.8381 (9)0.4706 (8)0.057 (4)0.4
H20C0.01580.80980.52870.068*0.4
H20D0.13270.81940.47010.068*0.4
C210.0176 (6)0.9607 (4)0.4725 (4)0.0702 (16)
H21A0.09320.93510.51570.084*0.6
H21B0.05621.00660.42610.084*0.6
H21C0.11870.97750.49320.084*0.4
H21D0.00810.98290.40690.084*0.4
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O80.0437 (18)0.0156 (13)0.0338 (15)0.0028 (12)0.0177 (13)0.0011 (11)
O140.0485 (19)0.0318 (15)0.0313 (15)0.0069 (13)0.0216 (14)0.0006 (12)
N10.0280 (19)0.0180 (15)0.0295 (17)0.0078 (13)0.0159 (14)0.0030 (13)
N30.034 (2)0.0175 (16)0.0382 (19)0.0080 (14)0.0167 (16)0.0020 (14)
N70.032 (2)0.0144 (15)0.0355 (18)0.0059 (14)0.0184 (15)0.0034 (14)
N130.039 (2)0.0172 (16)0.0276 (17)0.0072 (14)0.0189 (15)0.0037 (13)
C20.027 (2)0.0165 (18)0.030 (2)0.0055 (16)0.0129 (17)0.0023 (15)
C40.031 (2)0.023 (2)0.040 (2)0.0082 (17)0.0135 (19)0.0071 (17)
C50.029 (2)0.025 (2)0.030 (2)0.0089 (17)0.0129 (18)0.0015 (16)
C60.023 (2)0.0225 (19)0.026 (2)0.0062 (16)0.0078 (17)0.0005 (16)
C80.019 (2)0.023 (2)0.027 (2)0.0051 (16)0.0056 (16)0.0030 (16)
C90.026 (2)0.0224 (18)0.0233 (19)0.0047 (16)0.0092 (16)0.0057 (15)
C100.068 (3)0.045 (3)0.053 (3)0.028 (2)0.026 (3)0.023 (2)
C110.034 (3)0.061 (3)0.042 (3)0.004 (2)0.016 (2)0.010 (2)
C120.068 (3)0.036 (2)0.039 (2)0.004 (2)0.027 (2)0.002 (2)
C140.021 (2)0.0254 (19)0.026 (2)0.0057 (16)0.0052 (17)0.0038 (16)
C150.046 (3)0.025 (2)0.046 (2)0.0164 (18)0.027 (2)0.0111 (18)
C160.047 (6)0.034 (8)0.084 (8)0.021 (5)0.036 (6)0.010 (6)
C170.055 (7)0.016 (6)0.081 (7)0.006 (4)0.033 (5)0.000 (5)
C180.069 (8)0.041 (7)0.082 (7)0.025 (7)0.056 (6)0.032 (6)
C16B0.056 (8)0.026 (9)0.063 (9)0.024 (7)0.003 (7)0.017 (7)
C17B0.050 (10)0.031 (11)0.088 (11)0.007 (8)0.020 (10)0.002 (9)
C18B0.087 (13)0.044 (8)0.058 (8)0.015 (11)0.052 (8)0.020 (7)
O8A0.0267 (16)0.0167 (13)0.0484 (16)0.0057 (11)0.0105 (13)0.0062 (11)
O14A0.0256 (17)0.0328 (16)0.061 (2)0.0081 (13)0.0100 (14)0.0021 (13)
N1A0.0225 (19)0.0166 (15)0.0345 (17)0.0053 (13)0.0103 (14)0.0016 (13)
N3A0.030 (2)0.0208 (16)0.0425 (19)0.0107 (15)0.0159 (16)0.0030 (14)
N7A0.0260 (19)0.0146 (15)0.047 (2)0.0060 (14)0.0175 (16)0.0045 (14)
N13A0.023 (2)0.0195 (16)0.0410 (19)0.0089 (14)0.0061 (16)0.0016 (14)
C2A0.026 (2)0.0202 (19)0.030 (2)0.0070 (17)0.0110 (17)0.0066 (16)
C4A0.031 (3)0.026 (2)0.047 (2)0.0133 (18)0.019 (2)0.0019 (18)
C5A0.022 (2)0.025 (2)0.043 (2)0.0055 (17)0.0113 (18)0.0041 (17)
C6A0.026 (2)0.0202 (19)0.031 (2)0.0051 (17)0.0103 (17)0.0018 (16)
C8A0.026 (2)0.0194 (19)0.0271 (19)0.0041 (16)0.0131 (17)0.0006 (15)
C9A0.024 (2)0.0181 (18)0.033 (2)0.0031 (15)0.0123 (17)0.0007 (15)
C10A0.039 (3)0.025 (2)0.049 (3)0.0015 (18)0.019 (2)0.0084 (18)
C11A0.038 (3)0.033 (2)0.043 (2)0.0048 (19)0.018 (2)0.0049 (19)
C12A0.024 (2)0.033 (2)0.043 (2)0.0019 (18)0.0111 (19)0.0002 (18)
C14A0.025 (2)0.029 (2)0.027 (2)0.0035 (18)0.0050 (17)0.0010 (16)
C15A0.028 (2)0.029 (2)0.033 (2)0.0038 (17)0.0112 (18)0.0036 (17)
C16A0.068 (4)0.043 (3)0.051 (3)0.007 (2)0.030 (3)0.008 (2)
C17A0.039 (3)0.024 (2)0.052 (3)0.0083 (19)0.008 (2)0.0008 (19)
C18A0.036 (3)0.034 (2)0.053 (3)0.003 (2)0.002 (2)0.013 (2)
O10.0328 (17)0.0163 (13)0.0333 (15)0.0067 (12)0.0131 (13)0.0009 (11)
C190.073 (4)0.056 (3)0.070 (4)0.025 (3)0.005 (3)0.013 (3)
C200.038 (6)0.059 (6)0.075 (7)0.017 (5)0.007 (5)0.020 (6)
C20B0.049 (10)0.041 (7)0.062 (9)0.014 (6)0.010 (7)0.008 (7)
C210.075 (4)0.059 (3)0.077 (4)0.021 (3)0.019 (3)0.007 (3)
Geometric parameters (Å, º) top
O8—C81.221 (4)N3A—C4A1.340 (5)
O14—C141.216 (4)N7A—C8A1.373 (5)
N1—C21.321 (4)N7A—C2A1.390 (5)
N1—C61.343 (4)N7A—H7A0.871 (18)
N3—C21.343 (4)N13A—C14A1.381 (5)
N3—C41.347 (5)N13A—C6A1.391 (4)
N7—C81.375 (4)N13A—H13A0.886 (18)
N7—C21.398 (5)C4A—C5A1.375 (5)
N7—H70.881 (18)C4A—H4A0.9500
N13—C141.372 (5)C5A—C6A1.394 (5)
N13—C61.392 (4)C5A—H5A0.9500
N13—H130.870 (18)C8A—C9A1.529 (5)
C4—C51.370 (5)C9A—C12A1.523 (5)
C4—H40.9500C9A—C10A1.530 (5)
C5—C61.391 (5)C9A—C11A1.531 (5)
C5—H50.9500C10A—H10D0.9800
C8—C91.528 (5)C10A—H10E0.9800
C9—C121.517 (5)C10A—H10F0.9800
C9—C111.524 (5)C11A—H11D0.9800
C9—C101.532 (5)C11A—H11E0.9800
C10—H10A0.9800C11A—H11F0.9800
C10—H10B0.9800C12A—H12D0.9800
C10—H10C0.9800C12A—H12E0.9800
C11—H11A0.9800C12A—H12F0.9800
C11—H11B0.9800C14A—C15A1.529 (5)
C11—H11C0.9800C15A—C18A1.522 (5)
C12—H12A0.9800C15A—C16A1.531 (5)
C12—H12B0.9800C15A—C17A1.537 (5)
C12—H12C0.9800C16A—H16D0.9800
C14—C151.529 (5)C16A—H16E0.9800
C15—C161.524 (10)C16A—H16F0.9800
C15—C17B1.525 (13)C17A—H17D0.9800
C15—C181.526 (10)C17A—H17E0.9800
C15—C16B1.527 (13)C17A—H17F0.9800
C15—C18B1.539 (12)C18A—H18D0.9800
C15—C171.543 (10)C18A—H18E0.9800
C16—H16A0.9800C18A—H18F0.9800
C16—H16B0.9800O1—H1A0.841 (19)
C16—H16C0.9800O1—H1B0.828 (18)
C17—H17A0.9800C19—C201.512 (9)
C17—H17B0.9800C19—C20B1.550 (12)
C17—H17C0.9800C19—H19A0.9800
C18—H18A0.9800C19—H19B0.9800
C18—H18B0.9800C19—H19C0.9800
C18—H18C0.9800C19—H19D0.9800
C16B—H16G0.9800C19—H19E0.9800
C16B—H16H0.9800C19—H19F0.9800
C16B—H16I0.9800C20—C211.435 (9)
C17B—H17G0.9800C20—H20A0.9900
C17B—H17H0.9800C20—H20B0.9900
C17B—H17I0.9800C20B—C211.447 (11)
C18B—H18G0.9800C20B—H20C0.9900
C18B—H18H0.9800C20B—H20D0.9900
C18B—H18I0.9800C21—C21i1.473 (10)
O8A—C8A1.227 (4)C21—H21A0.9900
O14A—C14A1.208 (4)C21—H21B0.9900
N1A—C2A1.334 (4)C21—H21C0.9900
N1A—C6A1.336 (5)C21—H21D0.9900
N3A—C2A1.339 (4)
C2—N1—C6116.2 (3)C6A—N13A—H13A111 (3)
C2—N3—C4113.6 (3)N1A—C2A—N3A126.7 (3)
C8—N7—C2127.7 (3)N1A—C2A—N7A117.9 (3)
C8—N7—H7120 (2)N3A—C2A—N7A115.3 (3)
C2—N7—H7112 (2)N3A—C4A—C5A124.4 (3)
C14—N13—C6127.1 (3)N3A—C4A—H4A117.8
C14—N13—H13120 (2)C5A—C4A—H4A117.8
C6—N13—H13112 (2)C4A—C5A—C6A115.8 (4)
N1—C2—N3127.5 (3)C4A—C5A—H5A122.1
N1—C2—N7118.9 (3)C6A—C5A—H5A122.1
N3—C2—N7113.7 (3)N1A—C6A—N13A112.8 (3)
N3—C4—C5125.0 (3)N1A—C6A—C5A121.7 (3)
N3—C4—H4117.5N13A—C6A—C5A125.5 (3)
C5—C4—H4117.5O8A—C8A—N7A122.8 (3)
C4—C5—C6114.9 (3)O8A—C8A—C9A121.7 (3)
C4—C5—H5122.5N7A—C8A—C9A115.4 (3)
C6—C5—H5122.5C12A—C9A—C8A108.2 (3)
N1—C6—C5122.4 (3)C12A—C9A—C10A109.1 (3)
N1—C6—N13112.6 (3)C8A—C9A—C10A109.9 (3)
C5—C6—N13124.9 (3)C12A—C9A—C11A109.5 (3)
O8—C8—N7123.0 (3)C8A—C9A—C11A110.8 (3)
O8—C8—C9122.1 (3)C10A—C9A—C11A109.4 (3)
N7—C8—C9114.9 (3)C9A—C10A—H10D109.5
C12—C9—C11110.0 (3)C9A—C10A—H10E109.5
C12—C9—C8108.6 (3)H10D—C10A—H10E109.5
C11—C9—C8108.9 (3)C9A—C10A—H10F109.5
C12—C9—C10108.8 (3)H10D—C10A—H10F109.5
C11—C9—C10109.6 (3)H10E—C10A—H10F109.5
C8—C9—C10110.9 (3)C9A—C11A—H11D109.5
C9—C10—H10A109.5C9A—C11A—H11E109.5
C9—C10—H10B109.5H11D—C11A—H11E109.5
H10A—C10—H10B109.5C9A—C11A—H11F109.5
C9—C10—H10C109.5H11D—C11A—H11F109.5
H10A—C10—H10C109.5H11E—C11A—H11F109.5
H10B—C10—H10C109.5C9A—C12A—H12D109.5
C9—C11—H11A109.5C9A—C12A—H12E109.5
C9—C11—H11B109.5H12D—C12A—H12E109.5
H11A—C11—H11B109.5C9A—C12A—H12F109.5
C9—C11—H11C109.5H12D—C12A—H12F109.5
H11A—C11—H11C109.5H12E—C12A—H12F109.5
H11B—C11—H11C109.5O14A—C14A—N13A121.9 (3)
C9—C12—H12A109.5O14A—C14A—C15A123.7 (3)
C9—C12—H12B109.5N13A—C14A—C15A114.4 (3)
H12A—C12—H12B109.5C18A—C15A—C14A108.4 (3)
C9—C12—H12C109.5C18A—C15A—C16A110.2 (3)
H12A—C12—H12C109.5C14A—C15A—C16A110.1 (3)
H12B—C12—H12C109.5C18A—C15A—C17A109.6 (3)
O14—C14—N13122.6 (3)C14A—C15A—C17A109.6 (3)
O14—C14—C15122.2 (3)C16A—C15A—C17A109.0 (4)
N13—C14—C15115.2 (3)C15A—C16A—H16D109.5
C16—C15—C18117.0 (11)C15A—C16A—H16E109.5
C17B—C15—C16B120 (2)H16D—C16A—H16E109.5
C16—C15—C14115.5 (7)C15A—C16A—H16F109.5
C17B—C15—C14112.8 (18)H16D—C16A—H16F109.5
C18—C15—C14109.1 (8)H16E—C16A—H16F109.5
C16B—C15—C14103.2 (10)C15A—C17A—H17D109.5
C17B—C15—C18B114.3 (16)C15A—C17A—H17E109.5
C16B—C15—C18B99.5 (15)H17D—C17A—H17E109.5
C14—C15—C18B105.2 (12)C15A—C17A—H17F109.5
C16—C15—C17102.4 (16)H17D—C17A—H17F109.5
C18—C15—C17106.1 (11)H17E—C17A—H17F109.5
C14—C15—C17105.5 (11)C15A—C18A—H18D109.5
C15—C16—H16A109.5C15A—C18A—H18E109.5
C15—C16—H16B109.5H18D—C18A—H18E109.5
H16A—C16—H16B109.5C15A—C18A—H18F109.5
C15—C16—H16C109.5H18D—C18A—H18F109.5
H16A—C16—H16C109.5H18E—C18A—H18F109.5
H16B—C16—H16C109.5H1A—O1—H1B111 (4)
C15—C17—H17A109.5C20—C19—H19A109.5
C15—C17—H17B109.5C20—C19—H19B109.5
H17A—C17—H17B109.5H19A—C19—H19B109.5
C15—C17—H17C109.5C20—C19—H19C109.5
H17A—C17—H17C109.5H19A—C19—H19C109.5
H17B—C17—H17C109.5H19B—C19—H19C109.5
C15—C18—H18A109.5C20B—C19—H19D109.5
C15—C18—H18B109.5C20B—C19—H19E109.5
H18A—C18—H18B109.5H19D—C19—H19E109.5
C15—C18—H18C109.5C20B—C19—H19F109.5
H18A—C18—H18C109.5H19D—C19—H19F109.5
H18B—C18—H18C109.5H19E—C19—H19F109.5
C15—C16B—H16G109.5C21—C20—C19117.4 (7)
C15—C16B—H16H109.5C21—C20—H20A107.9
H16G—C16B—H16H109.5C19—C20—H20A107.9
C15—C16B—H16I109.5C21—C20—H20B107.9
H16G—C16B—H16I109.5C19—C20—H20B107.9
H16H—C16B—H16I109.5H20A—C20—H20B107.2
C15—C17B—H17G109.5C21—C20B—C19114.3 (9)
C15—C17B—H17H109.5C21—C20B—H20C108.7
H17G—C17B—H17H109.5C19—C20B—H20C108.7
C15—C17B—H17I109.5C21—C20B—H20D108.7
H17G—C17B—H17I109.5C19—C20B—H20D108.7
H17H—C17B—H17I109.5H20C—C20B—H20D107.6
C15—C18B—H18G109.5C20—C21—C21i122.8 (7)
C15—C18B—H18H109.5C20B—C21—C21i123.2 (8)
H18G—C18B—H18H109.5C20—C21—H21A106.6
C15—C18B—H18I109.5C21i—C21—H21A106.6
H18G—C18B—H18I109.5C20—C21—H21B106.6
H18H—C18B—H18I109.5C21i—C21—H21B106.6
C2A—N1A—C6A116.9 (3)H21A—C21—H21B106.6
C2A—N3A—C4A114.4 (3)C20B—C21—H21C106.5
C8A—N7A—C2A126.9 (3)C21i—C21—H21C106.5
C8A—N7A—H7A120 (3)C20B—C21—H21D106.5
C2A—N7A—H7A113 (3)C21i—C21—H21D106.5
C14A—N13A—C6A127.9 (3)H21C—C21—H21D106.5
C14A—N13A—H13A121 (2)
C6—N1—C2—N30.1 (6)C6A—N1A—C2A—N3A1.8 (5)
C6—N1—C2—N7179.1 (3)C6A—N1A—C2A—N7A179.7 (3)
C4—N3—C2—N14.2 (5)C4A—N3A—C2A—N1A0.0 (5)
C4—N3—C2—N7174.9 (3)C4A—N3A—C2A—N7A177.9 (3)
C8—N7—C2—N123.1 (6)C8A—N7A—C2A—N1A31.5 (5)
C8—N7—C2—N3157.8 (3)C8A—N7A—C2A—N3A150.3 (3)
C2—N3—C4—C53.9 (6)C2A—N3A—C4A—C5A1.8 (5)
N3—C4—C5—C60.4 (6)N3A—C4A—C5A—C6A1.7 (6)
C2—N1—C6—C55.0 (5)C2A—N1A—C6A—N13A178.2 (3)
C2—N1—C6—N13174.1 (3)C2A—N1A—C6A—C5A1.9 (5)
C4—C5—C6—N15.1 (5)C14A—N13A—C6A—N1A169.9 (3)
C4—C5—C6—N13173.9 (4)C14A—N13A—C6A—C5A10.0 (6)
C14—N13—C6—N1173.8 (3)C4A—C5A—C6A—N1A0.3 (5)
C14—N13—C6—C55.3 (6)C4A—C5A—C6A—N13A179.9 (3)
C2—N7—C8—O81.9 (6)C2A—N7A—C8A—O8A2.1 (6)
C2—N7—C8—C9178.6 (3)C2A—N7A—C8A—C9A176.3 (3)
O8—C8—C9—C128.7 (5)O8A—C8A—C9A—C12A1.1 (5)
N7—C8—C9—C12171.8 (3)N7A—C8A—C9A—C12A179.4 (3)
O8—C8—C9—C11111.1 (4)O8A—C8A—C9A—C10A117.9 (4)
N7—C8—C9—C1168.4 (4)N7A—C8A—C9A—C10A60.4 (4)
O8—C8—C9—C10128.2 (4)O8A—C8A—C9A—C11A121.0 (4)
N7—C8—C9—C1052.3 (4)N7A—C8A—C9A—C11A60.6 (4)
C6—N13—C14—O148.2 (6)C6A—N13A—C14A—O14A5.3 (6)
C6—N13—C14—C15171.8 (3)C6A—N13A—C14A—C15A174.7 (3)
O14—C14—C15—C16127.7 (10)O14A—C14A—C15A—C18A2.7 (5)
N13—C14—C15—C1652.3 (10)N13A—C14A—C15A—C18A177.3 (3)
O14—C14—C15—C17B109 (2)O14A—C14A—C15A—C16A123.3 (4)
N13—C14—C15—C17B71 (2)N13A—C14A—C15A—C16A56.7 (4)
O14—C14—C15—C186.4 (7)O14A—C14A—C15A—C17A116.8 (4)
N13—C14—C15—C18173.6 (6)N13A—C14A—C15A—C17A63.2 (4)
O14—C14—C15—C16B120.1 (13)C20B—C19—C20—C2164.2 (11)
N13—C14—C15—C16B59.9 (13)C20—C19—C20B—C2160.4 (10)
O14—C14—C15—C18B16.2 (10)C19—C20—C21—C20B65.7 (12)
N13—C14—C15—C18B163.8 (9)C19—C20—C21—C21i167.6 (7)
O14—C14—C15—C17120.0 (13)C19—C20B—C21—C2060.0 (10)
N13—C14—C15—C1760.0 (13)C19—C20B—C21—C21i160.5 (8)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O8A0.84 (2)2.08 (2)2.910 (3)167 (4)
O1—H1A···N1A0.84 (2)2.51 (4)2.958 (4)115 (3)
O1—H1B···O80.83 (2)2.13 (2)2.943 (3)168 (4)
O1—H1B···N10.83 (2)2.48 (4)2.931 (4)115 (3)
N7—H7···N3Aii0.88 (2)2.32 (2)3.144 (4)156 (3)
N13—H13···O10.87 (2)2.02 (2)2.864 (4)162 (4)
N7A—H7A···N3iii0.87 (2)2.16 (2)2.958 (4)152 (3)
N13A—H13A···O10.89 (2)2.02 (2)2.882 (4)164 (4)
C5—H5···O14iv0.952.373.205 (5)147
Symmetry codes: (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O8A0.841 (19)2.08 (2)2.910 (3)167 (4)
O1—H1A···N1A0.841 (19)2.51 (4)2.958 (4)115 (3)
O1—H1B···O80.828 (18)2.13 (2)2.943 (3)168 (4)
O1—H1B···N10.828 (18)2.48 (4)2.931 (4)115 (3)
N7—H7···N3Ai0.881 (18)2.32 (2)3.144 (4)156 (3)
N13—H13···O10.870 (18)2.02 (2)2.864 (4)162 (4)
N7A—H7A···N3ii0.871 (18)2.16 (2)2.958 (4)152 (3)
N13A—H13A···O10.886 (18)2.02 (2)2.882 (4)164 (4)
C5—H5···O14iii0.952.373.205 (5)147
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

The financial support from the National Science Centre in Kraków (grant No. NCN204 356840) is gratefully acknowledged. Academy Professor Kari Rissanen is also gratefully acknowledged for financial support (Academy of Finland grant Nos. 122350, 140718, 265328 and 263256).

References

First citationBruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCrane, J. D. (2003). Acta Cryst. E59, o1854–o1855.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOśmiałowski, B., Kolehmainen, E., Gawinecki, R., Dobosz, R. & Kaupinen, R. (2010). J. Phys. Chem. A, 114, 12881–12887.  Web of Science PubMed Google Scholar
First citationOśmiałowski, B., Kolehmainen, E., Ikonen, S., Valkonen, A., Kwiatkowski, A., Grela, I. & Haapaniemi, E. (2012). J. Org. Chem. 77, 9609–9619.  Web of Science PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1617-o1618
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds