organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(hex­yl­oxy)benzene

aCollege of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053, People's Republic of China
*Correspondence e-mail: wqwang2008@163.com

(Received 15 October 2013; accepted 22 October 2013; online 31 October 2013)

The asymmetric unit of the title compound, C18H30O2, contains one half-mol­ecule situated on an inversion center. The alkyl chain adopts a fully extended all-trans conformation. The C atoms of the alkyl chain are almost coplanar, with a maximum deviation of 0.042 (6) Å from the mean plane,which is inclined to the central benzene ring by 6.80 (9)°. The crystal packing exhibits no short inter­molecular contacts.

Related literature

For the synthesis and applications of the title compound, see: Ramesh & Thomas (2010[Ramesh, A. R. & Thomas, K. G. (2010). Chem. Commun. 46, 3457-3459.]); Mayor & Didschies (2003[Mayor, M. & Didschies, C. (2003). Angew. Chem. Int. Ed. 42, 3176-3179.]); Choi et al. (2006[Choi, K. M., Kim, H. L. & Suh, D. H. (2006). J. Appl. Polym. Sci. 101, 1228-1233.]). For the crystal structures of related compounds, see: Li et al. (2008[Li, Y.-F., Xu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2008). Acta Cryst. E64, o1930.]); Thevenet et al. (2010[Thevenet, D., Neier, R., Sereda, O., Neels, A. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, o837-o838.]).

[Scheme 1]

Experimental

Crystal data
  • C18H30O2

  • Mr = 278.42

  • Monoclinic, P 21 /c

  • a = 18.853 (12) Å

  • b = 7.512 (5) Å

  • c = 6.364 (4) Å

  • β = 95.674 (10)°

  • V = 896.9 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.06 × 0.05 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.996, Tmax = 0.997

  • 6024 measured reflections

  • 1552 independent reflections

  • 760 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.238

  • S = 0.99

  • 1552 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important intermediate in the synthesis of conjugated polymers (Mayor & Didschies, 2003; Choi et al., 2006) and supramolecular networks (Ramesh & Thomas, 2010). Herein we report its crystal structure.

In the molecule (Fig. 1), the alkyl chain adopts a fully extended all-trans conformation. The C-atoms of the alkyl chain are almost coplanar with the maximum deviation of 0.042 (6) Å from the mean plane, and this mean plane is inclined to the central benzene ring by 6.80 (9)°. The crystal packing exhibits no short intermolecular contacts.

Related literature top

For the synthesis and applications of the title compound, see: Ramesh & Thomas (2010); Mayor & Didschies (2003); Choi et al. (2006). For the crystal structures of related compounds, see: Li et al. (2008); Thevenet et al. (2010).

Experimental top

The title compound was synthesized according to the known method (Ramesh & Thomas, 2010). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solution in hexane-MeOH (5:1).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) (methyl C) was applied.

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-numbering scheme and 50% probability displacement ellipsoids [symmetry code: (a) -x, 1 -y, 2 -z].
1,4-Bis(hexyloxy)benzene top
Crystal data top
C18H30O2F(000) = 308
Mr = 278.42Dx = 1.031 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 885 reflections
a = 18.853 (12) Åθ = 2.2–21.8°
b = 7.512 (5) ŵ = 0.07 mm1
c = 6.364 (4) ÅT = 298 K
β = 95.674 (10)°Block, colourless
V = 896.9 (11) Å30.06 × 0.05 × 0.04 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1552 independent reflections
Radiation source: fine-focus sealed tube760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2221
Tmin = 0.996, Tmax = 0.997k = 88
6024 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.238H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1237P)2]
where P = (Fo2 + 2Fc2)/3
1552 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H30O2V = 896.9 (11) Å3
Mr = 278.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 18.853 (12) ŵ = 0.07 mm1
b = 7.512 (5) ÅT = 298 K
c = 6.364 (4) Å0.06 × 0.05 × 0.04 mm
β = 95.674 (10)°
Data collection top
Bruker APEXII CCD
diffractometer
1552 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
760 reflections with I > 2σ(I)
Tmin = 0.996, Tmax = 0.997Rint = 0.099
6024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.238H-atom parameters constrained
S = 0.99Δρmax = 0.17 e Å3
1552 reflectionsΔρmin = 0.15 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01445 (17)0.4133 (3)0.8176 (4)0.0693 (9)
H10.02410.35420.69520.083*
C20.06718 (16)0.5102 (3)0.9318 (4)0.0664 (8)
C30.05200 (17)0.5954 (4)1.1147 (4)0.0700 (8)
H30.08760.65971.19280.084*
C40.15191 (16)0.4640 (4)0.6777 (4)0.0795 (9)
H4A0.11710.50550.56610.095*
H4B0.15140.33480.67820.095*
C50.22423 (18)0.5306 (5)0.6427 (5)0.0905 (10)
H5A0.22280.65950.63600.109*
H5B0.25710.49780.76340.109*
C60.25233 (18)0.4623 (5)0.4483 (5)0.0959 (11)
H6A0.22070.49960.32690.115*
H6B0.25200.33320.45200.115*
C70.3266 (2)0.5246 (5)0.4201 (6)0.1107 (13)
H7A0.32620.65350.40980.133*
H7B0.35760.49290.54520.133*
C80.3570 (3)0.4521 (8)0.2347 (7)0.1542 (19)
H8A0.32630.48490.10950.185*
H8B0.35690.32320.24430.185*
C90.4300 (3)0.5113 (10)0.2076 (9)0.202 (3)
H9A0.43130.63890.20180.303*
H9B0.44440.46310.07870.303*
H9C0.46190.47040.32450.303*
O10.13529 (11)0.5307 (3)0.8769 (3)0.0818 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.106 (2)0.0549 (16)0.0456 (15)0.0004 (15)0.0022 (15)0.0034 (12)
C20.089 (2)0.0570 (17)0.0516 (15)0.0033 (13)0.0020 (13)0.0104 (13)
C30.103 (2)0.0531 (16)0.0516 (15)0.0086 (14)0.0060 (13)0.0021 (12)
C40.099 (2)0.0787 (19)0.0600 (18)0.0063 (16)0.0020 (14)0.0041 (15)
C50.105 (2)0.085 (2)0.081 (2)0.0025 (18)0.0044 (16)0.0080 (17)
C60.100 (3)0.102 (3)0.086 (2)0.0084 (19)0.0097 (17)0.0030 (19)
C70.108 (3)0.116 (3)0.108 (3)0.002 (2)0.013 (2)0.002 (2)
C80.140 (4)0.200 (5)0.127 (4)0.002 (4)0.041 (3)0.017 (4)
C90.140 (4)0.272 (9)0.205 (6)0.003 (4)0.070 (4)0.004 (5)
O10.0997 (16)0.0855 (15)0.0591 (12)0.0089 (11)0.0017 (10)0.0092 (10)
Geometric parameters (Å, º) top
C1—C3i1.366 (4)C5—H5B0.9700
C1—C21.380 (4)C6—C71.505 (5)
C1—H10.9300C6—H6A0.9700
C2—O11.372 (3)C6—H6B0.9700
C2—C31.383 (4)C7—C81.467 (5)
C3—C1i1.366 (4)C7—H7A0.9700
C3—H30.9300C7—H7B0.9700
C4—O11.427 (3)C8—C91.472 (6)
C4—C51.490 (4)C8—H8A0.9700
C4—H4A0.9700C8—H8B0.9700
C4—H4B0.9700C9—H9A0.9600
C5—C61.484 (4)C9—H9B0.9600
C5—H5A0.9700C9—H9C0.9600
C3i—C1—C2119.7 (3)C7—C6—H6A108.8
C3i—C1—H1120.2C5—C6—H6B108.8
C2—C1—H1120.2C7—C6—H6B108.8
O1—C2—C1124.7 (3)H6A—C6—H6B107.7
O1—C2—C3116.0 (2)C8—C7—C6115.0 (4)
C1—C2—C3119.3 (3)C8—C7—H7A108.5
C1i—C3—C2121.1 (2)C6—C7—H7A108.5
C1i—C3—H3119.5C8—C7—H7B108.5
C2—C3—H3119.5C6—C7—H7B108.5
O1—C4—C5107.4 (3)H7A—C7—H7B107.5
O1—C4—H4A110.2C7—C8—C9115.2 (5)
C5—C4—H4A110.2C7—C8—H8A108.5
O1—C4—H4B110.2C9—C8—H8A108.5
C5—C4—H4B110.2C7—C8—H8B108.5
H4A—C4—H4B108.5C9—C8—H8B108.5
C6—C5—C4114.6 (3)H8A—C8—H8B107.5
C6—C5—H5A108.6C8—C9—H9A109.5
C4—C5—H5A108.6C8—C9—H9B109.5
C6—C5—H5B108.6H9A—C9—H9B109.5
C4—C5—H5B108.6C8—C9—H9C109.5
H5A—C5—H5B107.6H9A—C9—H9C109.5
C5—C6—C7113.9 (3)H9B—C9—H9C109.5
C5—C6—H6A108.8C2—O1—C4118.7 (2)
C3i—C1—C2—O1178.8 (2)C5—C6—C7—C8177.1 (4)
C3i—C1—C2—C30.7 (4)C6—C7—C8—C9179.4 (4)
O1—C2—C3—C1i178.9 (2)C1—C2—O1—C46.9 (4)
C1—C2—C3—C1i0.7 (4)C3—C2—O1—C4172.7 (2)
O1—C4—C5—C6175.7 (2)C5—C4—O1—C2170.4 (2)
C4—C5—C6—C7177.6 (3)
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC18H30O2
Mr278.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)18.853 (12), 7.512 (5), 6.364 (4)
β (°) 95.674 (10)
V3)896.9 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.06 × 0.05 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.996, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
6024, 1552, 760
Rint0.099
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.238, 0.99
No. of reflections1552
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author is grateful to Hubei University of Arts and Science for financial support.

References

First citationBruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, K. M., Kim, H. L. & Suh, D. H. (2006). J. Appl. Polym. Sci. 101, 1228–1233.  CAS Google Scholar
First citationLi, Y.-F., Xu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2008). Acta Cryst. E64, o1930.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMayor, M. & Didschies, C. (2003). Angew. Chem. Int. Ed. 42, 3176–3179.  Web of Science CrossRef CAS Google Scholar
First citationRamesh, A. R. & Thomas, K. G. (2010). Chem. Commun. 46, 3457–3459.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThevenet, D., Neier, R., Sereda, O., Neels, A. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, o837–o838.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds