inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Thulium nickel/lithium distannide, TmNi1−xLixSn2 (x = 0.035)

aIvano-Frankivsk National Medical University, Department of Chemistry, Galytska str. 2, 76018 Ivano-Frankivsk, Ukraine, bDepartment of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv, Ukraine, and cInstitute of Chemistry, Environment Protection and Biotechnology, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
*Correspondence e-mail: tarasiuk.i@gmail.com

(Received 27 September 2013; accepted 4 October 2013; online 12 October 2013)

The quaternary thulium nickel/lithium distannide, TmNi1−xLixSn2 (x = 0.035), crystallizes in the ortho­rhom­bic LuNiSn2 structure type. The asymmetric unit contains three Tm sites, six Sn sites, two Ni sites and one Ni/Li site [relative occupancies = 0.895 (8):0.185 (8)]. Site symmetries are .m. for all atoms. The 17-, 18- and 19-vertex distorted pseudo-Frank–Kasper polyhedra are typical for all Tm atoms. Four Sn atoms are enclosed in a 12-vertex deformed cubo­octa­hedron, and another Sn atom is enclosed in a penta­gonal prism with three added atoms. A tricapped trigonal prism is typical for a further Sn atom. The coordination number for all Ni atoms and Ni/Li statistical mixtures is 12 (fourcapped trigonal prism [Ni/LiTm5Sn5]). Tm atoms form the base of a prism and Ni/Li atoms are at the centres of the side faces of an [SnTm6Ni/Li3] prism. These isolated prisms are implemented into three-dimensional-nets built out of Sn atoms. Electronic structure calculations using TB-LMTO-ASA suggest that the Tm and Ni/Li atoms form positively charged n[TmNi/Li]m+ polycations which compensate the negative charge of 2n[Sn]m polyanions. Analysis of the inter­atomic distances and electronic structure calculations indicate the dominance of a metallic type of bonding.

Related literature

For isotypic structures, see: Komarovskaya et al. (1983[Komarovskaya, L. P., Akselrud, L. G. & Skolozdra, R. V. (1983). Sov. Phys. Crystallogr. 28, 706-707.]). For background of the study and related structures, see: Pavlyuk & Bodak (1992a[Pavlyuk, V. & Bodak, O. (1992a). Akad. Nauk SSSR Izvest. Metally. 6, 207-210.],b[Pavlyuk, V. & Bodak, O. (1992b). Inorg. Mater. 28, 877-879.]); Pavlyuk et al. (1989a[Pavlyuk, V., Bodak, O., Pecharskii, V., Skolozdra, R. & Gladyshevskii, E. (1989a). Inorg. Mater. 25, 962-965.],b[Pavlyuk, V., Pecharskii, V., Bodak, O. & Sobolev, A. (1989b). Akad. Nauk SSSR Izvest. Metally. 5, 221-222.], 1991[Pavlyuk, V., Bodak, O. & Bruskov, V. (1991). Dopov. Akad. Nauk Ukr. 1, 112-114.], 1993[Pavlyuk, V., Bodak, O. & Kevorkov, D. (1993). Dopov. Akad. Nauk Ukr. 9, 84-87.]); Stetskiv et al. (2012[Stetskiv, A., Tarasiuk, I., Rozdzynska-Kielbik, B., Oshchapovsky, I. & Pavlyuk, V. (2012). Acta Cryst. E68, i16.], 2013[Stetskiv, A., Rozdzynska-Kielbik, B. & Pavlyuk, V. (2013). Acta Cryst. C69, 683-688.]). For electronic structure calculations, see: Andersen et al. (1986[Andersen, O. K., Pawlowska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 5253-5269.]).

Experimental

Crystal data
  • TmNi0.965Li0.035Sn2

  • Mr = 463.23

  • Orthorhombic, P n m a

  • a = 16.0285 (11) Å

  • b = 4.3862 (4) Å

  • c = 14.3684 (10) Å

  • V = 1010.16 (14) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 45.77 mm−1

  • T = 293 K

  • 0.07 × 0.03 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur3 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.213, Tmax = 0.403

  • 6737 measured reflections

  • 1304 independent reflections

  • 1096 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.060

  • S = 1.18

  • 1304 reflections

  • 76 parameters

  • Δρmax = 2.07 e Å−3

  • Δρmin = −2.13 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The RETSn2 and RETxSn2 (x<1) type metallic compounds where RE is a rare-earth element (Gd—Lu) and T is a d-electron element crystallize in different orthorhombic crystal structures LuNiSn2 (space group Pnma) and CeNiSi2-type (space group Cmcm) respectively. In the ternary RELiSn2 compounds lithium atoms occupy the same crystallographic position as the atoms of transition metal in the original CeNiSi2 structure type (Pavlyuk et al., 1989a). Previous structural studies of the four-component alloys from TbLiSn2–TbZnSn2 sections indicate the existence of TbLi1–xZnxSn2 limited solid solution (Stetskiv et al., 2012). X-ray single-crystal study showed that the TbLi1–xZnxSn2 solid solution was formed by the partial substitution of lithium atoms by zinc atoms in 4c site. The ability of lithium atoms to partially substitute the atoms of transition metals was previously observed by us while studying solid solutions RELixCu2–xSi2 and RELixCu2–xGe2 (Pavlyuk et al., 1993). The ordered substitution of transition metals by lithium is observed for Tm2.22Co6Sn20 and TmLi2Co6Sn20 stannides (Stetskiv et al., 2013). The ability of lithium atoms to occupy the same crystallographic position as the atoms of transition metal was observed previously while studying compounds RELiGe with the ZrNiAl-type (Pavlyuk et al., 1991 and Pavlyuk & Bodak, 1992a), RE3Li2Ge3 with Hf3Ni2Si3-type (Pavlyuk & Bodak, 1992b) and Yb5Li4Ge4 with Nb5Cu4Si4-type (Pavlyuk et al., 1989b).

The four-component phase TmNi1–xLixSn2 with low content of lithium from the TmLiSn2–TmNiSn2 section was detected by us during the systematic study of alloys of Tm—Ni—Li—Sn system. Selected single-crystal data show that the title compound crystallizes with the orthorhombic space group Pnma as a LuNiSn2-type (Komarovskaya et al., 1983). The projection of the unit cell and coordination polyhedra of the atoms are shown in Fig. 1. The Tm atoms are enclosed in 17-, 18- and 19-vertex distorted pseudo Frank-Kasper polyhedra. The coordination polyhedron of Sn4, Sn7, Sn8 and Sn9 atoms is 12-vertex distorted cubooctahedron. The Sn5 is enclosed in pentagonal prism with three added atoms. The tricapped trigonal prism is typical for Sn6 atom. The environment of the Ni atoms and Ni/Li statistical mixture is a fourcapped trigonal prism and a coordination number equals 10 (Tm5Sn5).

The distribution of nickel/lithium and thulium atoms in three-dimensional-nets built of Sn atoms is shown in Fig. 2. The thulium and nickel/lithium atoms form tricapped trigonal prism around Sn6. Thulium atoms form the base of prism and nickel/lithium atoms centre side faces of [SnTm6Ni/Li3] prism. These isolated prisms are implemented into three-dimensional-nets built of tin atoms. The data of electronic structure calculations using the TB-LMTO-ASA (Andersen et al., 1986) suggest that thulium and nickel/lithium atoms form a positively charged n[TmNi/Li]m+ polycations which compensate the negative charge of 2n[Sn]m- polyanions (Fig. 3 A). Of course, this suggestion is based on the partial charges. All interatomic distances are values which correlate well with the atomic size; metallic type of bonding was indicated. A significant density of states (DOS) at the Fermi level (Fig. 3B) also indicates dominance of metallic bonding.

Related literature top

For isostructural/isotypic structures, see: Komarovskaya et al. (1983). For background of the study and related structures, see: Pavlyuk & Bodak (1992a,b); Pavlyuk et al. (1989a,b, 1991, 1993); Stetskiv et al. (2012, 2013). For electronic structure calculations, see: Andersen et al., (1986).

Experimental top

Thulium, nickel, lithium and tin, all with a nominal purity more than 99.9 wt. %, were used as starting elements. First, the pieces of the pure metals with a stoichiometry Tm25Ni20Li5Sn50 were pressed into pellet, enclosed in tantalum crucible and placed in a resistance furnace with a thermocouple controller. Heating rate from room temperature to 670 K was equal to 5 K per minute. At this temperature the alloy was kept over 2 d and then the temperature was increased from 670 to 1070 K over 1 h. Then, the alloy was annealed at this temperature for 8 h and slowly cooled down to room temperature. After the melting and annealing procedures, the total weight loss was less than 2%. Small good quality single-crystal of the title compound was isolated from the alloy.

The synthesized alloy is practically single-phase. Therefore, in order to confirm the accuracy of the compositions, the density of the alloy was determined using the volumetric method. The measured density is 9.08 (5) Mg m-3, and these values differ by less than 1% from the densities calculated from the X-ray data. For the TmNiSn2 ternary phase density is 9,19 Mg m-3 (Komarovskaya et al., 1983).

Refinement top

The structure of the title phase was solved by direct methods after the analytical absorption correction. In the first stage of the refinement, the thermal displacement parameter of Ni12 atom was considerably different from those of other Ni sites, suggesting that this position is partially occupied by the lithium atom. In the final refinement cycles all atoms were successfully refined with anisotropic displacement parameters.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The projection of the unit cell and coordination polyhedra of the atoms.
[Figure 2] Fig. 2. The distribution of thulium and nickel/lithium atoms in three-dimensional-nets built of the Sn atoms.
[Figure 3] Fig. 3. (A) Isosurfaces of electron localization function (ELF) around the atoms, positively charged n[TmNi/Li]m+ polycations marked by the violet dotted line and the negatively charged 2n[Sn]m- polyanions marked by the yellow dotted line. (B) Total and partial DOS.
Thulium nickel/lithium distannide top
Crystal data top
TmNi0.965Li0.035Sn2F(000) = 2353.5
Mr = 463.23Dx = 9.138 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1304 reflections
a = 16.0285 (11) Åθ = 3.8–27.5°
b = 4.3862 (4) ŵ = 45.77 mm1
c = 14.3684 (10) ÅT = 293 K
V = 1010.16 (14) Å3Prism, metallic dark gray
Z = 120.07 × 0.03 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
1304 independent reflections
Radiation source: fine-focus sealed tube1096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.8°
ω scansh = 2020
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 35
Tmin = 0.213, Tmax = 0.403l = 1818
6737 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.023P)2 + 11.3465P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max = 0.006
S = 1.18Δρmax = 2.07 e Å3
1304 reflectionsΔρmin = 2.13 e Å3
76 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00030 (3)
Crystal data top
TmNi0.965Li0.035Sn2V = 1010.16 (14) Å3
Mr = 463.23Z = 12
Orthorhombic, PnmaMo Kα radiation
a = 16.0285 (11) ŵ = 45.77 mm1
b = 4.3862 (4) ÅT = 293 K
c = 14.3684 (10) Å0.07 × 0.03 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
1304 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
1096 reflections with I > 2σ(I)
Tmin = 0.213, Tmax = 0.403Rint = 0.034
6737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.023P)2 + 11.3465P]
where P = (Fo2 + 2Fc2)/3
S = 1.18Δρmax = 2.07 e Å3
1304 reflectionsΔρmin = 2.13 e Å3
76 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tm10.35386 (4)0.25000.10177 (4)0.01166 (15)
Tm20.15061 (4)0.25000.02797 (4)0.01120 (15)
Tm30.12704 (4)0.25000.22713 (4)0.01269 (15)
Sn40.02119 (5)0.25000.07931 (6)0.0105 (2)
Sn50.46864 (6)0.25000.23607 (7)0.0158 (2)
Sn60.21452 (6)0.25000.10507 (6)0.0129 (2)
Sn70.32559 (6)0.25000.13071 (6)0.0118 (2)
Sn80.31632 (6)0.25000.32114 (7)0.0157 (2)
Sn90.45722 (6)0.25000.05229 (7)0.0154 (2)
Ni100.29945 (11)0.25000.04622 (13)0.0133 (4)
Ni110.05291 (10)0.25000.10639 (12)0.0122 (4)
Ni120.30709 (12)0.25000.24440 (14)0.0162 (7)0.895 (8)
Li120.30709 (12)0.25000.24440 (14)0.0162 (7)0.105 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tm10.0109 (3)0.0140 (3)0.0100 (3)0.0000.0005 (2)0.000
Tm20.0107 (3)0.0124 (3)0.0105 (3)0.0000.0011 (2)0.000
Tm30.0157 (3)0.0136 (3)0.0087 (3)0.0000.0028 (2)0.000
Sn40.0092 (4)0.0106 (4)0.0117 (4)0.0000.0002 (3)0.000
Sn50.0162 (5)0.0174 (4)0.0138 (5)0.0000.0035 (4)0.000
Sn60.0117 (5)0.0124 (4)0.0145 (5)0.0000.0009 (3)0.000
Sn70.0140 (5)0.0106 (4)0.0107 (5)0.0000.0014 (3)0.000
Sn80.0114 (5)0.0231 (5)0.0127 (5)0.0000.0001 (3)0.000
Sn90.0087 (5)0.0174 (5)0.0201 (5)0.0000.0015 (4)0.000
Ni100.0117 (9)0.0143 (8)0.0138 (9)0.0000.0009 (7)0.000
Ni110.0116 (8)0.0124 (8)0.0127 (9)0.0000.0004 (6)0.000
Ni120.0220 (12)0.0148 (11)0.0117 (11)0.0000.0044 (8)0.000
Li120.0220 (12)0.0148 (11)0.0117 (11)0.0000.0044 (8)0.000
Geometric parameters (Å, º) top
Tm1—Li12i3.0938 (15)Sn5—Tm1xi3.4522 (9)
Tm1—Ni12i3.0938 (15)Sn6—Ni122.492 (2)
Tm1—Ni123.0938 (15)Sn6—Ni102.565 (2)
Tm1—Sn9ii3.1104 (11)Sn6—Ni112.5904 (19)
Tm1—Sn63.1306 (8)Sn6—Tm2xi3.0844 (8)
Tm1—Sn6i3.1306 (8)Sn6—Tm1xi3.1306 (8)
Tm1—Ni103.1768 (14)Sn6—Tm3xi3.1387 (8)
Tm1—Ni10i3.1768 (14)Sn7—Ni10i2.5415 (10)
Tm1—Sn83.2089 (11)Sn7—Ni102.5415 (10)
Tm1—Sn73.3711 (11)Sn7—Li12iii2.783 (2)
Tm1—Sn5i3.4522 (9)Sn7—Ni12iii2.783 (2)
Tm2—Sn6i3.0844 (8)Sn7—Tm3iii3.0916 (8)
Tm2—Sn63.0844 (8)Sn7—Tm3iv3.0916 (8)
Tm2—Sn43.1076 (8)Sn7—Sn8iii3.2345 (9)
Tm2—Sn4i3.1076 (8)Sn7—Sn8iv3.2345 (9)
Tm2—Sn8iii3.1290 (8)Sn7—Sn9i3.2451 (10)
Tm2—Sn8iv3.1290 (8)Sn7—Sn93.2451 (10)
Tm2—Sn4v3.1557 (11)Sn8—Ni122.4591 (10)
Tm2—Sn73.1695 (11)Sn8—Li12i2.4591 (10)
Tm2—Ni10i3.2512 (13)Sn8—Ni12i2.4591 (10)
Tm2—Ni103.2512 (13)Sn8—Ni10vii2.660 (2)
Tm2—Ni11i3.3150 (13)Sn8—Sn4vii2.9714 (13)
Tm2—Ni113.3150 (13)Sn8—Tm2vi3.1290 (8)
Tm3—Ni113.0383 (13)Sn8—Tm2vii3.1290 (8)
Tm3—Ni11i3.0383 (13)Sn8—Sn7vii3.2345 (9)
Tm3—Sn7vi3.0916 (8)Sn8—Sn7vi3.2345 (9)
Tm3—Sn7vii3.0916 (8)Sn9—Ni102.5303 (19)
Tm3—Sn63.1387 (8)Sn9—Sn9ii2.9914 (13)
Tm3—Sn6i3.1387 (8)Sn9—Sn9xiv2.9914 (13)
Tm3—Sn4v3.1868 (10)Sn9—Tm1ii3.1104 (11)
Tm3—Sn83.3210 (11)Sn9—Sn7xi3.2451 (10)
Tm3—Sn5viii3.3963 (8)Sn9—Tm3iii3.4450 (12)
Tm3—Sn5ix3.3963 (8)Sn9—Tm1xi3.5291 (9)
Tm3—Sn9vii3.4450 (12)Ni10—Sn7xi2.5415 (10)
Tm3—Ni10vii3.4631 (19)Ni10—Sn8iii2.660 (2)
Sn4—Ni11x2.5242 (9)Ni10—Tm1xi3.1768 (14)
Sn4—Ni11v2.5242 (9)Ni10—Tm2xi3.2512 (13)
Sn4—Ni112.7163 (19)Ni10—Tm3iii3.4631 (19)
Sn4—Sn8iii2.9714 (13)Ni11—Sn4x2.5242 (9)
Sn4—Tm2xi3.1076 (8)Ni11—Sn4v2.5242 (9)
Sn4—Tm2v3.1557 (11)Ni11—Sn5viii2.636 (2)
Sn4—Tm3v3.1868 (10)Ni11—Tm3xi3.0383 (13)
Sn4—Sn4v3.2350 (13)Ni11—Tm2xi3.3150 (13)
Sn4—Sn4x3.2350 (13)Ni11—Tm2v3.4512 (17)
Sn5—Ni122.592 (2)Ni12—Sn8xi2.4591 (10)
Sn5—Ni11xii2.636 (2)Ni12—Sn7vii2.783 (2)
Sn5—Tm3xii3.3963 (9)Ni12—Tm1xi3.0938 (15)
Sn5—Tm3xiii3.3963 (8)Ni12—Tm2vii3.340 (2)
Li12i—Tm1—Ni12i0.00 (9)Tm2—Sn6—Tm372.611 (17)
Li12i—Tm1—Ni1290.29 (6)Tm1—Sn6—Tm380.659 (16)
Ni12i—Tm1—Ni1290.29 (6)Tm1xi—Sn6—Tm3144.75 (4)
Li12i—Tm1—Sn9ii112.79 (4)Tm3xi—Sn6—Tm388.65 (3)
Ni12i—Tm1—Sn9ii112.79 (4)Ni10i—Sn7—Ni10119.29 (8)
Ni12—Tm1—Sn9ii112.79 (4)Ni10i—Sn7—Li12iii100.49 (5)
Li12i—Tm1—Sn6108.28 (4)Ni10—Sn7—Li12iii100.49 (5)
Ni12i—Tm1—Sn6108.28 (4)Ni10i—Sn7—Ni12iii100.49 (5)
Ni12—Tm1—Sn647.19 (4)Ni10—Sn7—Ni12iii100.49 (5)
Sn9ii—Tm1—Sn6134.268 (15)Li12iii—Sn7—Ni12iii0.00 (8)
Li12i—Tm1—Sn6i47.19 (4)Ni10i—Sn7—Tm3iii165.51 (5)
Ni12i—Tm1—Sn6i47.19 (4)Ni10—Sn7—Tm3iii75.16 (4)
Ni12—Tm1—Sn6i108.28 (4)Li12iii—Sn7—Tm3iii76.21 (4)
Sn9ii—Tm1—Sn6i134.268 (15)Ni12iii—Sn7—Tm3iii76.21 (4)
Sn6—Tm1—Sn6i88.94 (3)Ni10i—Sn7—Tm3iv75.16 (4)
Li12i—Tm1—Ni10150.02 (5)Ni10—Sn7—Tm3iv165.51 (5)
Ni12i—Tm1—Ni10150.02 (5)Li12iii—Sn7—Tm3iv76.21 (4)
Ni12—Tm1—Ni1083.54 (4)Ni12iii—Sn7—Tm3iv76.21 (4)
Sn9ii—Tm1—Ni1096.56 (4)Tm3iii—Sn7—Tm3iv90.37 (3)
Sn6—Tm1—Ni1047.98 (4)Ni10i—Sn7—Tm268.39 (4)
Sn6i—Tm1—Ni10107.33 (3)Ni10—Sn7—Tm268.39 (4)
Li12i—Tm1—Ni10i83.54 (4)Li12iii—Sn7—Tm267.91 (5)
Ni12i—Tm1—Ni10i83.54 (4)Ni12iii—Sn7—Tm267.91 (5)
Ni12—Tm1—Ni10i150.02 (5)Tm3iii—Sn7—Tm2121.67 (2)
Sn9ii—Tm1—Ni10i96.56 (4)Tm3iv—Sn7—Tm2121.67 (2)
Sn6—Tm1—Ni10i107.33 (3)Ni10i—Sn7—Sn8iii124.84 (5)
Sn6i—Tm1—Ni10i47.98 (4)Ni10—Sn7—Sn8iii53.21 (4)
Ni10—Tm1—Ni10i87.31 (5)Li12iii—Sn7—Sn8iii47.52 (2)
Li12i—Tm1—Sn845.89 (3)Ni12iii—Sn7—Sn8iii47.52 (2)
Ni12i—Tm1—Sn845.89 (3)Tm3iii—Sn7—Sn8iii63.28 (2)
Ni12—Tm1—Sn845.89 (3)Tm3iv—Sn7—Sn8iii120.82 (3)
Sn9ii—Tm1—Sn8114.02 (3)Tm2—Sn7—Sn8iii58.49 (2)
Sn6—Tm1—Sn881.45 (2)Ni10i—Sn7—Sn8iv53.21 (4)
Sn6i—Tm1—Sn881.45 (2)Ni10—Sn7—Sn8iv124.84 (5)
Ni10—Tm1—Sn8127.30 (3)Li12iii—Sn7—Sn8iv47.52 (2)
Ni10i—Tm1—Sn8127.30 (3)Ni12iii—Sn7—Sn8iv47.52 (2)
Li12i—Tm1—Sn7128.59 (3)Tm3iii—Sn7—Sn8iv120.82 (3)
Ni12i—Tm1—Sn7128.59 (3)Tm3iv—Sn7—Sn8iv63.28 (2)
Ni12—Tm1—Sn7128.59 (3)Tm2—Sn7—Sn8iv58.49 (2)
Sn9ii—Tm1—Sn784.51 (3)Sn8iii—Sn7—Sn8iv85.38 (3)
Sn6—Tm1—Sn785.36 (2)Ni10i—Sn7—Sn9i50.07 (4)
Sn6i—Tm1—Sn785.36 (2)Ni10—Sn7—Sn9i121.64 (5)
Ni10—Tm1—Sn745.56 (3)Li12iii—Sn7—Sn9i136.12 (2)
Ni10i—Tm1—Sn745.56 (3)Ni12iii—Sn7—Sn9i136.12 (2)
Sn8—Tm1—Sn7161.47 (3)Tm3iii—Sn7—Sn9i123.31 (3)
Li12i—Tm1—Sn5i46.26 (4)Tm3iv—Sn7—Sn9i65.81 (2)
Ni12i—Tm1—Sn5i46.26 (4)Tm2—Sn7—Sn9i114.43 (3)
Ni12—Tm1—Sn5i102.08 (4)Sn8iii—Sn7—Sn9i171.77 (4)
Sn9ii—Tm1—Sn5i66.98 (2)Sn8iv—Sn7—Sn9i94.201 (17)
Sn6—Tm1—Sn5i144.76 (3)Ni10i—Sn7—Sn9121.64 (5)
Sn6i—Tm1—Sn5i85.797 (19)Ni10—Sn7—Sn950.07 (4)
Ni10—Tm1—Sn5i163.54 (4)Li12iii—Sn7—Sn9136.12 (2)
Ni10i—Tm1—Sn5i94.70 (3)Ni12iii—Sn7—Sn9136.12 (2)
Sn8—Tm1—Sn5i63.31 (2)Tm3iii—Sn7—Sn965.81 (2)
Sn7—Tm1—Sn5i128.72 (2)Tm3iv—Sn7—Sn9123.31 (3)
Sn6i—Tm2—Sn690.64 (3)Tm2—Sn7—Sn9114.43 (3)
Sn6i—Tm2—Sn4150.53 (3)Sn8iii—Sn7—Sn994.201 (17)
Sn6—Tm2—Sn482.359 (19)Sn8iv—Sn7—Sn9171.77 (4)
Sn6i—Tm2—Sn4i82.359 (19)Sn9i—Sn7—Sn985.04 (3)
Sn6—Tm2—Sn4i150.53 (3)Ni10i—Sn7—Tm163.18 (4)
Sn4—Tm2—Sn4i89.78 (3)Ni10—Sn7—Tm163.18 (4)
Sn6i—Tm2—Sn8iii150.63 (3)Li12iii—Sn7—Tm1137.88 (5)
Sn6—Tm2—Sn8iii82.81 (2)Ni12iii—Sn7—Tm1137.88 (5)
Sn4—Tm2—Sn8iii56.91 (2)Tm3iii—Sn7—Tm1128.44 (2)
Sn4i—Tm2—Sn8iii116.31 (3)Tm3iv—Sn7—Tm1128.44 (2)
Sn6i—Tm2—Sn8iv82.81 (2)Tm2—Sn7—Tm169.97 (2)
Sn6—Tm2—Sn8iv150.63 (3)Sn8iii—Sn7—Tm1107.85 (3)
Sn4—Tm2—Sn8iv116.31 (3)Sn8iv—Sn7—Tm1107.85 (3)
Sn4i—Tm2—Sn8iv56.91 (2)Sn9i—Sn7—Tm164.44 (2)
Sn8iii—Tm2—Sn8iv89.00 (3)Sn9—Sn7—Tm164.44 (2)
Sn6i—Tm2—Sn4v89.26 (2)Ni12—Sn8—Li12i126.20 (9)
Sn6—Tm2—Sn4v89.26 (2)Ni12—Sn8—Ni12i126.20 (9)
Sn4—Tm2—Sn4v62.19 (2)Li12i—Sn8—Ni12i0.00 (12)
Sn4i—Tm2—Sn4v62.19 (2)Ni12—Sn8—Ni10vii106.22 (5)
Sn8iii—Tm2—Sn4v119.10 (2)Li12i—Sn8—Ni10vii106.22 (5)
Sn8iv—Tm2—Sn4v119.10 (2)Ni12i—Sn8—Ni10vii106.22 (5)
Sn6i—Tm2—Sn789.70 (2)Ni12—Sn8—Sn4vii105.58 (5)
Sn6—Tm2—Sn789.70 (2)Li12i—Sn8—Sn4vii105.58 (5)
Sn4—Tm2—Sn7118.70 (2)Ni12i—Sn8—Sn4vii105.58 (5)
Sn4i—Tm2—Sn7118.70 (2)Ni10vii—Sn8—Sn4vii105.46 (5)
Sn8iii—Tm2—Sn761.80 (2)Ni12—Sn8—Tm2vi161.07 (5)
Sn8iv—Tm2—Sn761.80 (2)Li12i—Sn8—Tm2vi72.29 (4)
Sn4v—Tm2—Sn7178.52 (3)Ni12i—Sn8—Tm2vi72.29 (4)
Sn6i—Tm2—Ni10i47.67 (3)Ni10vii—Sn8—Tm2vi67.78 (3)
Sn6—Tm2—Ni10i106.61 (3)Sn4vii—Sn8—Tm2vi61.18 (2)
Sn4—Tm2—Ni10i161.22 (4)Ni12—Sn8—Tm2vii72.29 (4)
Sn4i—Tm2—Ni10i89.69 (3)Li12i—Sn8—Tm2vii161.07 (5)
Sn8iii—Tm2—Ni10i107.01 (3)Ni12i—Sn8—Tm2vii161.07 (5)
Sn8iv—Tm2—Ni10i49.23 (3)Ni10vii—Sn8—Tm2vii67.78 (3)
Sn4v—Tm2—Ni10i132.82 (3)Sn4vii—Sn8—Tm2vii61.18 (2)
Sn7—Tm2—Ni10i46.61 (3)Tm2vi—Sn8—Tm2vii89.00 (3)
Sn6i—Tm2—Ni10106.61 (3)Ni12—Sn8—Tm164.59 (5)
Sn6—Tm2—Ni1047.67 (3)Li12i—Sn8—Tm164.59 (5)
Sn4—Tm2—Ni1089.69 (3)Ni12i—Sn8—Tm164.59 (5)
Sn4i—Tm2—Ni10161.22 (4)Ni10vii—Sn8—Tm1146.57 (5)
Sn8iii—Tm2—Ni1049.23 (3)Sn4vii—Sn8—Tm1107.97 (3)
Sn8iv—Tm2—Ni10107.01 (3)Tm2vi—Sn8—Tm1130.45 (2)
Sn4v—Tm2—Ni10132.82 (3)Tm2vii—Sn8—Tm1130.45 (2)
Sn7—Tm2—Ni1046.61 (3)Ni12—Sn8—Sn7vii56.56 (5)
Ni10i—Tm2—Ni1084.84 (4)Li12i—Sn8—Sn7vii131.17 (6)
Sn6i—Tm2—Ni11i47.59 (3)Ni12i—Sn8—Sn7vii131.17 (6)
Sn6—Tm2—Ni11i105.45 (3)Ni10vii—Sn8—Sn7vii49.92 (3)
Sn4—Tm2—Ni11i106.85 (3)Sn4vii—Sn8—Sn7vii120.89 (3)
Sn4i—Tm2—Ni11i49.91 (3)Tm2vi—Sn8—Sn7vii116.50 (3)
Sn8iii—Tm2—Ni11i161.30 (4)Tm2vii—Sn8—Sn7vii59.72 (2)
Sn8iv—Tm2—Ni11i91.14 (3)Tm1—Sn8—Sn7vii110.00 (3)
Sn4v—Tm2—Ni11i45.84 (2)Ni12—Sn8—Sn7vi131.17 (6)
Sn7—Tm2—Ni11i133.57 (3)Li12i—Sn8—Sn7vi56.56 (5)
Ni10i—Tm2—Ni11i86.98 (3)Ni12i—Sn8—Sn7vi56.56 (5)
Ni10—Tm2—Ni11i147.13 (5)Ni10vii—Sn8—Sn7vi49.92 (3)
Sn6i—Tm2—Ni11105.45 (3)Sn4vii—Sn8—Sn7vi120.89 (3)
Sn6—Tm2—Ni1147.59 (3)Tm2vi—Sn8—Sn7vi59.72 (2)
Sn4—Tm2—Ni1149.91 (3)Tm2vii—Sn8—Sn7vi116.50 (3)
Sn4i—Tm2—Ni11106.85 (3)Tm1—Sn8—Sn7vi110.00 (3)
Sn8iii—Tm2—Ni1191.14 (3)Sn7vii—Sn8—Sn7vi85.38 (3)
Sn8iv—Tm2—Ni11161.30 (4)Ni12—Sn8—Tm376.27 (5)
Sn4v—Tm2—Ni1145.84 (2)Li12i—Sn8—Tm376.27 (5)
Sn7—Tm2—Ni11133.57 (3)Ni12i—Sn8—Tm376.27 (5)
Ni10i—Tm2—Ni11147.13 (5)Ni10vii—Sn8—Tm369.76 (5)
Ni10—Tm2—Ni1186.98 (3)Sn4vii—Sn8—Tm3175.22 (4)
Ni11i—Tm2—Ni1182.84 (4)Tm2vi—Sn8—Tm3115.88 (2)
Ni11—Tm3—Ni11i92.41 (5)Tm2vii—Sn8—Tm3115.88 (2)
Ni11—Tm3—Sn7vi170.17 (4)Tm1—Sn8—Tm376.81 (3)
Ni11i—Tm3—Sn7vi87.78 (3)Sn7vii—Sn8—Tm356.26 (2)
Ni11—Tm3—Sn7vii87.78 (3)Sn7vi—Sn8—Tm356.26 (2)
Ni11i—Tm3—Sn7vii170.17 (4)Ni10—Sn9—Sn9ii116.16 (5)
Sn7vi—Tm3—Sn7vii90.37 (3)Ni10—Sn9—Sn9xiv116.16 (5)
Ni11—Tm3—Sn649.56 (3)Sn9ii—Sn9—Sn9xiv94.30 (5)
Ni11i—Tm3—Sn6111.10 (4)Ni10—Sn9—Tm1ii168.76 (6)
Sn7vi—Tm3—Sn6139.03 (3)Sn9ii—Sn9—Tm1ii70.64 (3)
Sn7vii—Tm3—Sn676.34 (2)Sn9xiv—Sn9—Tm1ii70.64 (3)
Ni11—Tm3—Sn6i111.10 (4)Ni10—Sn9—Sn7xi50.37 (3)
Ni11i—Tm3—Sn6i49.56 (3)Sn9ii—Sn9—Sn7xi165.45 (5)
Sn7vi—Tm3—Sn6i76.34 (2)Sn9xiv—Sn9—Sn7xi88.68 (2)
Sn7vii—Tm3—Sn6i139.03 (3)Tm1ii—Sn9—Sn7xi123.61 (3)
Sn6—Tm3—Sn6i88.65 (3)Ni10—Sn9—Sn750.37 (3)
Ni11—Tm3—Sn4v47.77 (3)Sn9ii—Sn9—Sn788.68 (2)
Ni11i—Tm3—Sn4v47.77 (3)Sn9xiv—Sn9—Sn7165.45 (5)
Sn7vi—Tm3—Sn4v128.566 (19)Tm1ii—Sn9—Sn7123.61 (3)
Sn7vii—Tm3—Sn4v128.566 (19)Sn7xi—Sn9—Sn785.04 (3)
Sn6—Tm3—Sn4v87.74 (2)Ni10—Sn9—Tm3iii68.89 (5)
Sn6i—Tm3—Sn4v87.74 (2)Sn9ii—Sn9—Tm3iii129.93 (3)
Ni11—Tm3—Sn8126.12 (3)Sn9xiv—Sn9—Tm3iii129.93 (3)
Ni11i—Tm3—Sn8126.12 (3)Tm1ii—Sn9—Tm3iii99.87 (3)
Sn7vi—Tm3—Sn860.46 (2)Sn7xi—Sn9—Tm3iii54.95 (2)
Sn7vii—Tm3—Sn860.46 (2)Sn7—Sn9—Tm3iii54.95 (2)
Sn6—Tm3—Sn879.58 (2)Ni10—Sn9—Tm160.61 (3)
Sn6i—Tm3—Sn879.58 (2)Sn9ii—Sn9—Tm156.25 (3)
Sn4v—Tm3—Sn8162.20 (3)Sn9xiv—Sn9—Tm1110.83 (5)
Ni11—Tm3—Sn5viii47.97 (4)Tm1ii—Sn9—Tm1126.90 (2)
Ni11i—Tm3—Sn5viii105.23 (3)Sn7xi—Sn9—Tm1109.43 (3)
Sn7vi—Tm3—Sn5viii122.60 (3)Sn7—Sn9—Tm159.51 (2)
Sn7vii—Tm3—Sn5viii67.83 (2)Tm3iii—Sn9—Tm1113.14 (2)
Sn6—Tm3—Sn5viii88.266 (18)Ni10—Sn9—Tm1xi60.61 (3)
Sn6i—Tm3—Sn5viii150.70 (3)Sn9ii—Sn9—Tm1xi110.83 (5)
Sn4v—Tm3—Sn5viii63.03 (2)Sn9xiv—Sn9—Tm1xi56.25 (3)
Sn8—Tm3—Sn5viii128.29 (2)Tm1ii—Sn9—Tm1xi126.90 (2)
Ni11—Tm3—Sn5ix105.23 (3)Sn7xi—Sn9—Tm1xi59.51 (2)
Ni11i—Tm3—Sn5ix47.97 (4)Sn7—Sn9—Tm1xi109.43 (3)
Sn7vi—Tm3—Sn5ix67.83 (2)Tm3iii—Sn9—Tm1xi113.14 (2)
Sn7vii—Tm3—Sn5ix122.60 (3)Tm1—Sn9—Tm1xi76.84 (2)
Sn6—Tm3—Sn5ix150.70 (3)Sn9—Ni10—Sn7xi79.56 (5)
Sn6i—Tm3—Sn5ix88.266 (18)Sn9—Ni10—Sn779.56 (5)
Sn4v—Tm3—Sn5ix63.03 (2)Sn7xi—Ni10—Sn7119.29 (8)
Sn8—Tm3—Sn5ix128.29 (2)Sn9—Ni10—Sn6124.03 (8)
Sn5viii—Tm3—Sn5ix80.44 (2)Sn7xi—Ni10—Sn6119.49 (4)
Ni11—Tm3—Sn9vii111.84 (4)Sn7—Ni10—Sn6119.49 (4)
Ni11i—Tm3—Sn9vii111.84 (4)Sn9—Ni10—Sn8iii132.26 (8)
Sn7vi—Tm3—Sn9vii59.24 (2)Sn7xi—Ni10—Sn8iii76.87 (5)
Sn7vii—Tm3—Sn9vii59.24 (2)Sn7—Ni10—Sn8iii76.87 (5)
Sn6—Tm3—Sn9vii133.565 (16)Sn6—Ni10—Sn8iii103.71 (7)
Sn6i—Tm3—Sn9vii133.565 (16)Sn9—Ni10—Tm175.45 (4)
Sn4v—Tm3—Sn9vii108.72 (3)Sn7xi—Ni10—Tm1150.48 (7)
Sn8—Tm3—Sn9vii89.08 (3)Sn7—Ni10—Tm171.26 (3)
Sn5viii—Tm3—Sn9vii64.13 (2)Sn6—Ni10—Tm165.06 (4)
Sn5ix—Tm3—Sn9vii64.13 (2)Sn8iii—Ni10—Tm1132.15 (3)
Ni11—Tm3—Ni10vii132.07 (3)Sn9—Ni10—Tm1xi75.45 (4)
Ni11i—Tm3—Ni10vii132.07 (3)Sn7xi—Ni10—Tm1xi71.26 (3)
Sn7vi—Tm3—Ni10vii45.186 (14)Sn7—Ni10—Tm1xi150.48 (7)
Sn7vii—Tm3—Ni10vii45.186 (14)Sn6—Ni10—Tm1xi65.06 (4)
Sn6—Tm3—Ni10vii111.93 (3)Sn8iii—Ni10—Tm1xi132.15 (3)
Sn6i—Tm3—Ni10vii111.93 (3)Tm1—Ni10—Tm1xi87.31 (5)
Sn4v—Tm3—Ni10vii151.69 (4)Sn9—Ni10—Tm2xi137.40 (2)
Sn8—Tm3—Ni10vii46.11 (3)Sn7xi—Ni10—Tm2xi65.00 (3)
Sn5viii—Tm3—Ni10vii96.20 (3)Sn7—Ni10—Tm2xi137.87 (7)
Sn5ix—Tm3—Ni10vii96.20 (3)Sn6—Ni10—Tm2xi62.75 (4)
Sn9vii—Tm3—Ni10vii42.97 (3)Sn8iii—Ni10—Tm2xi62.99 (4)
Ni11x—Sn4—Ni11v120.64 (7)Tm1—Ni10—Tm2xi127.82 (6)
Ni11x—Sn4—Ni11103.86 (4)Tm1xi—Ni10—Tm2xi71.45 (2)
Ni11v—Sn4—Ni11103.86 (4)Sn9—Ni10—Tm2137.40 (2)
Ni11x—Sn4—Sn8iii109.77 (4)Sn7xi—Ni10—Tm2137.87 (7)
Ni11v—Sn4—Sn8iii109.77 (4)Sn7—Ni10—Tm265.00 (3)
Ni11—Sn4—Sn8iii107.99 (5)Sn6—Ni10—Tm262.75 (4)
Ni11x—Sn4—Tm2164.54 (4)Sn8iii—Ni10—Tm262.99 (4)
Ni11v—Sn4—Tm274.78 (3)Tm1—Ni10—Tm271.45 (2)
Ni11—Sn4—Tm269.01 (3)Tm1xi—Ni10—Tm2127.82 (6)
Sn8iii—Sn4—Tm261.91 (2)Tm2xi—Ni10—Tm284.84 (4)
Ni11x—Sn4—Tm2xi74.78 (3)Sn9—Ni10—Tm3iii68.13 (5)
Ni11v—Sn4—Tm2xi164.54 (4)Sn7xi—Ni10—Tm3iii59.65 (4)
Ni11—Sn4—Tm2xi69.01 (3)Sn7—Ni10—Tm3iii59.65 (4)
Sn8iii—Sn4—Tm2xi61.91 (2)Sn6—Ni10—Tm3iii167.84 (7)
Tm2—Sn4—Tm2xi89.78 (3)Sn8iii—Ni10—Tm3iii64.13 (4)
Ni11x—Sn4—Tm2v70.41 (4)Tm1—Ni10—Tm3iii122.41 (4)
Ni11v—Sn4—Tm2v70.41 (4)Tm1xi—Ni10—Tm3iii122.41 (4)
Ni11—Sn4—Tm2v71.55 (4)Tm2xi—Ni10—Tm3iii109.00 (4)
Sn8iii—Sn4—Tm2v179.53 (4)Tm2—Ni10—Tm3iii109.00 (4)
Tm2—Sn4—Tm2v117.81 (2)Sn4x—Ni11—Sn4v120.64 (7)
Tm2xi—Sn4—Tm2v117.81 (2)Sn4x—Ni11—Sn6117.99 (4)
Ni11x—Sn4—Tm3v63.03 (4)Sn4v—Ni11—Sn6117.99 (4)
Ni11v—Sn4—Tm3v63.03 (4)Sn4x—Ni11—Sn5viii83.76 (5)
Ni11—Sn4—Tm3v142.59 (5)Sn4v—Ni11—Sn5viii83.76 (5)
Sn8iii—Sn4—Tm3v109.43 (3)Sn6—Ni11—Sn5viii121.24 (7)
Tm2—Sn4—Tm3v130.985 (18)Sn4x—Ni11—Sn476.14 (4)
Tm2xi—Sn4—Tm3v130.985 (18)Sn4v—Ni11—Sn476.14 (4)
Tm2v—Sn4—Tm3v71.04 (2)Sn6—Ni11—Sn4100.37 (6)
Ni11x—Sn4—Sn4v126.78 (6)Sn5viii—Ni11—Sn4138.39 (7)
Ni11v—Sn4—Sn4v54.61 (4)Sn4x—Ni11—Tm3154.05 (7)
Ni11—Sn4—Sn4v49.25 (3)Sn4v—Ni11—Tm369.20 (2)
Sn8iii—Sn4—Sn4v121.54 (3)Sn6—Ni11—Tm367.24 (4)
Tm2—Sn4—Sn4v59.64 (2)Sn5viii—Ni11—Tm373.14 (4)
Tm2xi—Sn4—Sn4v116.83 (4)Sn4—Ni11—Tm3129.35 (3)
Tm2v—Sn4—Sn4v58.17 (3)Sn4x—Ni11—Tm3xi69.20 (2)
Tm3v—Sn4—Sn4v108.24 (3)Sn4v—Ni11—Tm3xi154.05 (7)
Ni11x—Sn4—Sn4x54.61 (4)Sn6—Ni11—Tm3xi67.24 (4)
Ni11v—Sn4—Sn4x126.78 (6)Sn5viii—Ni11—Tm3xi73.14 (4)
Ni11—Sn4—Sn4x49.25 (3)Sn4—Ni11—Tm3xi129.35 (3)
Sn8iii—Sn4—Sn4x121.54 (3)Tm3—Ni11—Tm3xi92.41 (5)
Tm2—Sn4—Sn4x116.83 (4)Sn4x—Ni11—Tm2135.01 (7)
Tm2xi—Sn4—Sn4x59.64 (2)Sn4v—Ni11—Tm263.75 (3)
Tm2v—Sn4—Sn4x58.17 (3)Sn6—Ni11—Tm261.53 (3)
Tm3v—Sn4—Sn4x108.24 (3)Sn5viii—Ni11—Tm2137.92 (2)
Sn4v—Sn4—Sn4x85.36 (4)Sn4—Ni11—Tm261.07 (3)
Ni12—Sn5—Ni11xii118.18 (7)Tm3—Ni11—Tm270.75 (2)
Ni12—Sn5—Tm3xii137.69 (2)Tm3xi—Ni11—Tm2128.71 (6)
Ni11xii—Sn5—Tm3xii58.89 (3)Sn4x—Ni11—Tm2xi63.75 (3)
Ni12—Sn5—Tm3xiii137.69 (2)Sn4v—Ni11—Tm2xi135.01 (7)
Ni11xii—Sn5—Tm3xiii58.89 (3)Sn6—Ni11—Tm2xi61.53 (3)
Tm3xii—Sn5—Tm3xiii80.44 (2)Sn5viii—Ni11—Tm2xi137.92 (2)
Ni12—Sn5—Tm1xi59.57 (4)Sn4—Ni11—Tm2xi61.07 (3)
Ni11xii—Sn5—Tm1xi138.857 (19)Tm3—Ni11—Tm2xi128.71 (6)
Tm3xii—Sn5—Tm1xi153.58 (3)Tm3xi—Ni11—Tm2xi70.75 (2)
Tm3xiii—Sn5—Tm1xi94.310 (14)Tm2—Ni11—Tm2xi82.84 (4)
Ni12—Sn5—Tm159.57 (4)Sn4x—Ni11—Tm2v60.33 (4)
Ni11xii—Sn5—Tm1138.857 (19)Sn4v—Ni11—Tm2v60.33 (4)
Tm3xii—Sn5—Tm194.310 (14)Sn6—Ni11—Tm2v160.53 (7)
Tm3xiii—Sn5—Tm1153.58 (3)Sn5viii—Ni11—Tm2v78.23 (5)
Tm1xi—Sn5—Tm178.88 (2)Sn4—Ni11—Tm2v60.16 (4)
Ni12—Sn6—Ni10111.40 (7)Tm3—Ni11—Tm2v123.78 (4)
Ni12—Sn6—Ni11126.13 (7)Tm3xi—Ni11—Tm2v123.78 (4)
Ni10—Sn6—Ni11122.47 (7)Tm2—Ni11—Tm2v104.85 (4)
Ni12—Sn6—Tm2xi134.083 (17)Tm2xi—Ni11—Tm2v104.85 (4)
Ni10—Sn6—Tm2xi69.57 (3)Sn8—Ni12—Sn8xi126.20 (9)
Ni11—Sn6—Tm2xi70.88 (3)Sn8—Ni12—Sn6113.33 (5)
Ni12—Sn6—Tm2134.083 (17)Sn8xi—Ni12—Sn6113.33 (5)
Ni10—Sn6—Tm269.57 (3)Sn8—Ni12—Sn587.74 (6)
Ni11—Sn6—Tm270.88 (3)Sn8xi—Ni12—Sn587.74 (6)
Tm2xi—Sn6—Tm290.64 (3)Sn6—Ni12—Sn5123.90 (9)
Ni12—Sn6—Tm165.63 (4)Sn8—Ni12—Sn7vii75.93 (5)
Ni10—Sn6—Tm166.95 (3)Sn8xi—Ni12—Sn7vii75.93 (5)
Ni11—Sn6—Tm1135.524 (14)Sn6—Ni12—Sn7vii93.61 (7)
Tm2xi—Sn6—Tm1136.53 (3)Sn5—Ni12—Sn7vii142.49 (8)
Tm2—Sn6—Tm174.304 (16)Sn8—Ni12—Tm1xi156.15 (8)
Ni12—Sn6—Tm1xi65.63 (4)Sn8xi—Ni12—Tm1xi69.53 (3)
Ni10—Sn6—Tm1xi66.95 (3)Sn6—Ni12—Tm1xi67.18 (4)
Ni11—Sn6—Tm1xi135.524 (14)Sn5—Ni12—Tm1xi74.18 (5)
Tm2xi—Sn6—Tm1xi74.304 (16)Sn7vii—Ni12—Tm1xi127.76 (4)
Tm2—Sn6—Tm1xi136.53 (3)Sn8—Ni12—Tm169.53 (3)
Tm1—Sn6—Tm1xi88.94 (3)Sn8xi—Ni12—Tm1156.15 (8)
Ni12—Sn6—Tm3xi79.46 (4)Sn6—Ni12—Tm167.18 (4)
Ni10—Sn6—Tm3xi135.290 (16)Sn5—Ni12—Tm174.18 (5)
Ni11—Sn6—Tm3xi63.20 (3)Sn7vii—Ni12—Tm1127.76 (4)
Tm2xi—Sn6—Tm3xi72.611 (17)Tm1xi—Ni12—Tm190.29 (6)
Tm2—Sn6—Tm3xi134.01 (3)Sn8—Ni12—Tm2vii63.18 (5)
Tm1—Sn6—Tm3xi144.75 (4)Sn8xi—Ni12—Tm2vii63.18 (5)
Tm1xi—Sn6—Tm3xi80.659 (16)Sn6—Ni12—Tm2vii155.17 (8)
Ni12—Sn6—Tm379.46 (4)Sn5—Ni12—Tm2vii80.93 (6)
Ni10—Sn6—Tm3135.290 (16)Sn7vii—Ni12—Tm2vii61.56 (4)
Ni11—Sn6—Tm363.20 (3)Tm1xi—Ni12—Tm2vii126.83 (4)
Tm2xi—Sn6—Tm3134.01 (3)Tm1—Ni12—Tm2vii126.83 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1/2, y, z1/2; (iv) x+1/2, y+1, z1/2; (v) x, y, z; (vi) x+1/2, y+1, z+1/2; (vii) x+1/2, y, z+1/2; (viii) x1/2, y, z+1/2; (ix) x1/2, y+1, z+1/2; (x) x, y1, z; (xi) x, y1, z; (xii) x+1/2, y, z+1/2; (xiii) x+1/2, y1, z+1/2; (xiv) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaTmNi0.965Li0.035Sn2
Mr463.23
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)16.0285 (11), 4.3862 (4), 14.3684 (10)
V3)1010.16 (14)
Z12
Radiation typeMo Kα
µ (mm1)45.77
Crystal size (mm)0.07 × 0.03 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur3 CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.213, 0.403
No. of measured, independent and
observed [I > 2σ(I)] reflections
6737, 1304, 1096
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.060, 1.18
No. of reflections1304
No. of parameters76
w = 1/[σ2(Fo2) + (0.023P)2 + 11.3465P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.07, 2.13

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

 

Acknowledgements

Financial support from the Ministry of Education and Science of Ukraine is gratefully acknowledged.

References

First citationAndersen, O. K., Pawlowska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 5253–5269.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationKomarovskaya, L. P., Akselrud, L. G. & Skolozdra, R. V. (1983). Sov. Phys. Crystallogr. 28, 706–707.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPavlyuk, V. & Bodak, O. (1992a). Akad. Nauk SSSR Izvest. Metally. 6, 207–210.  Google Scholar
First citationPavlyuk, V. & Bodak, O. (1992b). Inorg. Mater. 28, 877–879.  Google Scholar
First citationPavlyuk, V., Bodak, O. & Bruskov, V. (1991). Dopov. Akad. Nauk Ukr. 1, 112–114.  Google Scholar
First citationPavlyuk, V., Bodak, O. & Kevorkov, D. (1993). Dopov. Akad. Nauk Ukr. 9, 84–87.  Google Scholar
First citationPavlyuk, V., Bodak, O., Pecharskii, V., Skolozdra, R. & Gladyshevskii, E. (1989a). Inorg. Mater. 25, 962–965.  Google Scholar
First citationPavlyuk, V., Pecharskii, V., Bodak, O. & Sobolev, A. (1989b). Akad. Nauk SSSR Izvest. Metally. 5, 221–222.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStetskiv, A., Rozdzynska-Kielbik, B. & Pavlyuk, V. (2013). Acta Cryst. C69, 683–688.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStetskiv, A., Tarasiuk, I., Rozdzynska-Kielbik, B., Oshchapovsky, I. & Pavlyuk, V. (2012). Acta Cryst. E68, i16.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds