inorganic compounds
Thulium nickel/lithium distannide, TmNi1−xLixSn2 (x = 0.035)
aIvano-Frankivsk National Medical University, Department of Chemistry, Galytska str. 2, 76018 Ivano-Frankivsk, Ukraine, bDepartment of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv, Ukraine, and cInstitute of Chemistry, Environment Protection and Biotechnology, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
*Correspondence e-mail: tarasiuk.i@gmail.com
The quaternary thulium nickel/lithium distannide, TmNi1−xLixSn2 (x = 0.035), crystallizes in the orthorhombic LuNiSn2 structure type. The contains three Tm sites, six Sn sites, two Ni sites and one Ni/Li site [relative occupancies = 0.895 (8):0.185 (8)]. Site symmetries are .m. for all atoms. The 17-, 18- and 19-vertex distorted pseudo-Frank–Kasper polyhedra are typical for all Tm atoms. Four Sn atoms are enclosed in a 12-vertex deformed cubooctahedron, and another Sn atom is enclosed in a pentagonal prism with three added atoms. A tricapped trigonal prism is typical for a further Sn atom. The for all Ni atoms and Ni/Li statistical mixtures is 12 (fourcapped trigonal prism [Ni/LiTm5Sn5]). Tm atoms form the base of a prism and Ni/Li atoms are at the centres of the side faces of an [SnTm6Ni/Li3] prism. These isolated prisms are implemented into three-dimensional-nets built out of Sn atoms. Electronic structure calculations using TB-LMTO-ASA suggest that the Tm and Ni/Li atoms form positively charged n[TmNi/Li]m+ polycations which compensate the negative charge of 2n[Sn]m− polyanions. Analysis of the interatomic distances and electronic structure calculations indicate the dominance of a metallic type of bonding.
CCDC reference: 964950
Related literature
For isotypic structures, see: Komarovskaya et al. (1983). For background of the study and related structures, see: Pavlyuk & Bodak (1992a,b); Pavlyuk et al. (1989a,b, 1991, 1993); Stetskiv et al. (2012, 2013). For electronic structure calculations, see: Andersen et al. (1986).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 964950
10.1107/S1600536813027335/ff2120sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813027335/ff2120Isup2.hkl
Thulium, nickel, lithium and tin, all with a nominal purity more than 99.9 wt. %, were used as starting elements. First, the pieces of the pure metals with a stoichiometry Tm25Ni20Li5Sn50 were pressed into pellet, enclosed in tantalum crucible and placed in a resistance furnace with a thermocouple controller. Heating rate from room temperature to 670 K was equal to 5 K per minute. At this temperature the alloy was kept over 2 d and then the temperature was increased from 670 to 1070 K over 1 h. Then, the alloy was annealed at this temperature for 8 h and slowly cooled down to room temperature. After the melting and annealing procedures, the total weight loss was less than 2%. Small good quality single-crystal of the title compound was isolated from the alloy.
The synthesized alloy is practically single-phase. Therefore, in order to confirm the accuracy of the compositions, the density of the alloy was determined using the volumetric method. The measured density is 9.08 (5) Mg m-3, and these values differ by less than 1% from the densities calculated from the X-ray data. For the TmNiSn2 ternary phase density is 9,19 Mg m-3 (Komarovskaya et al., 1983).
The structure of the title phase was solved by
after the analytical absorption correction. In the first stage of the the thermal displacement parameter of Ni12 atom was considerably different from those of other Ni sites, suggesting that this position is partially occupied by the lithium atom. In the final cycles all atoms were successfully refined with anisotropic displacement parameters.Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).TmNi0.965Li0.035Sn2 | F(000) = 2353.5 |
Mr = 463.23 | Dx = 9.138 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 1304 reflections |
a = 16.0285 (11) Å | θ = 3.8–27.5° |
b = 4.3862 (4) Å | µ = 45.77 mm−1 |
c = 14.3684 (10) Å | T = 293 K |
V = 1010.16 (14) Å3 | Prism, metallic dark gray |
Z = 12 | 0.07 × 0.03 × 0.02 mm |
Oxford Diffraction Xcalibur3 CCD diffractometer | 1304 independent reflections |
Radiation source: fine-focus sealed tube | 1096 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 0 pixels mm-1 | θmax = 27.5°, θmin = 3.8° |
ω scans | h = −20→20 |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | k = −3→5 |
Tmin = 0.213, Tmax = 0.403 | l = −18→18 |
6737 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | w = 1/[σ2(Fo2) + (0.023P)2 + 11.3465P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.060 | (Δ/σ)max = 0.006 |
S = 1.18 | Δρmax = 2.07 e Å−3 |
1304 reflections | Δρmin = −2.13 e Å−3 |
76 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00030 (3) |
TmNi0.965Li0.035Sn2 | V = 1010.16 (14) Å3 |
Mr = 463.23 | Z = 12 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 16.0285 (11) Å | µ = 45.77 mm−1 |
b = 4.3862 (4) Å | T = 293 K |
c = 14.3684 (10) Å | 0.07 × 0.03 × 0.02 mm |
Oxford Diffraction Xcalibur3 CCD diffractometer | 1304 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | 1096 reflections with I > 2σ(I) |
Tmin = 0.213, Tmax = 0.403 | Rint = 0.034 |
6737 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.060 | w = 1/[σ2(Fo2) + (0.023P)2 + 11.3465P] where P = (Fo2 + 2Fc2)/3 |
S = 1.18 | Δρmax = 2.07 e Å−3 |
1304 reflections | Δρmin = −2.13 e Å−3 |
76 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Tm1 | 0.35386 (4) | 0.2500 | 0.10177 (4) | 0.01166 (15) | |
Tm2 | 0.15061 (4) | 0.2500 | −0.02797 (4) | 0.01120 (15) | |
Tm3 | 0.12704 (4) | 0.2500 | 0.22713 (4) | 0.01269 (15) | |
Sn4 | 0.02119 (5) | −0.2500 | −0.07931 (6) | 0.0105 (2) | |
Sn5 | 0.46864 (6) | −0.2500 | 0.23607 (7) | 0.0158 (2) | |
Sn6 | 0.21452 (6) | −0.2500 | 0.10507 (6) | 0.0129 (2) | |
Sn7 | 0.32559 (6) | 0.2500 | −0.13071 (6) | 0.0118 (2) | |
Sn8 | 0.31632 (6) | 0.2500 | 0.32114 (7) | 0.0157 (2) | |
Sn9 | 0.45722 (6) | −0.2500 | −0.05229 (7) | 0.0154 (2) | |
Ni10 | 0.29945 (11) | −0.2500 | −0.04622 (13) | 0.0133 (4) | |
Ni11 | 0.05291 (10) | −0.2500 | 0.10639 (12) | 0.0122 (4) | |
Ni12 | 0.30709 (12) | −0.2500 | 0.24440 (14) | 0.0162 (7) | 0.895 (8) |
Li12 | 0.30709 (12) | −0.2500 | 0.24440 (14) | 0.0162 (7) | 0.105 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tm1 | 0.0109 (3) | 0.0140 (3) | 0.0100 (3) | 0.000 | 0.0005 (2) | 0.000 |
Tm2 | 0.0107 (3) | 0.0124 (3) | 0.0105 (3) | 0.000 | 0.0011 (2) | 0.000 |
Tm3 | 0.0157 (3) | 0.0136 (3) | 0.0087 (3) | 0.000 | −0.0028 (2) | 0.000 |
Sn4 | 0.0092 (4) | 0.0106 (4) | 0.0117 (4) | 0.000 | 0.0002 (3) | 0.000 |
Sn5 | 0.0162 (5) | 0.0174 (4) | 0.0138 (5) | 0.000 | −0.0035 (4) | 0.000 |
Sn6 | 0.0117 (5) | 0.0124 (4) | 0.0145 (5) | 0.000 | 0.0009 (3) | 0.000 |
Sn7 | 0.0140 (5) | 0.0106 (4) | 0.0107 (5) | 0.000 | 0.0014 (3) | 0.000 |
Sn8 | 0.0114 (5) | 0.0231 (5) | 0.0127 (5) | 0.000 | −0.0001 (3) | 0.000 |
Sn9 | 0.0087 (5) | 0.0174 (5) | 0.0201 (5) | 0.000 | −0.0015 (4) | 0.000 |
Ni10 | 0.0117 (9) | 0.0143 (8) | 0.0138 (9) | 0.000 | −0.0009 (7) | 0.000 |
Ni11 | 0.0116 (8) | 0.0124 (8) | 0.0127 (9) | 0.000 | −0.0004 (6) | 0.000 |
Ni12 | 0.0220 (12) | 0.0148 (11) | 0.0117 (11) | 0.000 | −0.0044 (8) | 0.000 |
Li12 | 0.0220 (12) | 0.0148 (11) | 0.0117 (11) | 0.000 | −0.0044 (8) | 0.000 |
Tm1—Li12i | 3.0938 (15) | Sn5—Tm1xi | 3.4522 (9) |
Tm1—Ni12i | 3.0938 (15) | Sn6—Ni12 | 2.492 (2) |
Tm1—Ni12 | 3.0938 (15) | Sn6—Ni10 | 2.565 (2) |
Tm1—Sn9ii | 3.1104 (11) | Sn6—Ni11 | 2.5904 (19) |
Tm1—Sn6 | 3.1306 (8) | Sn6—Tm2xi | 3.0844 (8) |
Tm1—Sn6i | 3.1306 (8) | Sn6—Tm1xi | 3.1306 (8) |
Tm1—Ni10 | 3.1768 (14) | Sn6—Tm3xi | 3.1387 (8) |
Tm1—Ni10i | 3.1768 (14) | Sn7—Ni10i | 2.5415 (10) |
Tm1—Sn8 | 3.2089 (11) | Sn7—Ni10 | 2.5415 (10) |
Tm1—Sn7 | 3.3711 (11) | Sn7—Li12iii | 2.783 (2) |
Tm1—Sn5i | 3.4522 (9) | Sn7—Ni12iii | 2.783 (2) |
Tm2—Sn6i | 3.0844 (8) | Sn7—Tm3iii | 3.0916 (8) |
Tm2—Sn6 | 3.0844 (8) | Sn7—Tm3iv | 3.0916 (8) |
Tm2—Sn4 | 3.1076 (8) | Sn7—Sn8iii | 3.2345 (9) |
Tm2—Sn4i | 3.1076 (8) | Sn7—Sn8iv | 3.2345 (9) |
Tm2—Sn8iii | 3.1290 (8) | Sn7—Sn9i | 3.2451 (10) |
Tm2—Sn8iv | 3.1290 (8) | Sn7—Sn9 | 3.2451 (10) |
Tm2—Sn4v | 3.1557 (11) | Sn8—Ni12 | 2.4591 (10) |
Tm2—Sn7 | 3.1695 (11) | Sn8—Li12i | 2.4591 (10) |
Tm2—Ni10i | 3.2512 (13) | Sn8—Ni12i | 2.4591 (10) |
Tm2—Ni10 | 3.2512 (13) | Sn8—Ni10vii | 2.660 (2) |
Tm2—Ni11i | 3.3150 (13) | Sn8—Sn4vii | 2.9714 (13) |
Tm2—Ni11 | 3.3150 (13) | Sn8—Tm2vi | 3.1290 (8) |
Tm3—Ni11 | 3.0383 (13) | Sn8—Tm2vii | 3.1290 (8) |
Tm3—Ni11i | 3.0383 (13) | Sn8—Sn7vii | 3.2345 (9) |
Tm3—Sn7vi | 3.0916 (8) | Sn8—Sn7vi | 3.2345 (9) |
Tm3—Sn7vii | 3.0916 (8) | Sn9—Ni10 | 2.5303 (19) |
Tm3—Sn6 | 3.1387 (8) | Sn9—Sn9ii | 2.9914 (13) |
Tm3—Sn6i | 3.1387 (8) | Sn9—Sn9xiv | 2.9914 (13) |
Tm3—Sn4v | 3.1868 (10) | Sn9—Tm1ii | 3.1104 (11) |
Tm3—Sn8 | 3.3210 (11) | Sn9—Sn7xi | 3.2451 (10) |
Tm3—Sn5viii | 3.3963 (8) | Sn9—Tm3iii | 3.4450 (12) |
Tm3—Sn5ix | 3.3963 (8) | Sn9—Tm1xi | 3.5291 (9) |
Tm3—Sn9vii | 3.4450 (12) | Ni10—Sn7xi | 2.5415 (10) |
Tm3—Ni10vii | 3.4631 (19) | Ni10—Sn8iii | 2.660 (2) |
Sn4—Ni11x | 2.5242 (9) | Ni10—Tm1xi | 3.1768 (14) |
Sn4—Ni11v | 2.5242 (9) | Ni10—Tm2xi | 3.2512 (13) |
Sn4—Ni11 | 2.7163 (19) | Ni10—Tm3iii | 3.4631 (19) |
Sn4—Sn8iii | 2.9714 (13) | Ni11—Sn4x | 2.5242 (9) |
Sn4—Tm2xi | 3.1076 (8) | Ni11—Sn4v | 2.5242 (9) |
Sn4—Tm2v | 3.1557 (11) | Ni11—Sn5viii | 2.636 (2) |
Sn4—Tm3v | 3.1868 (10) | Ni11—Tm3xi | 3.0383 (13) |
Sn4—Sn4v | 3.2350 (13) | Ni11—Tm2xi | 3.3150 (13) |
Sn4—Sn4x | 3.2350 (13) | Ni11—Tm2v | 3.4512 (17) |
Sn5—Ni12 | 2.592 (2) | Ni12—Sn8xi | 2.4591 (10) |
Sn5—Ni11xii | 2.636 (2) | Ni12—Sn7vii | 2.783 (2) |
Sn5—Tm3xii | 3.3963 (9) | Ni12—Tm1xi | 3.0938 (15) |
Sn5—Tm3xiii | 3.3963 (8) | Ni12—Tm2vii | 3.340 (2) |
Li12i—Tm1—Ni12i | 0.00 (9) | Tm2—Sn6—Tm3 | 72.611 (17) |
Li12i—Tm1—Ni12 | 90.29 (6) | Tm1—Sn6—Tm3 | 80.659 (16) |
Ni12i—Tm1—Ni12 | 90.29 (6) | Tm1xi—Sn6—Tm3 | 144.75 (4) |
Li12i—Tm1—Sn9ii | 112.79 (4) | Tm3xi—Sn6—Tm3 | 88.65 (3) |
Ni12i—Tm1—Sn9ii | 112.79 (4) | Ni10i—Sn7—Ni10 | 119.29 (8) |
Ni12—Tm1—Sn9ii | 112.79 (4) | Ni10i—Sn7—Li12iii | 100.49 (5) |
Li12i—Tm1—Sn6 | 108.28 (4) | Ni10—Sn7—Li12iii | 100.49 (5) |
Ni12i—Tm1—Sn6 | 108.28 (4) | Ni10i—Sn7—Ni12iii | 100.49 (5) |
Ni12—Tm1—Sn6 | 47.19 (4) | Ni10—Sn7—Ni12iii | 100.49 (5) |
Sn9ii—Tm1—Sn6 | 134.268 (15) | Li12iii—Sn7—Ni12iii | 0.00 (8) |
Li12i—Tm1—Sn6i | 47.19 (4) | Ni10i—Sn7—Tm3iii | 165.51 (5) |
Ni12i—Tm1—Sn6i | 47.19 (4) | Ni10—Sn7—Tm3iii | 75.16 (4) |
Ni12—Tm1—Sn6i | 108.28 (4) | Li12iii—Sn7—Tm3iii | 76.21 (4) |
Sn9ii—Tm1—Sn6i | 134.268 (15) | Ni12iii—Sn7—Tm3iii | 76.21 (4) |
Sn6—Tm1—Sn6i | 88.94 (3) | Ni10i—Sn7—Tm3iv | 75.16 (4) |
Li12i—Tm1—Ni10 | 150.02 (5) | Ni10—Sn7—Tm3iv | 165.51 (5) |
Ni12i—Tm1—Ni10 | 150.02 (5) | Li12iii—Sn7—Tm3iv | 76.21 (4) |
Ni12—Tm1—Ni10 | 83.54 (4) | Ni12iii—Sn7—Tm3iv | 76.21 (4) |
Sn9ii—Tm1—Ni10 | 96.56 (4) | Tm3iii—Sn7—Tm3iv | 90.37 (3) |
Sn6—Tm1—Ni10 | 47.98 (4) | Ni10i—Sn7—Tm2 | 68.39 (4) |
Sn6i—Tm1—Ni10 | 107.33 (3) | Ni10—Sn7—Tm2 | 68.39 (4) |
Li12i—Tm1—Ni10i | 83.54 (4) | Li12iii—Sn7—Tm2 | 67.91 (5) |
Ni12i—Tm1—Ni10i | 83.54 (4) | Ni12iii—Sn7—Tm2 | 67.91 (5) |
Ni12—Tm1—Ni10i | 150.02 (5) | Tm3iii—Sn7—Tm2 | 121.67 (2) |
Sn9ii—Tm1—Ni10i | 96.56 (4) | Tm3iv—Sn7—Tm2 | 121.67 (2) |
Sn6—Tm1—Ni10i | 107.33 (3) | Ni10i—Sn7—Sn8iii | 124.84 (5) |
Sn6i—Tm1—Ni10i | 47.98 (4) | Ni10—Sn7—Sn8iii | 53.21 (4) |
Ni10—Tm1—Ni10i | 87.31 (5) | Li12iii—Sn7—Sn8iii | 47.52 (2) |
Li12i—Tm1—Sn8 | 45.89 (3) | Ni12iii—Sn7—Sn8iii | 47.52 (2) |
Ni12i—Tm1—Sn8 | 45.89 (3) | Tm3iii—Sn7—Sn8iii | 63.28 (2) |
Ni12—Tm1—Sn8 | 45.89 (3) | Tm3iv—Sn7—Sn8iii | 120.82 (3) |
Sn9ii—Tm1—Sn8 | 114.02 (3) | Tm2—Sn7—Sn8iii | 58.49 (2) |
Sn6—Tm1—Sn8 | 81.45 (2) | Ni10i—Sn7—Sn8iv | 53.21 (4) |
Sn6i—Tm1—Sn8 | 81.45 (2) | Ni10—Sn7—Sn8iv | 124.84 (5) |
Ni10—Tm1—Sn8 | 127.30 (3) | Li12iii—Sn7—Sn8iv | 47.52 (2) |
Ni10i—Tm1—Sn8 | 127.30 (3) | Ni12iii—Sn7—Sn8iv | 47.52 (2) |
Li12i—Tm1—Sn7 | 128.59 (3) | Tm3iii—Sn7—Sn8iv | 120.82 (3) |
Ni12i—Tm1—Sn7 | 128.59 (3) | Tm3iv—Sn7—Sn8iv | 63.28 (2) |
Ni12—Tm1—Sn7 | 128.59 (3) | Tm2—Sn7—Sn8iv | 58.49 (2) |
Sn9ii—Tm1—Sn7 | 84.51 (3) | Sn8iii—Sn7—Sn8iv | 85.38 (3) |
Sn6—Tm1—Sn7 | 85.36 (2) | Ni10i—Sn7—Sn9i | 50.07 (4) |
Sn6i—Tm1—Sn7 | 85.36 (2) | Ni10—Sn7—Sn9i | 121.64 (5) |
Ni10—Tm1—Sn7 | 45.56 (3) | Li12iii—Sn7—Sn9i | 136.12 (2) |
Ni10i—Tm1—Sn7 | 45.56 (3) | Ni12iii—Sn7—Sn9i | 136.12 (2) |
Sn8—Tm1—Sn7 | 161.47 (3) | Tm3iii—Sn7—Sn9i | 123.31 (3) |
Li12i—Tm1—Sn5i | 46.26 (4) | Tm3iv—Sn7—Sn9i | 65.81 (2) |
Ni12i—Tm1—Sn5i | 46.26 (4) | Tm2—Sn7—Sn9i | 114.43 (3) |
Ni12—Tm1—Sn5i | 102.08 (4) | Sn8iii—Sn7—Sn9i | 171.77 (4) |
Sn9ii—Tm1—Sn5i | 66.98 (2) | Sn8iv—Sn7—Sn9i | 94.201 (17) |
Sn6—Tm1—Sn5i | 144.76 (3) | Ni10i—Sn7—Sn9 | 121.64 (5) |
Sn6i—Tm1—Sn5i | 85.797 (19) | Ni10—Sn7—Sn9 | 50.07 (4) |
Ni10—Tm1—Sn5i | 163.54 (4) | Li12iii—Sn7—Sn9 | 136.12 (2) |
Ni10i—Tm1—Sn5i | 94.70 (3) | Ni12iii—Sn7—Sn9 | 136.12 (2) |
Sn8—Tm1—Sn5i | 63.31 (2) | Tm3iii—Sn7—Sn9 | 65.81 (2) |
Sn7—Tm1—Sn5i | 128.72 (2) | Tm3iv—Sn7—Sn9 | 123.31 (3) |
Sn6i—Tm2—Sn6 | 90.64 (3) | Tm2—Sn7—Sn9 | 114.43 (3) |
Sn6i—Tm2—Sn4 | 150.53 (3) | Sn8iii—Sn7—Sn9 | 94.201 (17) |
Sn6—Tm2—Sn4 | 82.359 (19) | Sn8iv—Sn7—Sn9 | 171.77 (4) |
Sn6i—Tm2—Sn4i | 82.359 (19) | Sn9i—Sn7—Sn9 | 85.04 (3) |
Sn6—Tm2—Sn4i | 150.53 (3) | Ni10i—Sn7—Tm1 | 63.18 (4) |
Sn4—Tm2—Sn4i | 89.78 (3) | Ni10—Sn7—Tm1 | 63.18 (4) |
Sn6i—Tm2—Sn8iii | 150.63 (3) | Li12iii—Sn7—Tm1 | 137.88 (5) |
Sn6—Tm2—Sn8iii | 82.81 (2) | Ni12iii—Sn7—Tm1 | 137.88 (5) |
Sn4—Tm2—Sn8iii | 56.91 (2) | Tm3iii—Sn7—Tm1 | 128.44 (2) |
Sn4i—Tm2—Sn8iii | 116.31 (3) | Tm3iv—Sn7—Tm1 | 128.44 (2) |
Sn6i—Tm2—Sn8iv | 82.81 (2) | Tm2—Sn7—Tm1 | 69.97 (2) |
Sn6—Tm2—Sn8iv | 150.63 (3) | Sn8iii—Sn7—Tm1 | 107.85 (3) |
Sn4—Tm2—Sn8iv | 116.31 (3) | Sn8iv—Sn7—Tm1 | 107.85 (3) |
Sn4i—Tm2—Sn8iv | 56.91 (2) | Sn9i—Sn7—Tm1 | 64.44 (2) |
Sn8iii—Tm2—Sn8iv | 89.00 (3) | Sn9—Sn7—Tm1 | 64.44 (2) |
Sn6i—Tm2—Sn4v | 89.26 (2) | Ni12—Sn8—Li12i | 126.20 (9) |
Sn6—Tm2—Sn4v | 89.26 (2) | Ni12—Sn8—Ni12i | 126.20 (9) |
Sn4—Tm2—Sn4v | 62.19 (2) | Li12i—Sn8—Ni12i | 0.00 (12) |
Sn4i—Tm2—Sn4v | 62.19 (2) | Ni12—Sn8—Ni10vii | 106.22 (5) |
Sn8iii—Tm2—Sn4v | 119.10 (2) | Li12i—Sn8—Ni10vii | 106.22 (5) |
Sn8iv—Tm2—Sn4v | 119.10 (2) | Ni12i—Sn8—Ni10vii | 106.22 (5) |
Sn6i—Tm2—Sn7 | 89.70 (2) | Ni12—Sn8—Sn4vii | 105.58 (5) |
Sn6—Tm2—Sn7 | 89.70 (2) | Li12i—Sn8—Sn4vii | 105.58 (5) |
Sn4—Tm2—Sn7 | 118.70 (2) | Ni12i—Sn8—Sn4vii | 105.58 (5) |
Sn4i—Tm2—Sn7 | 118.70 (2) | Ni10vii—Sn8—Sn4vii | 105.46 (5) |
Sn8iii—Tm2—Sn7 | 61.80 (2) | Ni12—Sn8—Tm2vi | 161.07 (5) |
Sn8iv—Tm2—Sn7 | 61.80 (2) | Li12i—Sn8—Tm2vi | 72.29 (4) |
Sn4v—Tm2—Sn7 | 178.52 (3) | Ni12i—Sn8—Tm2vi | 72.29 (4) |
Sn6i—Tm2—Ni10i | 47.67 (3) | Ni10vii—Sn8—Tm2vi | 67.78 (3) |
Sn6—Tm2—Ni10i | 106.61 (3) | Sn4vii—Sn8—Tm2vi | 61.18 (2) |
Sn4—Tm2—Ni10i | 161.22 (4) | Ni12—Sn8—Tm2vii | 72.29 (4) |
Sn4i—Tm2—Ni10i | 89.69 (3) | Li12i—Sn8—Tm2vii | 161.07 (5) |
Sn8iii—Tm2—Ni10i | 107.01 (3) | Ni12i—Sn8—Tm2vii | 161.07 (5) |
Sn8iv—Tm2—Ni10i | 49.23 (3) | Ni10vii—Sn8—Tm2vii | 67.78 (3) |
Sn4v—Tm2—Ni10i | 132.82 (3) | Sn4vii—Sn8—Tm2vii | 61.18 (2) |
Sn7—Tm2—Ni10i | 46.61 (3) | Tm2vi—Sn8—Tm2vii | 89.00 (3) |
Sn6i—Tm2—Ni10 | 106.61 (3) | Ni12—Sn8—Tm1 | 64.59 (5) |
Sn6—Tm2—Ni10 | 47.67 (3) | Li12i—Sn8—Tm1 | 64.59 (5) |
Sn4—Tm2—Ni10 | 89.69 (3) | Ni12i—Sn8—Tm1 | 64.59 (5) |
Sn4i—Tm2—Ni10 | 161.22 (4) | Ni10vii—Sn8—Tm1 | 146.57 (5) |
Sn8iii—Tm2—Ni10 | 49.23 (3) | Sn4vii—Sn8—Tm1 | 107.97 (3) |
Sn8iv—Tm2—Ni10 | 107.01 (3) | Tm2vi—Sn8—Tm1 | 130.45 (2) |
Sn4v—Tm2—Ni10 | 132.82 (3) | Tm2vii—Sn8—Tm1 | 130.45 (2) |
Sn7—Tm2—Ni10 | 46.61 (3) | Ni12—Sn8—Sn7vii | 56.56 (5) |
Ni10i—Tm2—Ni10 | 84.84 (4) | Li12i—Sn8—Sn7vii | 131.17 (6) |
Sn6i—Tm2—Ni11i | 47.59 (3) | Ni12i—Sn8—Sn7vii | 131.17 (6) |
Sn6—Tm2—Ni11i | 105.45 (3) | Ni10vii—Sn8—Sn7vii | 49.92 (3) |
Sn4—Tm2—Ni11i | 106.85 (3) | Sn4vii—Sn8—Sn7vii | 120.89 (3) |
Sn4i—Tm2—Ni11i | 49.91 (3) | Tm2vi—Sn8—Sn7vii | 116.50 (3) |
Sn8iii—Tm2—Ni11i | 161.30 (4) | Tm2vii—Sn8—Sn7vii | 59.72 (2) |
Sn8iv—Tm2—Ni11i | 91.14 (3) | Tm1—Sn8—Sn7vii | 110.00 (3) |
Sn4v—Tm2—Ni11i | 45.84 (2) | Ni12—Sn8—Sn7vi | 131.17 (6) |
Sn7—Tm2—Ni11i | 133.57 (3) | Li12i—Sn8—Sn7vi | 56.56 (5) |
Ni10i—Tm2—Ni11i | 86.98 (3) | Ni12i—Sn8—Sn7vi | 56.56 (5) |
Ni10—Tm2—Ni11i | 147.13 (5) | Ni10vii—Sn8—Sn7vi | 49.92 (3) |
Sn6i—Tm2—Ni11 | 105.45 (3) | Sn4vii—Sn8—Sn7vi | 120.89 (3) |
Sn6—Tm2—Ni11 | 47.59 (3) | Tm2vi—Sn8—Sn7vi | 59.72 (2) |
Sn4—Tm2—Ni11 | 49.91 (3) | Tm2vii—Sn8—Sn7vi | 116.50 (3) |
Sn4i—Tm2—Ni11 | 106.85 (3) | Tm1—Sn8—Sn7vi | 110.00 (3) |
Sn8iii—Tm2—Ni11 | 91.14 (3) | Sn7vii—Sn8—Sn7vi | 85.38 (3) |
Sn8iv—Tm2—Ni11 | 161.30 (4) | Ni12—Sn8—Tm3 | 76.27 (5) |
Sn4v—Tm2—Ni11 | 45.84 (2) | Li12i—Sn8—Tm3 | 76.27 (5) |
Sn7—Tm2—Ni11 | 133.57 (3) | Ni12i—Sn8—Tm3 | 76.27 (5) |
Ni10i—Tm2—Ni11 | 147.13 (5) | Ni10vii—Sn8—Tm3 | 69.76 (5) |
Ni10—Tm2—Ni11 | 86.98 (3) | Sn4vii—Sn8—Tm3 | 175.22 (4) |
Ni11i—Tm2—Ni11 | 82.84 (4) | Tm2vi—Sn8—Tm3 | 115.88 (2) |
Ni11—Tm3—Ni11i | 92.41 (5) | Tm2vii—Sn8—Tm3 | 115.88 (2) |
Ni11—Tm3—Sn7vi | 170.17 (4) | Tm1—Sn8—Tm3 | 76.81 (3) |
Ni11i—Tm3—Sn7vi | 87.78 (3) | Sn7vii—Sn8—Tm3 | 56.26 (2) |
Ni11—Tm3—Sn7vii | 87.78 (3) | Sn7vi—Sn8—Tm3 | 56.26 (2) |
Ni11i—Tm3—Sn7vii | 170.17 (4) | Ni10—Sn9—Sn9ii | 116.16 (5) |
Sn7vi—Tm3—Sn7vii | 90.37 (3) | Ni10—Sn9—Sn9xiv | 116.16 (5) |
Ni11—Tm3—Sn6 | 49.56 (3) | Sn9ii—Sn9—Sn9xiv | 94.30 (5) |
Ni11i—Tm3—Sn6 | 111.10 (4) | Ni10—Sn9—Tm1ii | 168.76 (6) |
Sn7vi—Tm3—Sn6 | 139.03 (3) | Sn9ii—Sn9—Tm1ii | 70.64 (3) |
Sn7vii—Tm3—Sn6 | 76.34 (2) | Sn9xiv—Sn9—Tm1ii | 70.64 (3) |
Ni11—Tm3—Sn6i | 111.10 (4) | Ni10—Sn9—Sn7xi | 50.37 (3) |
Ni11i—Tm3—Sn6i | 49.56 (3) | Sn9ii—Sn9—Sn7xi | 165.45 (5) |
Sn7vi—Tm3—Sn6i | 76.34 (2) | Sn9xiv—Sn9—Sn7xi | 88.68 (2) |
Sn7vii—Tm3—Sn6i | 139.03 (3) | Tm1ii—Sn9—Sn7xi | 123.61 (3) |
Sn6—Tm3—Sn6i | 88.65 (3) | Ni10—Sn9—Sn7 | 50.37 (3) |
Ni11—Tm3—Sn4v | 47.77 (3) | Sn9ii—Sn9—Sn7 | 88.68 (2) |
Ni11i—Tm3—Sn4v | 47.77 (3) | Sn9xiv—Sn9—Sn7 | 165.45 (5) |
Sn7vi—Tm3—Sn4v | 128.566 (19) | Tm1ii—Sn9—Sn7 | 123.61 (3) |
Sn7vii—Tm3—Sn4v | 128.566 (19) | Sn7xi—Sn9—Sn7 | 85.04 (3) |
Sn6—Tm3—Sn4v | 87.74 (2) | Ni10—Sn9—Tm3iii | 68.89 (5) |
Sn6i—Tm3—Sn4v | 87.74 (2) | Sn9ii—Sn9—Tm3iii | 129.93 (3) |
Ni11—Tm3—Sn8 | 126.12 (3) | Sn9xiv—Sn9—Tm3iii | 129.93 (3) |
Ni11i—Tm3—Sn8 | 126.12 (3) | Tm1ii—Sn9—Tm3iii | 99.87 (3) |
Sn7vi—Tm3—Sn8 | 60.46 (2) | Sn7xi—Sn9—Tm3iii | 54.95 (2) |
Sn7vii—Tm3—Sn8 | 60.46 (2) | Sn7—Sn9—Tm3iii | 54.95 (2) |
Sn6—Tm3—Sn8 | 79.58 (2) | Ni10—Sn9—Tm1 | 60.61 (3) |
Sn6i—Tm3—Sn8 | 79.58 (2) | Sn9ii—Sn9—Tm1 | 56.25 (3) |
Sn4v—Tm3—Sn8 | 162.20 (3) | Sn9xiv—Sn9—Tm1 | 110.83 (5) |
Ni11—Tm3—Sn5viii | 47.97 (4) | Tm1ii—Sn9—Tm1 | 126.90 (2) |
Ni11i—Tm3—Sn5viii | 105.23 (3) | Sn7xi—Sn9—Tm1 | 109.43 (3) |
Sn7vi—Tm3—Sn5viii | 122.60 (3) | Sn7—Sn9—Tm1 | 59.51 (2) |
Sn7vii—Tm3—Sn5viii | 67.83 (2) | Tm3iii—Sn9—Tm1 | 113.14 (2) |
Sn6—Tm3—Sn5viii | 88.266 (18) | Ni10—Sn9—Tm1xi | 60.61 (3) |
Sn6i—Tm3—Sn5viii | 150.70 (3) | Sn9ii—Sn9—Tm1xi | 110.83 (5) |
Sn4v—Tm3—Sn5viii | 63.03 (2) | Sn9xiv—Sn9—Tm1xi | 56.25 (3) |
Sn8—Tm3—Sn5viii | 128.29 (2) | Tm1ii—Sn9—Tm1xi | 126.90 (2) |
Ni11—Tm3—Sn5ix | 105.23 (3) | Sn7xi—Sn9—Tm1xi | 59.51 (2) |
Ni11i—Tm3—Sn5ix | 47.97 (4) | Sn7—Sn9—Tm1xi | 109.43 (3) |
Sn7vi—Tm3—Sn5ix | 67.83 (2) | Tm3iii—Sn9—Tm1xi | 113.14 (2) |
Sn7vii—Tm3—Sn5ix | 122.60 (3) | Tm1—Sn9—Tm1xi | 76.84 (2) |
Sn6—Tm3—Sn5ix | 150.70 (3) | Sn9—Ni10—Sn7xi | 79.56 (5) |
Sn6i—Tm3—Sn5ix | 88.266 (18) | Sn9—Ni10—Sn7 | 79.56 (5) |
Sn4v—Tm3—Sn5ix | 63.03 (2) | Sn7xi—Ni10—Sn7 | 119.29 (8) |
Sn8—Tm3—Sn5ix | 128.29 (2) | Sn9—Ni10—Sn6 | 124.03 (8) |
Sn5viii—Tm3—Sn5ix | 80.44 (2) | Sn7xi—Ni10—Sn6 | 119.49 (4) |
Ni11—Tm3—Sn9vii | 111.84 (4) | Sn7—Ni10—Sn6 | 119.49 (4) |
Ni11i—Tm3—Sn9vii | 111.84 (4) | Sn9—Ni10—Sn8iii | 132.26 (8) |
Sn7vi—Tm3—Sn9vii | 59.24 (2) | Sn7xi—Ni10—Sn8iii | 76.87 (5) |
Sn7vii—Tm3—Sn9vii | 59.24 (2) | Sn7—Ni10—Sn8iii | 76.87 (5) |
Sn6—Tm3—Sn9vii | 133.565 (16) | Sn6—Ni10—Sn8iii | 103.71 (7) |
Sn6i—Tm3—Sn9vii | 133.565 (16) | Sn9—Ni10—Tm1 | 75.45 (4) |
Sn4v—Tm3—Sn9vii | 108.72 (3) | Sn7xi—Ni10—Tm1 | 150.48 (7) |
Sn8—Tm3—Sn9vii | 89.08 (3) | Sn7—Ni10—Tm1 | 71.26 (3) |
Sn5viii—Tm3—Sn9vii | 64.13 (2) | Sn6—Ni10—Tm1 | 65.06 (4) |
Sn5ix—Tm3—Sn9vii | 64.13 (2) | Sn8iii—Ni10—Tm1 | 132.15 (3) |
Ni11—Tm3—Ni10vii | 132.07 (3) | Sn9—Ni10—Tm1xi | 75.45 (4) |
Ni11i—Tm3—Ni10vii | 132.07 (3) | Sn7xi—Ni10—Tm1xi | 71.26 (3) |
Sn7vi—Tm3—Ni10vii | 45.186 (14) | Sn7—Ni10—Tm1xi | 150.48 (7) |
Sn7vii—Tm3—Ni10vii | 45.186 (14) | Sn6—Ni10—Tm1xi | 65.06 (4) |
Sn6—Tm3—Ni10vii | 111.93 (3) | Sn8iii—Ni10—Tm1xi | 132.15 (3) |
Sn6i—Tm3—Ni10vii | 111.93 (3) | Tm1—Ni10—Tm1xi | 87.31 (5) |
Sn4v—Tm3—Ni10vii | 151.69 (4) | Sn9—Ni10—Tm2xi | 137.40 (2) |
Sn8—Tm3—Ni10vii | 46.11 (3) | Sn7xi—Ni10—Tm2xi | 65.00 (3) |
Sn5viii—Tm3—Ni10vii | 96.20 (3) | Sn7—Ni10—Tm2xi | 137.87 (7) |
Sn5ix—Tm3—Ni10vii | 96.20 (3) | Sn6—Ni10—Tm2xi | 62.75 (4) |
Sn9vii—Tm3—Ni10vii | 42.97 (3) | Sn8iii—Ni10—Tm2xi | 62.99 (4) |
Ni11x—Sn4—Ni11v | 120.64 (7) | Tm1—Ni10—Tm2xi | 127.82 (6) |
Ni11x—Sn4—Ni11 | 103.86 (4) | Tm1xi—Ni10—Tm2xi | 71.45 (2) |
Ni11v—Sn4—Ni11 | 103.86 (4) | Sn9—Ni10—Tm2 | 137.40 (2) |
Ni11x—Sn4—Sn8iii | 109.77 (4) | Sn7xi—Ni10—Tm2 | 137.87 (7) |
Ni11v—Sn4—Sn8iii | 109.77 (4) | Sn7—Ni10—Tm2 | 65.00 (3) |
Ni11—Sn4—Sn8iii | 107.99 (5) | Sn6—Ni10—Tm2 | 62.75 (4) |
Ni11x—Sn4—Tm2 | 164.54 (4) | Sn8iii—Ni10—Tm2 | 62.99 (4) |
Ni11v—Sn4—Tm2 | 74.78 (3) | Tm1—Ni10—Tm2 | 71.45 (2) |
Ni11—Sn4—Tm2 | 69.01 (3) | Tm1xi—Ni10—Tm2 | 127.82 (6) |
Sn8iii—Sn4—Tm2 | 61.91 (2) | Tm2xi—Ni10—Tm2 | 84.84 (4) |
Ni11x—Sn4—Tm2xi | 74.78 (3) | Sn9—Ni10—Tm3iii | 68.13 (5) |
Ni11v—Sn4—Tm2xi | 164.54 (4) | Sn7xi—Ni10—Tm3iii | 59.65 (4) |
Ni11—Sn4—Tm2xi | 69.01 (3) | Sn7—Ni10—Tm3iii | 59.65 (4) |
Sn8iii—Sn4—Tm2xi | 61.91 (2) | Sn6—Ni10—Tm3iii | 167.84 (7) |
Tm2—Sn4—Tm2xi | 89.78 (3) | Sn8iii—Ni10—Tm3iii | 64.13 (4) |
Ni11x—Sn4—Tm2v | 70.41 (4) | Tm1—Ni10—Tm3iii | 122.41 (4) |
Ni11v—Sn4—Tm2v | 70.41 (4) | Tm1xi—Ni10—Tm3iii | 122.41 (4) |
Ni11—Sn4—Tm2v | 71.55 (4) | Tm2xi—Ni10—Tm3iii | 109.00 (4) |
Sn8iii—Sn4—Tm2v | 179.53 (4) | Tm2—Ni10—Tm3iii | 109.00 (4) |
Tm2—Sn4—Tm2v | 117.81 (2) | Sn4x—Ni11—Sn4v | 120.64 (7) |
Tm2xi—Sn4—Tm2v | 117.81 (2) | Sn4x—Ni11—Sn6 | 117.99 (4) |
Ni11x—Sn4—Tm3v | 63.03 (4) | Sn4v—Ni11—Sn6 | 117.99 (4) |
Ni11v—Sn4—Tm3v | 63.03 (4) | Sn4x—Ni11—Sn5viii | 83.76 (5) |
Ni11—Sn4—Tm3v | 142.59 (5) | Sn4v—Ni11—Sn5viii | 83.76 (5) |
Sn8iii—Sn4—Tm3v | 109.43 (3) | Sn6—Ni11—Sn5viii | 121.24 (7) |
Tm2—Sn4—Tm3v | 130.985 (18) | Sn4x—Ni11—Sn4 | 76.14 (4) |
Tm2xi—Sn4—Tm3v | 130.985 (18) | Sn4v—Ni11—Sn4 | 76.14 (4) |
Tm2v—Sn4—Tm3v | 71.04 (2) | Sn6—Ni11—Sn4 | 100.37 (6) |
Ni11x—Sn4—Sn4v | 126.78 (6) | Sn5viii—Ni11—Sn4 | 138.39 (7) |
Ni11v—Sn4—Sn4v | 54.61 (4) | Sn4x—Ni11—Tm3 | 154.05 (7) |
Ni11—Sn4—Sn4v | 49.25 (3) | Sn4v—Ni11—Tm3 | 69.20 (2) |
Sn8iii—Sn4—Sn4v | 121.54 (3) | Sn6—Ni11—Tm3 | 67.24 (4) |
Tm2—Sn4—Sn4v | 59.64 (2) | Sn5viii—Ni11—Tm3 | 73.14 (4) |
Tm2xi—Sn4—Sn4v | 116.83 (4) | Sn4—Ni11—Tm3 | 129.35 (3) |
Tm2v—Sn4—Sn4v | 58.17 (3) | Sn4x—Ni11—Tm3xi | 69.20 (2) |
Tm3v—Sn4—Sn4v | 108.24 (3) | Sn4v—Ni11—Tm3xi | 154.05 (7) |
Ni11x—Sn4—Sn4x | 54.61 (4) | Sn6—Ni11—Tm3xi | 67.24 (4) |
Ni11v—Sn4—Sn4x | 126.78 (6) | Sn5viii—Ni11—Tm3xi | 73.14 (4) |
Ni11—Sn4—Sn4x | 49.25 (3) | Sn4—Ni11—Tm3xi | 129.35 (3) |
Sn8iii—Sn4—Sn4x | 121.54 (3) | Tm3—Ni11—Tm3xi | 92.41 (5) |
Tm2—Sn4—Sn4x | 116.83 (4) | Sn4x—Ni11—Tm2 | 135.01 (7) |
Tm2xi—Sn4—Sn4x | 59.64 (2) | Sn4v—Ni11—Tm2 | 63.75 (3) |
Tm2v—Sn4—Sn4x | 58.17 (3) | Sn6—Ni11—Tm2 | 61.53 (3) |
Tm3v—Sn4—Sn4x | 108.24 (3) | Sn5viii—Ni11—Tm2 | 137.92 (2) |
Sn4v—Sn4—Sn4x | 85.36 (4) | Sn4—Ni11—Tm2 | 61.07 (3) |
Ni12—Sn5—Ni11xii | 118.18 (7) | Tm3—Ni11—Tm2 | 70.75 (2) |
Ni12—Sn5—Tm3xii | 137.69 (2) | Tm3xi—Ni11—Tm2 | 128.71 (6) |
Ni11xii—Sn5—Tm3xii | 58.89 (3) | Sn4x—Ni11—Tm2xi | 63.75 (3) |
Ni12—Sn5—Tm3xiii | 137.69 (2) | Sn4v—Ni11—Tm2xi | 135.01 (7) |
Ni11xii—Sn5—Tm3xiii | 58.89 (3) | Sn6—Ni11—Tm2xi | 61.53 (3) |
Tm3xii—Sn5—Tm3xiii | 80.44 (2) | Sn5viii—Ni11—Tm2xi | 137.92 (2) |
Ni12—Sn5—Tm1xi | 59.57 (4) | Sn4—Ni11—Tm2xi | 61.07 (3) |
Ni11xii—Sn5—Tm1xi | 138.857 (19) | Tm3—Ni11—Tm2xi | 128.71 (6) |
Tm3xii—Sn5—Tm1xi | 153.58 (3) | Tm3xi—Ni11—Tm2xi | 70.75 (2) |
Tm3xiii—Sn5—Tm1xi | 94.310 (14) | Tm2—Ni11—Tm2xi | 82.84 (4) |
Ni12—Sn5—Tm1 | 59.57 (4) | Sn4x—Ni11—Tm2v | 60.33 (4) |
Ni11xii—Sn5—Tm1 | 138.857 (19) | Sn4v—Ni11—Tm2v | 60.33 (4) |
Tm3xii—Sn5—Tm1 | 94.310 (14) | Sn6—Ni11—Tm2v | 160.53 (7) |
Tm3xiii—Sn5—Tm1 | 153.58 (3) | Sn5viii—Ni11—Tm2v | 78.23 (5) |
Tm1xi—Sn5—Tm1 | 78.88 (2) | Sn4—Ni11—Tm2v | 60.16 (4) |
Ni12—Sn6—Ni10 | 111.40 (7) | Tm3—Ni11—Tm2v | 123.78 (4) |
Ni12—Sn6—Ni11 | 126.13 (7) | Tm3xi—Ni11—Tm2v | 123.78 (4) |
Ni10—Sn6—Ni11 | 122.47 (7) | Tm2—Ni11—Tm2v | 104.85 (4) |
Ni12—Sn6—Tm2xi | 134.083 (17) | Tm2xi—Ni11—Tm2v | 104.85 (4) |
Ni10—Sn6—Tm2xi | 69.57 (3) | Sn8—Ni12—Sn8xi | 126.20 (9) |
Ni11—Sn6—Tm2xi | 70.88 (3) | Sn8—Ni12—Sn6 | 113.33 (5) |
Ni12—Sn6—Tm2 | 134.083 (17) | Sn8xi—Ni12—Sn6 | 113.33 (5) |
Ni10—Sn6—Tm2 | 69.57 (3) | Sn8—Ni12—Sn5 | 87.74 (6) |
Ni11—Sn6—Tm2 | 70.88 (3) | Sn8xi—Ni12—Sn5 | 87.74 (6) |
Tm2xi—Sn6—Tm2 | 90.64 (3) | Sn6—Ni12—Sn5 | 123.90 (9) |
Ni12—Sn6—Tm1 | 65.63 (4) | Sn8—Ni12—Sn7vii | 75.93 (5) |
Ni10—Sn6—Tm1 | 66.95 (3) | Sn8xi—Ni12—Sn7vii | 75.93 (5) |
Ni11—Sn6—Tm1 | 135.524 (14) | Sn6—Ni12—Sn7vii | 93.61 (7) |
Tm2xi—Sn6—Tm1 | 136.53 (3) | Sn5—Ni12—Sn7vii | 142.49 (8) |
Tm2—Sn6—Tm1 | 74.304 (16) | Sn8—Ni12—Tm1xi | 156.15 (8) |
Ni12—Sn6—Tm1xi | 65.63 (4) | Sn8xi—Ni12—Tm1xi | 69.53 (3) |
Ni10—Sn6—Tm1xi | 66.95 (3) | Sn6—Ni12—Tm1xi | 67.18 (4) |
Ni11—Sn6—Tm1xi | 135.524 (14) | Sn5—Ni12—Tm1xi | 74.18 (5) |
Tm2xi—Sn6—Tm1xi | 74.304 (16) | Sn7vii—Ni12—Tm1xi | 127.76 (4) |
Tm2—Sn6—Tm1xi | 136.53 (3) | Sn8—Ni12—Tm1 | 69.53 (3) |
Tm1—Sn6—Tm1xi | 88.94 (3) | Sn8xi—Ni12—Tm1 | 156.15 (8) |
Ni12—Sn6—Tm3xi | 79.46 (4) | Sn6—Ni12—Tm1 | 67.18 (4) |
Ni10—Sn6—Tm3xi | 135.290 (16) | Sn5—Ni12—Tm1 | 74.18 (5) |
Ni11—Sn6—Tm3xi | 63.20 (3) | Sn7vii—Ni12—Tm1 | 127.76 (4) |
Tm2xi—Sn6—Tm3xi | 72.611 (17) | Tm1xi—Ni12—Tm1 | 90.29 (6) |
Tm2—Sn6—Tm3xi | 134.01 (3) | Sn8—Ni12—Tm2vii | 63.18 (5) |
Tm1—Sn6—Tm3xi | 144.75 (4) | Sn8xi—Ni12—Tm2vii | 63.18 (5) |
Tm1xi—Sn6—Tm3xi | 80.659 (16) | Sn6—Ni12—Tm2vii | 155.17 (8) |
Ni12—Sn6—Tm3 | 79.46 (4) | Sn5—Ni12—Tm2vii | 80.93 (6) |
Ni10—Sn6—Tm3 | 135.290 (16) | Sn7vii—Ni12—Tm2vii | 61.56 (4) |
Ni11—Sn6—Tm3 | 63.20 (3) | Tm1xi—Ni12—Tm2vii | 126.83 (4) |
Tm2xi—Sn6—Tm3 | 134.01 (3) | Tm1—Ni12—Tm2vii | 126.83 (4) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z; (iii) −x+1/2, −y, z−1/2; (iv) −x+1/2, −y+1, z−1/2; (v) −x, −y, −z; (vi) −x+1/2, −y+1, z+1/2; (vii) −x+1/2, −y, z+1/2; (viii) x−1/2, y, −z+1/2; (ix) x−1/2, y+1, −z+1/2; (x) −x, −y−1, −z; (xi) x, y−1, z; (xii) x+1/2, y, −z+1/2; (xiii) x+1/2, y−1, −z+1/2; (xiv) −x+1, −y−1, −z. |
Experimental details
Crystal data | |
Chemical formula | TmNi0.965Li0.035Sn2 |
Mr | 463.23 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 293 |
a, b, c (Å) | 16.0285 (11), 4.3862 (4), 14.3684 (10) |
V (Å3) | 1010.16 (14) |
Z | 12 |
Radiation type | Mo Kα |
µ (mm−1) | 45.77 |
Crystal size (mm) | 0.07 × 0.03 × 0.02 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur3 CCD diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.213, 0.403 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6737, 1304, 1096 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.060, 1.18 |
No. of reflections | 1304 |
No. of parameters | 76 |
w = 1/[σ2(Fo2) + (0.023P)2 + 11.3465P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.07, −2.13 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).
Acknowledgements
Financial support from the Ministry of Education and Science of Ukraine is gratefully acknowledged.
References
Andersen, O. K., Pawlowska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 5253–5269. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Komarovskaya, L. P., Akselrud, L. G. & Skolozdra, R. V. (1983). Sov. Phys. Crystallogr. 28, 706–707. Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Pavlyuk, V. & Bodak, O. (1992a). Akad. Nauk SSSR Izvest. Metally. 6, 207–210. Google Scholar
Pavlyuk, V. & Bodak, O. (1992b). Inorg. Mater. 28, 877–879. Google Scholar
Pavlyuk, V., Bodak, O. & Bruskov, V. (1991). Dopov. Akad. Nauk Ukr. 1, 112–114. Google Scholar
Pavlyuk, V., Bodak, O. & Kevorkov, D. (1993). Dopov. Akad. Nauk Ukr. 9, 84–87. Google Scholar
Pavlyuk, V., Bodak, O., Pecharskii, V., Skolozdra, R. & Gladyshevskii, E. (1989a). Inorg. Mater. 25, 962–965. Google Scholar
Pavlyuk, V., Pecharskii, V., Bodak, O. & Sobolev, A. (1989b). Akad. Nauk SSSR Izvest. Metally. 5, 221–222. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stetskiv, A., Rozdzynska-Kielbik, B. & Pavlyuk, V. (2013). Acta Cryst. C69, 683–688. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stetskiv, A., Tarasiuk, I., Rozdzynska-Kielbik, B., Oshchapovsky, I. & Pavlyuk, V. (2012). Acta Cryst. E68, i16. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The RETSn2 and RETxSn2 (x<1) type metallic compounds where RE is a rare-earth element (Gd—Lu) and T is a d-electron element crystallize in different orthorhombic crystal structures LuNiSn2 (space group Pnma) and CeNiSi2-type (space group Cmcm) respectively. In the ternary RELiSn2 compounds lithium atoms occupy the same crystallographic position as the atoms of transition metal in the original CeNiSi2 structure type (Pavlyuk et al., 1989a). Previous structural studies of the four-component alloys from TbLiSn2–TbZnSn2 sections indicate the existence of TbLi1–xZnxSn2 limited solid solution (Stetskiv et al., 2012). X-ray single-crystal study showed that the TbLi1–xZnxSn2 solid solution was formed by the partial substitution of lithium atoms by zinc atoms in 4c site. The ability of lithium atoms to partially substitute the atoms of transition metals was previously observed by us while studying solid solutions RELixCu2–xSi2 and RELixCu2–xGe2 (Pavlyuk et al., 1993). The ordered substitution of transition metals by lithium is observed for Tm2.22Co6Sn20 and TmLi2Co6Sn20 stannides (Stetskiv et al., 2013). The ability of lithium atoms to occupy the same crystallographic position as the atoms of transition metal was observed previously while studying compounds RELiGe with the ZrNiAl-type (Pavlyuk et al., 1991 and Pavlyuk & Bodak, 1992a), RE3Li2Ge3 with Hf3Ni2Si3-type (Pavlyuk & Bodak, 1992b) and Yb5Li4Ge4 with Nb5Cu4Si4-type (Pavlyuk et al., 1989b).
The four-component phase TmNi1–xLixSn2 with low content of lithium from the TmLiSn2–TmNiSn2 section was detected by us during the systematic study of alloys of Tm—Ni—Li—Sn system. Selected single-crystal data show that the title compound crystallizes with the orthorhombic space group Pnma as a LuNiSn2-type (Komarovskaya et al., 1983). The projection of the unit cell and coordination polyhedra of the atoms are shown in Fig. 1. The Tm atoms are enclosed in 17-, 18- and 19-vertex distorted pseudo Frank-Kasper polyhedra. The coordination polyhedron of Sn4, Sn7, Sn8 and Sn9 atoms is 12-vertex distorted cubooctahedron. The Sn5 is enclosed in pentagonal prism with three added atoms. The tricapped trigonal prism is typical for Sn6 atom. The environment of the Ni atoms and Ni/Li statistical mixture is a fourcapped trigonal prism and a coordination number equals 10 (Tm5Sn5).
The distribution of nickel/lithium and thulium atoms in three-dimensional-nets built of Sn atoms is shown in Fig. 2. The thulium and nickel/lithium atoms form tricapped trigonal prism around Sn6. Thulium atoms form the base of prism and nickel/lithium atoms centre side faces of [SnTm6Ni/Li3] prism. These isolated prisms are implemented into three-dimensional-nets built of tin atoms. The data of electronic structure calculations using the TB-LMTO-ASA (Andersen et al., 1986) suggest that thulium and nickel/lithium atoms form a positively charged n[TmNi/Li]m+ polycations which compensate the negative charge of 2n[Sn]m- polyanions (Fig. 3 A). Of course, this suggestion is based on the partial charges. All interatomic distances are values which correlate well with the atomic size; metallic type of bonding was indicated. A significant density of states (DOS) at the Fermi level (Fig. 3B) also indicates dominance of metallic bonding.