organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{4-[(1,3-benzodioxol-5-yl)meth­yl]piperazin-1-yl}methane

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 10 October 2013; accepted 13 October 2013; online 19 October 2013)

In the title compound, C25H32N4O4, both piperazine rings adopt a chair conformation. One of dioxolane ring systems is essentially planar [dihedral angle = 0.9 (2)°] while the other adopts a slightly disordered envelope conformation, the mean plane of the dioxolane ring being twisted by 3.6 (2)° from that of the benzene ring. The dihedral angle between the benzene rings is 69.9 (5)°. No classical hydrogen bonds were observed.

Related literature

For the biological activity of piperazines, see: Choudhary et al. (2006[Choudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819-1826.]); Kharb et al. (2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470-2488.]); Millan et al. (2001[Millan, M. J., Cussac, D. & Milligan, G. (2001). J. Pharm. Exp. Ther. 297, 876-887.]); Brockunier et al. (2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]); Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]); Elliott (2011[Elliott, S. (2011). Drug Test Anal. 3, 430-438.]). For related structures, see: Capuano et al. (2000[Capuano, B., Crosby, I. T., Gable, R. W. & Lloyd, E. J. (2000). Acta Cryst. C56, 339-340.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C25H32N4O4

  • Mr = 452.55

  • Orthorhombic, P n 21 a

  • a = 38.8025 (10) Å

  • b = 9.7675 (2) Å

  • c = 6.09571 (13) Å

  • V = 2310.29 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 173 K

  • 0.38 × 0.21 × 0.11 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.836, Tmax = 1.000

  • 13559 measured reflections

  • 4199 independent reflections

  • 3869 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.02

  • 4199 reflections

  • 307 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack parameter determined using 1513 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: −0.03 (15)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

1-(3,4-Methylenedioxybenzyl)piperazine or 1-piperonylpiperazine is a psychoactive drug of the piperazine class and is used to synthesise the drug, piribedil, an antiparkinsonian agent (Millan et al., 2001). The piperazine moiety is extensively employed to construct various bioactive molecules with anti-bacterial, antimalarial activity and as antipsychotic agents (Choudhary et al., 2006). A valuable insight into recent advances on antimicrobial activity of piperazine derivatives is reported (Kharb et al., 2012). Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). A review on the current pharmacological and toxicological information for piperazine derivatives is described (Elliott, 2011). The crystal structure of N-piperonyl analogue of the atypical antipsychotic clozapine (Capuano et al., 2000) is reported. In view of the above importance of piperonyl piperazines, this paper reports the crystal structure of the title compound, (I), C25H32N4O4, an unexpected product obtained during crystallization.

The title compound, (I), C25H32N4O4, crystallizes with one independent molecule in the asymmetric unit (Fig. 1). In the molecule, both piperazine rings adopt chair conformations (puckering parameters (N1/C2/C3/N2/C4/C5) Q, θ, and ϕ = 0.590 (3)Å, 0.0 (3)° and 173 (23)°; (N3/C14/C15/N4/C16/C17) Q, θ, and ϕ = 0.586 (3)Å, 0.7 (3)° and 182 (10)°,respectively (Cremer & Pople, 1975). One of the two five-membered dioxolane rings is planar while the other is in a slightly disordered envelope conformation (ϕ = 331.0 (18)°) where the mean plane of the dioxolane ring is twisted by 3.6 (1)° from that of the benzene ring. The dihedral angle between the mean planes of the two benzene rings is 69.9 (5)°. No classical hydrogen bonds were observed.

Related literature top

For the biological activity of piperazines, see: Choudhary et al. (2006); Kharb et al. (2012); Millan et al. (2001); Brockunier et al. (2004); Bogatcheva et al. (2006); Elliott (2011). For related structures, see: Capuano et al. (2000). For puckering parameters, see Cremer & Pople (1975).

Experimental top

0.5 g of 1-piperonylpiperazine (Sigma-Aldrich) was dissolved in 5 ml of methanol at 333 K with stirring for 10 min and left for slow evaporation. After two days, crystal formation was not observed. For the same compound, 5 ml of dimethyl formamide was added at 333 K with stirring for 15 min and left for slow evaporation. X-ray quality crystals were obtained and were used as such (m.p.: 308-312 K.)

Refinement top

H1A and H1B were located by a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH) or 0.97Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C25H32N4O4) showing the labeling scheme with 30% probability displacement ellipsoids.
Bis{4-[(1,3-benzodioxol-5-yl)methyl]piperazin-1-yl}methane top
Crystal data top
C25H32N4O4Dx = 1.312 Mg m3
Mr = 452.55Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pn21aCell parameters from 5154 reflections
a = 38.8025 (10) Åθ = 4.5–72.4°
b = 9.7675 (2) ŵ = 0.72 mm1
c = 6.09571 (13) ÅT = 173 K
V = 2310.29 (10) Å3Irregular, colourless
Z = 40.38 × 0.21 × 0.11 mm
F(000) = 968
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4199 independent reflections
Radiation source: Enhance (Cu) X-ray Source3869 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.046
ω scansθmax = 72.6°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 4348
Tmin = 0.836, Tmax = 1.000k = 1112
13559 measured reflectionsl = 57
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0485P)2 + 0.6698P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max < 0.001
wR(F2) = 0.108Δρmax = 0.22 e Å3
S = 1.02Δρmin = 0.17 e Å3
4199 reflectionsExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
307 parametersExtinction coefficient: 0.0016 (2)
1 restraintAbsolute structure: Flack parameter determined using 1513 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Hydrogen site location: mixedAbsolute structure parameter: 0.03 (15)
Crystal data top
C25H32N4O4V = 2310.29 (10) Å3
Mr = 452.55Z = 4
Orthorhombic, Pn21aCu Kα radiation
a = 38.8025 (10) ŵ = 0.72 mm1
b = 9.7675 (2) ÅT = 173 K
c = 6.09571 (13) Å0.38 × 0.21 × 0.11 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4199 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3869 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 1.000Rint = 0.046
13559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108Δρmax = 0.22 e Å3
S = 1.02Δρmin = 0.17 e Å3
4199 reflectionsAbsolute structure: Flack parameter determined using 1513 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
307 parametersAbsolute structure parameter: 0.03 (15)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31516 (6)0.5691 (3)1.0003 (4)0.0425 (5)
O20.31379 (7)0.7799 (3)0.8258 (4)0.0534 (7)
O30.75845 (6)0.5660 (3)0.1266 (4)0.0452 (6)
O40.77389 (6)0.4101 (3)0.1424 (4)0.0431 (6)
N10.50857 (6)0.5885 (3)0.2715 (4)0.0316 (6)
N20.43489 (6)0.5829 (3)0.2856 (4)0.0283 (5)
N30.56439 (6)0.5613 (3)0.1084 (4)0.0305 (5)
N40.62717 (6)0.6657 (3)0.0775 (4)0.0287 (5)
C0AA0.54264 (8)0.5299 (4)0.2949 (5)0.0359 (7)
C20.48991 (8)0.5896 (4)0.4788 (5)0.0388 (8)
H2A0.50310.63940.58790.047*
H2B0.48680.49650.53060.047*
C30.45513 (8)0.6567 (4)0.4487 (5)0.0363 (7)
H3A0.44290.65760.58750.044*
H3B0.45830.75080.40180.044*
C40.45353 (7)0.5831 (4)0.0781 (4)0.0320 (6)
H4A0.45660.67660.02790.038*
H4B0.44030.53410.03170.038*
C50.48843 (8)0.5158 (3)0.1056 (5)0.0335 (7)
H5A0.48540.42110.14960.040*
H5B0.50070.51690.03320.040*
C60.40051 (8)0.6420 (3)0.2635 (5)0.0336 (7)
H6A0.38920.60210.13680.040*
H6B0.40260.73970.23820.040*
C70.37846 (7)0.6181 (3)0.4645 (5)0.0290 (6)
C80.37856 (7)0.4919 (3)0.5700 (5)0.0291 (6)
H80.39300.42340.51770.035*
C90.35775 (7)0.4641 (3)0.7517 (5)0.0304 (6)
H90.35780.37890.81970.036*
C100.33726 (7)0.5687 (3)0.8245 (4)0.0297 (6)
C110.30024 (9)0.7027 (4)1.0040 (6)0.0445 (8)
H11A0.27540.69610.99100.053*
H11B0.30560.74781.14160.053*
C120.33670 (8)0.6945 (3)0.7208 (5)0.0331 (7)
C130.35674 (8)0.7227 (3)0.5419 (5)0.0337 (7)
H130.35600.80790.47400.040*
C140.59693 (8)0.4870 (3)0.1253 (5)0.0342 (7)
H14A0.59240.38940.12940.041*
H14B0.60850.51220.26050.041*
C150.62001 (8)0.5196 (3)0.0679 (5)0.0332 (7)
H15A0.64150.46950.05400.040*
H15B0.60890.49090.20270.040*
C160.59437 (7)0.7386 (3)0.0990 (5)0.0311 (6)
H16A0.58300.71100.23370.037*
H16B0.59860.83640.10650.037*
C170.57131 (7)0.7078 (3)0.0934 (5)0.0320 (6)
H17A0.58230.73880.22750.038*
H17B0.54980.75700.07700.038*
C180.65041 (7)0.7011 (3)0.2577 (5)0.0341 (7)
H18A0.65440.79910.25670.041*
H18B0.63950.67790.39590.041*
C190.68447 (7)0.6275 (3)0.2412 (5)0.0310 (6)
C200.70492 (8)0.6439 (4)0.0521 (5)0.0333 (7)
H200.69870.70430.05900.040*
C210.73433 (7)0.5672 (4)0.0390 (4)0.0314 (6)
C220.78104 (9)0.4551 (4)0.0760 (6)0.0439 (8)
H22A0.77750.38060.17870.053*
H22B0.80480.48480.08720.053*
C230.74391 (7)0.4755 (3)0.2007 (5)0.0323 (7)
C240.72513 (8)0.4605 (4)0.3887 (5)0.0367 (7)
H240.73200.40140.49990.044*
C250.69508 (8)0.5383 (3)0.4056 (5)0.0325 (7)
H250.68170.53020.53140.039*
H0AA0.5513 (8)0.564 (4)0.426 (5)0.031 (9)*
H0AB0.5410 (9)0.429 (4)0.313 (6)0.040 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0476 (13)0.0446 (14)0.0352 (11)0.0079 (11)0.0122 (10)0.0003 (10)
O20.0654 (17)0.0392 (15)0.0557 (16)0.0191 (12)0.0233 (13)0.0014 (12)
O30.0382 (12)0.0574 (16)0.0399 (12)0.0129 (12)0.0079 (9)0.0052 (12)
O40.0318 (12)0.0503 (14)0.0471 (14)0.0094 (10)0.0022 (10)0.0030 (11)
N10.0285 (12)0.0389 (15)0.0275 (12)0.0058 (11)0.0001 (9)0.0010 (11)
N20.0286 (12)0.0321 (13)0.0240 (11)0.0032 (10)0.0007 (9)0.0009 (10)
N30.0267 (12)0.0288 (13)0.0361 (13)0.0029 (10)0.0018 (9)0.0050 (11)
N40.0266 (12)0.0259 (13)0.0336 (13)0.0005 (10)0.0013 (9)0.0018 (10)
C0AA0.0338 (16)0.0421 (19)0.0318 (15)0.0032 (14)0.0035 (12)0.0075 (14)
C20.0345 (15)0.055 (2)0.0270 (14)0.0094 (15)0.0037 (12)0.0020 (15)
C30.0354 (16)0.0444 (19)0.0290 (15)0.0069 (14)0.0037 (12)0.0073 (13)
C40.0331 (15)0.0372 (16)0.0258 (13)0.0052 (13)0.0004 (11)0.0007 (13)
C50.0332 (15)0.0394 (18)0.0280 (15)0.0034 (13)0.0005 (12)0.0041 (13)
C60.0344 (16)0.0326 (16)0.0338 (15)0.0020 (13)0.0008 (12)0.0037 (13)
C70.0280 (13)0.0308 (16)0.0282 (14)0.0000 (12)0.0032 (11)0.0020 (11)
C80.0259 (14)0.0281 (16)0.0333 (15)0.0029 (11)0.0011 (11)0.0044 (11)
C90.0304 (15)0.0276 (14)0.0333 (16)0.0002 (12)0.0040 (12)0.0019 (12)
C100.0262 (13)0.0356 (16)0.0273 (13)0.0020 (12)0.0006 (11)0.0027 (12)
C110.0441 (18)0.044 (2)0.0451 (19)0.0063 (16)0.0116 (15)0.0095 (16)
C120.0326 (15)0.0330 (16)0.0337 (15)0.0053 (13)0.0020 (12)0.0068 (12)
C130.0359 (15)0.0263 (15)0.0387 (16)0.0031 (13)0.0018 (13)0.0010 (13)
C140.0326 (16)0.0265 (15)0.0435 (17)0.0010 (12)0.0020 (12)0.0064 (13)
C150.0298 (15)0.0261 (15)0.0437 (17)0.0030 (12)0.0007 (13)0.0031 (13)
C160.0299 (15)0.0245 (15)0.0389 (16)0.0005 (11)0.0055 (12)0.0038 (12)
C170.0269 (14)0.0290 (16)0.0401 (16)0.0022 (12)0.0029 (12)0.0008 (13)
C180.0313 (15)0.0340 (17)0.0369 (16)0.0019 (13)0.0020 (12)0.0048 (13)
C190.0292 (14)0.0316 (15)0.0323 (15)0.0042 (12)0.0028 (11)0.0048 (12)
C200.0321 (15)0.0352 (17)0.0325 (15)0.0010 (13)0.0024 (12)0.0015 (13)
C210.0313 (14)0.0359 (16)0.0269 (14)0.0035 (13)0.0009 (11)0.0040 (13)
C220.0359 (17)0.054 (2)0.0422 (19)0.0114 (16)0.0030 (14)0.0095 (16)
C230.0260 (14)0.0335 (17)0.0374 (16)0.0005 (12)0.0064 (12)0.0051 (13)
C240.0326 (16)0.0390 (17)0.0385 (17)0.0052 (13)0.0093 (13)0.0031 (14)
C250.0305 (15)0.0373 (17)0.0298 (15)0.0070 (12)0.0001 (11)0.0036 (12)
Geometric parameters (Å, º) top
O1—C101.373 (3)C7—C81.390 (4)
O1—C111.428 (4)C7—C131.406 (4)
O2—C111.422 (4)C8—H80.9300
O2—C121.377 (4)C8—C91.397 (4)
O3—C211.377 (3)C9—H90.9300
O3—C221.427 (4)C9—C101.369 (4)
O4—C221.429 (4)C10—C121.382 (5)
O4—C231.374 (4)C11—H11A0.9700
N1—C0AA1.447 (4)C11—H11B0.9700
N1—C21.456 (4)C12—C131.367 (4)
N1—C51.462 (4)C13—H130.9300
N2—C31.458 (4)C14—H14A0.9700
N2—C41.457 (3)C14—H14B0.9700
N2—C61.460 (4)C14—C151.513 (4)
N3—C0AA1.449 (4)C15—H15A0.9700
N3—C141.460 (4)C15—H15B0.9700
N3—C171.459 (4)C16—H16A0.9700
N4—C151.455 (4)C16—H16B0.9700
N4—C161.464 (4)C16—C171.505 (4)
N4—C181.462 (4)C17—H17A0.9700
C0AA—H0AA0.93 (3)C17—H17B0.9700
C0AA—H0AB0.99 (4)C18—H18A0.9700
C2—H2A0.9700C18—H18B0.9700
C2—H2B0.9700C18—C191.508 (4)
C2—C31.512 (4)C19—C201.409 (4)
C3—H3A0.9700C19—C251.390 (4)
C3—H3B0.9700C20—H200.9300
C4—H4A0.9700C20—C211.367 (5)
C4—H4B0.9700C21—C231.382 (4)
C4—C51.515 (4)C22—H22A0.9700
C5—H5A0.9700C22—H22B0.9700
C5—H5B0.9700C23—C241.366 (5)
C6—H6A0.9700C24—H240.9300
C6—H6B0.9700C24—C251.396 (5)
C6—C71.512 (4)C25—H250.9300
C10—O1—C11105.5 (3)O1—C11—H11B109.9
C12—O2—C11105.8 (3)O2—C11—O1108.8 (2)
C21—O3—C22105.4 (3)O2—C11—H11A109.9
C23—O4—C22105.2 (2)O2—C11—H11B109.9
C0AA—N1—C2111.8 (2)H11A—C11—H11B108.3
C0AA—N1—C5111.4 (3)O2—C12—C10109.7 (3)
C2—N1—C5109.8 (2)C13—C12—O2128.0 (3)
C3—N2—C6111.1 (2)C13—C12—C10122.4 (3)
C4—N2—C3108.9 (2)C7—C13—H13121.2
C4—N2—C6111.9 (2)C12—C13—C7117.5 (3)
C0AA—N3—C14110.1 (2)C12—C13—H13121.2
C0AA—N3—C17111.3 (3)N3—C14—H14A109.5
C14—N3—C17109.4 (2)N3—C14—H14B109.5
C15—N4—C16108.3 (2)N3—C14—C15110.6 (3)
C15—N4—C18112.3 (3)H14A—C14—H14B108.1
C16—N4—C18110.7 (2)C15—C14—H14A109.5
N1—C0AA—N3111.8 (3)C15—C14—H14B109.5
N1—C0AA—H0AA106 (2)N4—C15—C14110.5 (3)
N1—C0AA—H0AB110 (2)N4—C15—H15A109.5
N3—C0AA—H0AA113 (2)N4—C15—H15B109.5
N3—C0AA—H0AB109 (2)C14—C15—H15A109.5
H0AA—C0AA—H0AB106 (3)C14—C15—H15B109.5
N1—C2—H2A109.7H15A—C15—H15B108.1
N1—C2—H2B109.7N4—C16—H16A109.6
N1—C2—C3110.0 (3)N4—C16—H16B109.6
H2A—C2—H2B108.2N4—C16—C17110.5 (2)
C3—C2—H2A109.7H16A—C16—H16B108.1
C3—C2—H2B109.7C17—C16—H16A109.6
N2—C3—C2110.4 (3)C17—C16—H16B109.6
N2—C3—H3A109.6N3—C17—C16110.7 (2)
N2—C3—H3B109.6N3—C17—H17A109.5
C2—C3—H3A109.6N3—C17—H17B109.5
C2—C3—H3B109.6C16—C17—H17A109.5
H3A—C3—H3B108.1C16—C17—H17B109.5
N2—C4—H4A109.6H17A—C17—H17B108.1
N2—C4—H4B109.6N4—C18—H18A109.2
N2—C4—C5110.3 (2)N4—C18—H18B109.2
H4A—C4—H4B108.1N4—C18—C19112.2 (2)
C5—C4—H4A109.6H18A—C18—H18B107.9
C5—C4—H4B109.6C19—C18—H18A109.2
N1—C5—C4110.1 (3)C19—C18—H18B109.2
N1—C5—H5A109.6C20—C19—C18119.6 (3)
N1—C5—H5B109.6C25—C19—C18120.7 (3)
C4—C5—H5A109.6C25—C19—C20119.6 (3)
C4—C5—H5B109.6C19—C20—H20121.5
H5A—C5—H5B108.2C21—C20—C19117.1 (3)
N2—C6—H6A109.1C21—C20—H20121.5
N2—C6—H6B109.1O3—C21—C23109.5 (3)
N2—C6—C7112.4 (2)C20—C21—O3127.9 (3)
H6A—C6—H6B107.9C20—C21—C23122.6 (3)
C7—C6—H6A109.1O3—C22—O4108.4 (3)
C7—C6—H6B109.1O3—C22—H22A110.0
C8—C7—C6120.7 (3)O3—C22—H22B110.0
C8—C7—C13119.4 (3)O4—C22—H22A110.0
C13—C7—C6119.9 (3)O4—C22—H22B110.0
C7—C8—H8118.7H22A—C22—H22B108.4
C7—C8—C9122.5 (3)O4—C23—C21110.2 (3)
C9—C8—H8118.7C24—C23—O4128.2 (3)
C8—C9—H9121.7C24—C23—C21121.6 (3)
C10—C9—C8116.6 (3)C23—C24—H24121.6
C10—C9—H9121.7C23—C24—C25116.7 (3)
O1—C10—C12110.2 (3)C25—C24—H24121.6
C9—C10—O1128.2 (3)C19—C25—C24122.4 (3)
C9—C10—C12121.6 (3)C19—C25—H25118.8
O1—C11—H11A109.9C24—C25—H25118.8
O1—C10—C12—O20.7 (4)C9—C10—C12—C130.8 (5)
O1—C10—C12—C13179.1 (3)C10—O1—C11—O20.5 (3)
O2—C12—C13—C7179.6 (3)C10—C12—C13—C70.1 (4)
O3—C21—C23—O41.5 (4)C11—O1—C10—C9179.9 (3)
O3—C21—C23—C24177.3 (3)C11—O1—C10—C120.1 (3)
O4—C23—C24—C25179.0 (3)C11—O2—C12—C101.0 (4)
N1—C2—C3—N259.5 (4)C11—O2—C12—C13178.8 (3)
N2—C4—C5—N159.0 (3)C12—O2—C11—O10.9 (4)
N2—C6—C7—C842.1 (4)C13—C7—C8—C90.1 (4)
N2—C6—C7—C13140.0 (3)C14—N3—C0AA—N1173.1 (3)
N3—C14—C15—N459.2 (3)C14—N3—C17—C1657.2 (3)
N4—C16—C17—N359.4 (3)C15—N4—C16—C1759.5 (3)
N4—C18—C19—C2058.0 (4)C15—N4—C18—C1958.6 (3)
N4—C18—C19—C25118.7 (3)C16—N4—C15—C1459.4 (3)
C0AA—N1—C2—C3177.7 (3)C16—N4—C18—C19179.8 (3)
C0AA—N1—C5—C4177.6 (3)C17—N3—C0AA—N165.3 (3)
C0AA—N3—C14—C15179.6 (3)C17—N3—C14—C1556.9 (3)
C0AA—N3—C17—C16179.1 (2)C18—N4—C15—C14178.0 (2)
C2—N1—C0AA—N3164.6 (3)C18—N4—C16—C17176.9 (2)
C2—N1—C5—C458.0 (3)C18—C19—C20—C21175.4 (3)
C3—N2—C4—C559.2 (3)C18—C19—C25—C24175.0 (3)
C3—N2—C6—C769.1 (3)C19—C20—C21—O3179.3 (3)
C4—N2—C3—C259.5 (3)C19—C20—C21—C230.8 (5)
C4—N2—C6—C7169.0 (3)C20—C19—C25—C241.7 (5)
C5—N1—C0AA—N372.2 (3)C20—C21—C23—O4178.4 (3)
C5—N1—C2—C358.2 (4)C20—C21—C23—C242.9 (5)
C6—N2—C3—C2176.9 (2)C21—O3—C22—O411.6 (4)
C6—N2—C4—C5177.7 (3)C21—C23—C24—C252.5 (5)
C6—C7—C8—C9177.8 (3)C22—O3—C21—C20171.8 (3)
C6—C7—C13—C12178.3 (3)C22—O3—C21—C238.1 (3)
C7—C8—C9—C100.9 (4)C22—O4—C23—C215.7 (4)
C8—C7—C13—C120.4 (4)C22—O4—C23—C24175.6 (3)
C8—C9—C10—O1178.6 (3)C23—O4—C22—O310.7 (4)
C8—C9—C10—C121.2 (4)C23—C24—C25—C190.2 (5)
C9—C10—C12—O2179.4 (3)C25—C19—C20—C211.4 (4)

Experimental details

Crystal data
Chemical formulaC25H32N4O4
Mr452.55
Crystal system, space groupOrthorhombic, Pn21a
Temperature (K)173
a, b, c (Å)38.8025 (10), 9.7675 (2), 6.09571 (13)
V3)2310.29 (10)
Z4
Radiation typeCu Kα
µ (mm1)0.72
Crystal size (mm)0.38 × 0.21 × 0.11
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.836, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13559, 4199, 3869
Rint0.046
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.02
No. of reflections4199
No. of parameters307
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.17
Absolute structureFlack parameter determined using 1513 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Absolute structure parameter0.03 (15)

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2012 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women in Mysore, for giving permission to do research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCapuano, B., Crosby, I. T., Gable, R. W. & Lloyd, E. J. (2000). Acta Cryst. C56, 339–340.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElliott, S. (2011). Drug Test Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470–2488.  CAS Google Scholar
First citationMillan, M. J., Cussac, D. & Milligan, G. (2001). J. Pharm. Exp. Ther. 297, 876–887.  CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds