organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 4,4′-(diazenedi­yl)dibenzoate at 100 K

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: eismont@uni.opole.pl

(Received 20 September 2013; accepted 30 September 2013; online 5 October 2013)

In the asymmetric part of the unit cell of the title compound, C16H14N2O4, there are two chemically equivalent but crystallographic independent half mol­ecules. The geometric centre of each complete mol­ecule lies on a crystallographic inversion centre. Both mol­ecules are almost planar [mean deviations of atoms in the two molecules are 0.032 (2) and 0.044 (2) Å] and their geometries are similar. In the crystal, mol­ecules are arranged in columns along the a axis. There are no inter­molecular donor–acceptor distances shorter than 3.4 Å.

Related literature

For general background to the use of azo compounds as dyes, pigments and advanced materials, see: Allmann (1997[Allmann, R. (1997). The Chemistry of the Hydrazo, Azo and Azoxy groups, Vol. 2, edited by S. Patai, pp. 23-52. New York: John Wiley & Sons.]); Scott et al., (2002[Scott, J., Asami, M. & Tanaka, K. (2002). New J. Chem. 26, 1822-1826.]); Maniam et al. (2008[Maniam, S., Cieslinski, M. M., Lincoln, S. F., Onagi, H., Steel, P. J., Willis, A. C. & Easton, C. J. (2008). Org. Lett. 10, 1885-1888.]); Zeitouny et al., (2009[Zeitouny, J., Aurisicchio, C., Bonifazi, D., De Zorzi, R., Geremia, S., Bonini, M., Palma, C.-A., Samori, P., Listorti, A., Belbakra, A. & Armaroli, N. (2009). J. Mater. Chem. 19, 4715-4724.]). For a related structure, see: Yu & Liu (2009[Yu, Q.-D. & Liu, Y.-Y. (2009). Acta Cryst. E65, o2326.]); Niu et al. (2011[Niu, Y., Huang, J., Zhao, C., Gao, P. & Yu, Y. (2011). Acta Cryst. E67, o2671.]). For related literature, see: Onto et al. (1998[Onto, K., Hatakeyama, T., Takeo, M., Uchiito, S., Tokuda, M. & Suginome, H. (1998). Tetrahedron, 54, 8403-8410.]). For the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O4

  • Mr = 298.29

  • Triclinic, [P \overline 1]

  • a = 3.8146 (8) Å

  • b = 11.2571 (18) Å

  • c = 16.904 (3) Å

  • α = 72.456 (16)°

  • β = 85.030 (18)°

  • γ = 84.468 (16)°

  • V = 687.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.35 × 0.17 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • 4264 measured reflections

  • 2405 independent reflections

  • 1652 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.147

  • S = 1.05

  • 2405 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Azo compounds and its derivatives represent the dominant class of coloured compounds and are used as dyes and pigments (Allmann, 1997). Azobenzenes, due to its efficient and fully reversible photoisomerization and photoinduced anisotropy have widely been investigated as a component in photoresponsive materials (Zeitouny et al., 2009).

There are two chemically equivalent but crystallographic independent molecules in the unit cell (Figure 1), both lie on crystallographic inversion centres. The molecules are almost planar and their geometries are similar; differences do not exceed 0.2 Å for bond lengths, 2° for valence angles and 3° for torsion angles.

All bond distances and angles lie in expected ranges and are in good agreement with the geometry of other para-substituted azobenzene derivatives (Yu & Liu, 2009; Niu et al., 2011 and Allen, 2002).

The crystal packing is shown in Fig. 2. The molecules form columns along the a axis, the distance between stacked molecules is equal to 3.8146 (8) Å. There are no intermolecular C–H···O/N distances shorter than 3.4 Å.

Related literature top

For general background to the use of azo compounds as dyes, pigments and advanced materials, see: Allmann (1997); Scott et al., (2002); Maniam et al. (2008); Zeitouny et al., (2009). For a related structure, see: Yu & Liu (2009); Niu et al. (2011).. For related literature, see: Onto et al. (1998). For Cambridge Structural Database, see: Allen (2002).

Experimental top

The compound was prepared according to literature procedure, (Onto et al., 1998). Crystals of (I) suitable for X-ray crystal structure analysis was grown from benzene–n-heptane mixture (1:1).

Refinement top

Apart from methyl hydrogens all H atoms were positioned geometrically, with C–H = 0.93 Å and Uiso (H) = 1.2Ueq(C), methyl H atoms were derived from difference Fourier maps and refined as idealized groups with with C–H = 0.96 Å and Uiso (H) = 1.5Ueq(C). All methyl-H atoms were allowed to rotate but not to tip.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry code: A = -x, -y, -z.
[Figure 2] Fig. 2. The packing diagram viewed along a-axis.
Dimethyl 4,4'-(diazenediyl)dibenzoate top
Crystal data top
C16H14N2O4Z = 2
Mr = 298.29F(000) = 312
Triclinic, P1Dx = 1.441 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8146 (8) ÅCell parameters from 4264 reflections
b = 11.2571 (18) Åθ = 3.6–25.0°
c = 16.904 (3) ŵ = 0.11 mm1
α = 72.456 (16)°T = 100 K
β = 85.030 (18)°Prism, red
γ = 84.468 (16)°0.35 × 0.17 × 0.15 mm
V = 687.6 (2) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1652 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.0°, θmin = 3.6°
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1h = 42
ω–scank = 1313
4264 measured reflectionsl = 2020
2405 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0791P)2 + 0.205P]
where P = (Fo2 + 2Fc2)/3
2405 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H14N2O4γ = 84.468 (16)°
Mr = 298.29V = 687.6 (2) Å3
Triclinic, P1Z = 2
a = 3.8146 (8) ÅMo Kα radiation
b = 11.2571 (18) ŵ = 0.11 mm1
c = 16.904 (3) ÅT = 100 K
α = 72.456 (16)°0.35 × 0.17 × 0.15 mm
β = 85.030 (18)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1652 reflections with I > 2σ(I)
4264 measured reflectionsRint = 0.025
2405 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
2405 reflectionsΔρmin = 0.25 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.3301 (4)0.15744 (14)0.33935 (9)0.0251 (4)
O120.1772 (4)0.04021 (15)0.39802 (10)0.0296 (4)
N110.0393 (5)0.05005 (17)0.00495 (12)0.0216 (5)
C110.0777 (6)0.0436 (2)0.08962 (14)0.0191 (5)
C120.2050 (6)0.1480 (2)0.10194 (14)0.0196 (5)
H120.25850.21600.05650.020 (6)*
C130.2522 (5)0.1511 (2)0.18173 (14)0.0191 (5)
H130.33870.22080.18980.025 (6)*
C140.1695 (5)0.0493 (2)0.25002 (14)0.0194 (5)
C150.0372 (6)0.0548 (2)0.23750 (14)0.0204 (5)
H150.01940.12220.28300.020 (6)*
C160.0101 (6)0.0585 (2)0.15834 (14)0.0200 (5)
H160.09920.12780.15040.028 (7)*
C170.2225 (6)0.0484 (2)0.33681 (14)0.0209 (5)
C180.3974 (7)0.1652 (2)0.42107 (14)0.0272 (6)
H18A0.47250.24640.41580.037 (7)*
H18B0.57880.10250.44480.031 (7)*
H18C0.18520.15190.45650.038 (8)*
O210.6465 (4)0.65469 (14)0.35059 (10)0.0248 (4)
O220.8894 (4)0.45639 (15)0.38736 (10)0.0308 (5)
N210.4726 (5)0.55083 (17)0.00854 (12)0.0206 (4)
C210.5457 (6)0.5432 (2)0.09183 (14)0.0184 (5)
C220.4325 (6)0.6478 (2)0.11755 (14)0.0193 (5)
H220.31670.71680.08150.034 (7)*
C230.4932 (5)0.6485 (2)0.19724 (13)0.0188 (5)
H230.41750.71830.21450.027 (7)*
C240.6678 (6)0.5450 (2)0.25183 (14)0.0194 (5)
C250.7813 (5)0.4400 (2)0.22548 (14)0.0196 (5)
H250.89710.37100.26160.023 (6)*
C260.7222 (6)0.4383 (2)0.14616 (14)0.0193 (5)
H260.79830.36860.12880.027 (7)*
C270.7478 (6)0.5448 (2)0.33667 (14)0.0212 (5)
C280.7220 (7)0.6663 (2)0.43076 (14)0.0279 (6)
H28A0.63860.74810.43400.046 (8)*
H28B0.97200.65420.43680.031 (7)*
H28C0.60530.60440.47440.039 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0366 (10)0.0189 (9)0.0242 (9)0.0057 (7)0.0049 (7)0.0110 (7)
O120.0411 (11)0.0227 (10)0.0250 (9)0.0081 (8)0.0030 (8)0.0052 (7)
N110.0227 (10)0.0171 (10)0.0270 (11)0.0007 (8)0.0018 (8)0.0096 (8)
C110.0183 (11)0.0165 (12)0.0233 (12)0.0047 (9)0.0021 (9)0.0089 (9)
C120.0205 (11)0.0136 (12)0.0239 (13)0.0017 (9)0.0001 (9)0.0047 (9)
C130.0184 (11)0.0133 (11)0.0289 (13)0.0003 (9)0.0020 (9)0.0114 (10)
C140.0163 (11)0.0185 (12)0.0253 (13)0.0014 (9)0.0019 (9)0.0100 (10)
C150.0232 (12)0.0140 (11)0.0228 (12)0.0005 (9)0.0017 (10)0.0039 (9)
C160.0198 (11)0.0150 (12)0.0274 (13)0.0027 (9)0.0005 (10)0.0094 (10)
C170.0203 (12)0.0174 (12)0.0272 (13)0.0014 (9)0.0013 (9)0.0101 (10)
C180.0355 (14)0.0250 (14)0.0268 (14)0.0061 (11)0.0062 (11)0.0141 (11)
O210.0352 (10)0.0200 (9)0.0231 (9)0.0018 (7)0.0041 (7)0.0115 (7)
O220.0428 (11)0.0240 (10)0.0263 (10)0.0044 (8)0.0080 (8)0.0092 (8)
N210.0230 (10)0.0177 (10)0.0229 (10)0.0029 (8)0.0008 (8)0.0085 (8)
C210.0180 (11)0.0156 (12)0.0226 (12)0.0046 (9)0.0015 (9)0.0069 (9)
C220.0188 (11)0.0143 (11)0.0245 (13)0.0006 (9)0.0020 (9)0.0055 (9)
C230.0189 (11)0.0141 (11)0.0255 (13)0.0034 (9)0.0011 (9)0.0091 (9)
C240.0189 (11)0.0177 (12)0.0232 (12)0.0057 (9)0.0017 (9)0.0079 (9)
C250.0182 (11)0.0145 (12)0.0258 (13)0.0012 (9)0.0017 (9)0.0055 (9)
C260.0201 (11)0.0132 (11)0.0270 (13)0.0021 (9)0.0003 (9)0.0093 (9)
C270.0217 (12)0.0173 (12)0.0263 (13)0.0045 (9)0.0017 (10)0.0088 (10)
C280.0368 (14)0.0263 (14)0.0264 (14)0.0043 (11)0.0040 (11)0.0153 (11)
Geometric parameters (Å, º) top
O11—C171.345 (3)O21—C271.342 (3)
O11—C181.456 (3)O21—C281.456 (3)
O12—C171.215 (3)O22—C271.216 (3)
N11—N11i1.255 (3)N21—N21ii1.257 (4)
N11—C111.431 (3)N21—C211.434 (3)
C11—C121.391 (3)C21—C221.393 (3)
C11—C161.409 (3)C21—C261.411 (3)
C12—C131.387 (3)C22—C231.389 (3)
C12—H120.9300C22—H220.9300
C13—C141.398 (3)C23—C241.401 (3)
C13—H130.9300C23—H230.9300
C14—C151.398 (3)C24—C251.403 (3)
C14—C171.495 (3)C24—C271.491 (3)
C15—C161.379 (3)C25—C261.385 (3)
C15—H150.9300C25—H250.9300
C16—H160.9300C26—H260.9300
C18—H18A0.9600C28—H28A0.9600
C18—H18B0.9600C28—H28B0.9600
C18—H18C0.9600C28—H28C0.9600
C17—O11—C18116.32 (17)C27—O21—C28116.58 (18)
N11i—N11—C11114.3 (2)N21ii—N21—C21114.3 (2)
C12—C11—C16120.0 (2)C22—C21—C26120.4 (2)
C12—C11—N11115.69 (19)C22—C21—N21115.86 (19)
C16—C11—N11124.25 (19)C26—C21—N21123.76 (19)
C13—C12—C11120.2 (2)C23—C22—C21119.7 (2)
C13—C12—H12119.9C23—C22—H22120.2
C11—C12—H12119.9C21—C22—H22120.2
C12—C13—C14119.88 (19)C22—C23—C24120.5 (2)
C12—C13—H13120.1C22—C23—H23119.8
C14—C13—H13120.1C24—C23—H23119.8
C15—C14—C13119.8 (2)C23—C24—C25119.5 (2)
C15—C14—C17118.83 (19)C23—C24—C27121.7 (2)
C13—C14—C17121.41 (19)C25—C24—C27118.8 (2)
C16—C15—C14120.7 (2)C26—C25—C24120.5 (2)
C16—C15—H15119.7C26—C25—H25119.8
C14—C15—H15119.7C24—C25—H25119.8
C15—C16—C11119.42 (19)C25—C26—C21119.4 (2)
C15—C16—H16120.3C25—C26—H26120.3
C11—C16—H16120.3C21—C26—H26120.3
O12—C17—O11123.6 (2)O22—C27—O21123.7 (2)
O12—C17—C14124.4 (2)O22—C27—C24124.4 (2)
O11—C17—C14111.96 (18)O21—C27—C24111.90 (19)
O11—C18—H18A109.5O21—C28—H28A109.5
O11—C18—H18B109.5O21—C28—H28B109.5
H18A—C18—H18B109.5H28A—C28—H28B109.5
O11—C18—H18C109.5O21—C28—H28C109.5
H18A—C18—H18C109.5H28A—C28—H28C109.5
H18B—C18—H18C109.5H28B—C28—H28C109.5
N11i—N11—C11—C12172.7 (2)N21ii—N21—C21—C22169.5 (2)
N11i—N11—C11—C168.4 (3)N21ii—N21—C21—C2610.9 (3)
C16—C11—C12—C131.2 (3)C26—C21—C22—C230.2 (3)
N11—C11—C12—C13179.92 (18)N21—C21—C22—C23179.82 (18)
C11—C12—C13—C140.4 (3)C21—C22—C23—C240.1 (3)
C12—C13—C14—C150.4 (3)C22—C23—C24—C250.0 (3)
C12—C13—C14—C17178.97 (19)C22—C23—C24—C27177.82 (19)
C13—C14—C15—C160.5 (3)C23—C24—C25—C260.1 (3)
C17—C14—C15—C16178.93 (19)C27—C24—C25—C26177.85 (19)
C14—C15—C16—C110.3 (3)C24—C25—C26—C210.1 (3)
C12—C11—C16—C151.1 (3)C22—C21—C26—C250.2 (3)
N11—C11—C16—C15179.91 (19)N21—C21—C26—C25179.82 (19)
C18—O11—C17—O120.8 (3)C28—O21—C27—O221.5 (3)
C18—O11—C17—C14178.63 (18)C28—O21—C27—C24178.16 (17)
C15—C14—C17—O124.4 (3)C23—C24—C27—O22177.8 (2)
C13—C14—C17—O12175.0 (2)C25—C24—C27—O224.3 (3)
C15—C14—C17—O11176.20 (18)C23—C24—C27—O212.5 (3)
C13—C14—C17—O114.4 (3)C25—C24—C27—O21175.33 (19)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H14N2O4
Mr298.29
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)3.8146 (8), 11.2571 (18), 16.904 (3)
α, β, γ (°)72.456 (16), 85.030 (18), 84.468 (16)
V3)687.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.17 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4264, 2405, 1652
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.147, 1.05
No. of reflections2405
No. of parameters213
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllmann, R. (1997). The Chemistry of the Hydrazo, Azo and Azoxy groups, Vol. 2, edited by S. Patai, pp. 23–52. New York: John Wiley & Sons.  Google Scholar
First citationManiam, S., Cieslinski, M. M., Lincoln, S. F., Onagi, H., Steel, P. J., Willis, A. C. & Easton, C. J. (2008). Org. Lett. 10, 1885–1888.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNiu, Y., Huang, J., Zhao, C., Gao, P. & Yu, Y. (2011). Acta Cryst. E67, o2671.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOnto, K., Hatakeyama, T., Takeo, M., Uchiito, S., Tokuda, M. & Suginome, H. (1998). Tetrahedron, 54, 8403–8410.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationScott, J., Asami, M. & Tanaka, K. (2002). New J. Chem. 26, 1822–1826.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Q.-D. & Liu, Y.-Y. (2009). Acta Cryst. E65, o2326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeitouny, J., Aurisicchio, C., Bonifazi, D., De Zorzi, R., Geremia, S., Bonini, M., Palma, C.-A., Samori, P., Listorti, A., Belbakra, A. & Armaroli, N. (2009). J. Mater. Chem. 19, 4715–4724.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds