organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one

aDepartment of Chemistry, Pennsylvania State University, University Park, PA 16802, USA, bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA, and cPennsylvania State University, Brandywine Campus, 312 M Main Building, 25 Yearsley Mill Rd., Media, PA 19063, USA
*Correspondence e-mail: ljs43@psu.edu

(Received 13 September 2013; accepted 15 October 2013; online 23 October 2013)

The title compound, C20H14N2O3S, has three aromatic rings, viz. (i) a phenyl ring, (ii) a 3-nitro­phenyl and (iii) a 1,3-benzo­thia­zine fused-ring system. The dihedral angle between (i) and (ii) is 85.31 (15)°, between (ii) and (iii) is 81.33 (15)° and between (i) and (iii) is 75.73 (15)°. The six-membered 1,3-thia­zine ring has an envelope conformation with the C atom in the 2-position forming the flap. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For amide bond formation using 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phospho­rinane-2,4,6-trioxide (T3P), see: Dunetz et al. (2011[Dunetz, J. R., Xiang, Y., Baldwin, A. & Ringling, J. (2011). Org. Lett. 13, 5048-5051.]). For preparation of various heterocycles using imines and T3P, see: Unsworth et al. (2013[Unsworth, W. P., Kitsiou, C. & Taylor, R. J. K. (2013). Org. Lett. 15, 258-261.]). For a review of 1,3-thia­zin-4-ones, see: Ryabukhin et al. (1996[Ryabukhin, Y. I., Korzhavina, O. B. & Suzdalev, K. F. (1996). Adv. Heterocycl. Chem. 66, 131-191.]). For other 2,3-diaryl-2,3-di­hydro-1,3-benzo­thia­zin-4-ones, see: Kamel et al. (2010[Kamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. M. (2010). Eur. J. Med. Chem. 45, 572-580.]); Kollenz & Ziegler (1970[Kollenz, G. & Ziegler, E. (1970). Monatsh. Chem. 101, 97-101.]); Oae & Numata (1974[Oae, S. & Numata, T. (1974). Tetrahedron, 30, 2641-2646.]); Ponci et al. (1963[Ponci, R., Baruffini, A. & Gialdi, F. (1963). Farmaco, Ed. Sci. 18, 653-657.]); Zarghi et al. (2009[Zarghi, A., Zebardast, T., Daraie, B. & Hedayati, M. (2009). Bioorg. Med. Chem. 17, 5369-5373.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14N2O3S

  • Mr = 362.39

  • Monoclinic, P 21 /n

  • a = 9.8741 (13) Å

  • b = 13.0544 (18) Å

  • c = 13.365 (2) Å

  • β = 100.878 (4)°

  • V = 1691.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 K

  • 0.27 × 0.25 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.951

  • 9929 measured reflections

  • 2904 independent reflections

  • 2578 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.04

  • 2904 reflections

  • 235 parameters

  • H-atom parameters not refined

  • Δρmax = 0.16 e Å−3

  • Δρmin = −2.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O3i 0.93 2.67 3.334 (8) 129
C7—H7⋯O2ii 0.98 2.58 3.424 (8) 145
C11—H11⋯O3iii 0.93 2.71 3.362 (6) 128
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XSHELL (Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The six-membered 1,3-thiazin-4-one ring system has often been investigated for its biological activity and is of potential medicinal use (Ryabukhin et al., 1996)). As part of our studies of cyclic 1,3-thiaza-4-one compounds, we wished to form 2,3-diaryl-2,3-dihydro-1,3-benzothiazin-4-ones, of which only a small number have been reported (Kamel et al., 2010; Kollenz et al., 1970; Oae et al., 1974; Ponci et al., 1963; Zarghi et al., 2009). The title molecule was synthesized by condensation of 1-(3-nitrophenyl)-N-phenylmethanimine with thiosalicylic acid in the presence of 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide (T3P) and pyridine (Dunetz et al., 2011). A similar preparation of a 2,3-dialkyl-2,3-dihydro-1,3-benzothiazin-4-one was recently reported (Unsworth et al., 2013). We report here the crystal structure (Fig. 1) of the title compound, which has three aromatic rings: i) phenyl, ii) nitrophenyl and iii) phenyl, fused to a thiazine ring. The dihedral angle between (i) and (ii) is 85.31 (15)°, between (ii) and (iii) is 81.33 (15)° and between (i) and (iii) is 75.73 (15)°. The thiazine ring has an envelope conformation with the C atom in the 2-position forming the flap. In the crystal packing (Fig. 2), molecules are linked by weak C—H···O interactions (Table 1), resulting in a three-dimensional network.

Related literature top

For amide bond formation using 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide (T3P), see: Dunetz et al. (2011). For preparation of various heterocycles using imines and T3P, see: Unsworth et al. (2013). For a review of 1,3-thiazin-4-ones, see: Ryabukhin et al. (1996). For other 2,3-diaryl-2,3-dihydro-1,3-benzothiazin-4-ones, see: Kamel et al. (2010); Kollenz & Ziegler (1970); Oae & Numata (1974); Ponci et al. (1963); Zarghi et al. (2009).

Experimental top

A two-necked 25 ml roundbottom flask was oven-dried, cooled under N2, and charged with a stir bar and 1-(3-nitrophenyl)-N-phenylmethanimine (1.3577 g, 6 mmol). Tetrahydrofuran (2.3 ml) was added, the solid dissolved, and the solution was stirred. Pyridine (1.95 ml, 24 mmol) was added and then thiosalicylic acid (0.9311 g, 6 mmol) was added. Finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide in 2-methyltetrahydrofuran (50 weight percent; 7.1 ml, 12 mmol) was added. The reaction was stirred at room temperature for 46 h, then poured into a separatory funnel with dichloromethane. The mixture was washed with saturated sodium bicarbonate. The aqueous was then extracted three times with dichloromethane. The organics were combined and washed with saturated sodium bicarbonate, water, and saturated sodium chloride. The organic was dried over sodium sulfate, concentrated in vacuo and chromatographed on 30 g flash silica gel, eluting with 20–50% mixtures of ethyl acetate and hexanes. The product eluted with 30–40% EtOAc/hexanes and was concentrated in vacuo to a light yellow solid (1.0659 g). Recrystallization from ethyl acetate/hexanes gave light yellow crystals (0.8659 g, 39.8%). m.p.: 163–165°C. Rf = 0.62 (50% EtOAc/hexanes). Crystals for X-ray crystallography were grown by slow evaporation from ethanol.

Refinement top

The C-bound H atoms were geometrically placed with C—H = 0.93–0.97 Å, and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XSHELL (Bruker, 2001); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title comound. Thermal ellipsoids are drawn at 50% probability.
[Figure 2] Fig. 2. Crystal packing. C—H···O interactions are shown as dashed lines.
2-(3-Nitrophenyl)-3-phenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one top
Crystal data top
C20H14N2O3SDx = 1.423 Mg m3
Mr = 362.39Melting point: 436 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.8741 (13) ÅCell parameters from 3778 reflections
b = 13.0544 (18) Åθ = 2.2–28.2°
c = 13.365 (2) ŵ = 0.22 mm1
β = 100.878 (4)°T = 298 K
V = 1691.7 (4) Å3Block, colorless
Z = 40.27 × 0.25 × 0.24 mm
F(000) = 752
Data collection top
Bruker SMART-APEX CCD
diffractometer
2904 independent reflections
Radiation source: fine-focus sealed tube2572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.34 pixels mm-1θmax = 25.0°, θmin = 2.2°
ϕ and ω scansh = 1110
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1415
Tmin = 0.944, Tmax = 0.950l = 1515
9929 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters not refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.3773P]
where P = (Fo2 + 2Fc2)/3
2904 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H14N2O3SV = 1691.7 (4) Å3
Mr = 362.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8741 (13) ŵ = 0.22 mm1
b = 13.0544 (18) ÅT = 298 K
c = 13.365 (2) Å0.27 × 0.25 × 0.24 mm
β = 100.878 (4)°
Data collection top
Bruker SMART-APEX CCD
diffractometer
2904 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2572 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.950Rint = 0.023
9929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.088H-atom parameters not refined
S = 1.04Δρmax = 0.16 e Å3
2904 reflectionsΔρmin = 0.22 e Å3
235 parameters
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different ϕ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm. SADABS was used for absorption correction. R(int) was 0.0320 before and 0.0220 after correction. The Ratio of minimum to maximum transmission is 0.8417. The λ/2 correction factor is 0.0015.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14364 (16)0.21740 (11)0.36136 (10)0.0386 (3)
C20.22760 (15)0.17463 (11)0.30037 (10)0.0360 (3)
H20.32080.19120.31050.043*
C30.17090 (14)0.10692 (11)0.22415 (10)0.0342 (3)
C40.03139 (16)0.08233 (13)0.21336 (12)0.0457 (4)
H40.00810.03710.16240.055*
C50.04918 (17)0.12405 (15)0.27706 (14)0.0538 (4)
H50.14150.10540.26960.065*
C60.00665 (17)0.19323 (13)0.35175 (12)0.0477 (4)
H60.04710.22250.39430.057*
C70.25569 (14)0.05832 (12)0.15304 (10)0.0362 (3)
H70.24420.01600.15790.043*
C80.49204 (14)0.00021 (11)0.23007 (10)0.0346 (3)
C90.45797 (17)0.05383 (13)0.31141 (12)0.0436 (4)
H90.37710.03860.33440.052*
C100.54491 (18)0.13033 (13)0.35838 (12)0.0504 (4)
H100.52140.16710.41220.060*
C110.66539 (18)0.15198 (13)0.32568 (12)0.0493 (4)
H110.72480.20190.35850.059*
C120.69799 (16)0.09922 (13)0.24379 (12)0.0464 (4)
H120.77900.11470.22110.056*
C130.61167 (16)0.02387 (12)0.19526 (11)0.0402 (3)
H130.63380.01070.13960.048*
C140.45482 (14)0.17527 (11)0.16948 (10)0.0345 (3)
C150.36533 (15)0.24938 (11)0.10216 (10)0.0357 (3)
C160.40628 (17)0.35182 (12)0.10646 (12)0.0445 (4)
H160.48100.37250.15560.053*
C170.3380 (2)0.42271 (14)0.03930 (13)0.0535 (4)
H170.36570.49090.04370.064*
C180.2281 (2)0.39235 (15)0.03486 (13)0.0560 (5)
H180.18390.43990.08180.067*
C190.18368 (17)0.29236 (15)0.03962 (11)0.0502 (4)
H190.10890.27280.08920.060*
C200.25026 (15)0.22016 (12)0.02946 (10)0.0393 (4)
N10.20361 (17)0.29450 (10)0.43715 (10)0.0481 (3)
N20.40305 (12)0.07868 (9)0.17982 (9)0.0355 (3)
O10.12985 (17)0.33388 (12)0.48963 (10)0.0775 (4)
O20.32476 (15)0.31730 (11)0.44327 (11)0.0690 (4)
O30.57097 (11)0.19924 (8)0.21252 (8)0.0449 (3)
S10.19079 (4)0.09311 (3)0.02046 (3)0.04701 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0458 (9)0.0348 (8)0.0366 (7)0.0022 (6)0.0111 (6)0.0069 (6)
C20.0328 (7)0.0382 (8)0.0374 (7)0.0008 (6)0.0076 (6)0.0051 (6)
C30.0313 (7)0.0341 (8)0.0371 (7)0.0008 (6)0.0063 (6)0.0042 (6)
C40.0368 (8)0.0472 (10)0.0530 (9)0.0085 (7)0.0088 (7)0.0021 (7)
C50.0349 (8)0.0632 (11)0.0672 (11)0.0059 (8)0.0193 (8)0.0036 (9)
C60.0474 (9)0.0488 (10)0.0524 (9)0.0053 (8)0.0236 (7)0.0068 (7)
C70.0315 (8)0.0348 (8)0.0413 (7)0.0033 (6)0.0041 (6)0.0027 (6)
C80.0318 (7)0.0348 (8)0.0365 (7)0.0003 (6)0.0050 (6)0.0026 (6)
C90.0398 (8)0.0447 (9)0.0491 (8)0.0002 (7)0.0158 (7)0.0032 (7)
C100.0570 (10)0.0462 (10)0.0491 (9)0.0009 (8)0.0130 (8)0.0109 (7)
C110.0498 (10)0.0430 (10)0.0522 (9)0.0100 (8)0.0020 (7)0.0033 (7)
C120.0369 (8)0.0503 (10)0.0525 (9)0.0082 (7)0.0102 (7)0.0031 (7)
C130.0384 (8)0.0446 (9)0.0387 (7)0.0032 (7)0.0101 (6)0.0016 (6)
C140.0341 (8)0.0385 (8)0.0316 (7)0.0021 (6)0.0082 (6)0.0016 (6)
C150.0362 (8)0.0400 (9)0.0323 (7)0.0016 (6)0.0103 (6)0.0007 (6)
C160.0483 (9)0.0422 (9)0.0445 (8)0.0014 (7)0.0126 (7)0.0003 (7)
C170.0640 (11)0.0416 (10)0.0594 (10)0.0098 (8)0.0227 (9)0.0079 (7)
C180.0591 (11)0.0615 (12)0.0504 (9)0.0228 (9)0.0185 (8)0.0185 (8)
C190.0417 (9)0.0724 (13)0.0366 (8)0.0123 (8)0.0071 (7)0.0065 (7)
C200.0358 (8)0.0519 (10)0.0315 (7)0.0048 (7)0.0101 (6)0.0012 (6)
N10.0650 (10)0.0413 (8)0.0393 (7)0.0036 (7)0.0134 (7)0.0025 (6)
N20.0288 (6)0.0365 (7)0.0411 (6)0.0009 (5)0.0064 (5)0.0003 (5)
O10.0956 (11)0.0797 (10)0.0658 (8)0.0015 (8)0.0373 (8)0.0239 (7)
O20.0631 (9)0.0687 (9)0.0741 (9)0.0121 (7)0.0103 (7)0.0241 (7)
O30.0368 (6)0.0479 (7)0.0465 (6)0.0081 (5)0.0013 (5)0.0042 (5)
S10.0444 (2)0.0576 (3)0.0362 (2)0.00628 (18)0.00036 (17)0.00963 (16)
Geometric parameters (Å, º) top
C1—C61.371 (2)C11—C121.382 (2)
C1—C21.385 (2)C11—H110.9300
C1—N11.471 (2)C12—C131.381 (2)
C2—C31.385 (2)C12—H120.9300
C2—H20.9300C13—H130.9300
C3—C41.395 (2)C14—O31.2227 (17)
C3—C71.519 (2)C14—N21.3773 (19)
C4—C51.382 (2)C14—C151.492 (2)
C4—H40.9300C15—C161.395 (2)
C5—C61.381 (3)C15—C201.401 (2)
C5—H50.9300C16—C171.374 (2)
C6—H60.9300C16—H160.9300
C7—N21.4558 (18)C17—C181.383 (3)
C7—S11.8242 (14)C17—H170.9300
C7—H70.9800C18—C191.375 (3)
C8—C131.384 (2)C18—H180.9300
C8—C91.387 (2)C19—C201.394 (2)
C8—N21.4356 (18)C19—H190.9300
C9—C101.387 (2)C20—S11.7560 (17)
C9—H90.9300N1—O11.2163 (19)
C10—C111.372 (2)N1—O21.2203 (19)
C10—H100.9300
C6—C1—C2122.79 (15)C12—C11—H11120.2
C6—C1—N1118.93 (14)C13—C12—C11120.79 (15)
C2—C1—N1118.24 (14)C13—C12—H12119.6
C3—C2—C1119.11 (14)C11—C12—H12119.6
C3—C2—H2120.4C12—C13—C8119.45 (14)
C1—C2—H2120.4C12—C13—H13120.3
C2—C3—C4118.50 (14)C8—C13—H13120.3
C2—C3—C7122.20 (13)O3—C14—N2121.34 (13)
C4—C3—C7119.29 (13)O3—C14—C15120.92 (13)
C5—C4—C3121.17 (15)N2—C14—C15117.73 (12)
C5—C4—H4119.4C16—C15—C20118.70 (14)
C3—C4—H4119.4C16—C15—C14117.55 (13)
C6—C5—C4120.34 (15)C20—C15—C14123.51 (14)
C6—C5—H5119.8C17—C16—C15121.06 (16)
C4—C5—H5119.8C17—C16—H16119.5
C1—C6—C5118.05 (15)C15—C16—H16119.5
C1—C6—H6121.0C16—C17—C18119.82 (17)
C5—C6—H6121.0C16—C17—H17120.1
N2—C7—C3114.41 (11)C18—C17—H17120.1
N2—C7—S1110.18 (10)C19—C18—C17120.38 (16)
C3—C7—S1111.69 (10)C19—C18—H18119.8
N2—C7—H7106.7C17—C18—H18119.8
C3—C7—H7106.7C18—C19—C20120.32 (16)
S1—C7—H7106.7C18—C19—H19119.8
C13—C8—C9119.98 (14)C20—C19—H19119.8
C13—C8—N2119.27 (13)C19—C20—C15119.63 (15)
C9—C8—N2120.74 (13)C19—C20—S1118.90 (12)
C8—C9—C10119.81 (15)C15—C20—S1121.43 (11)
C8—C9—H9120.1O1—N1—O2122.98 (15)
C10—C9—H9120.1O1—N1—C1118.64 (16)
C11—C10—C9120.25 (15)O2—N1—C1118.37 (14)
C11—C10—H10119.9C14—N2—C8119.85 (11)
C9—C10—H10119.9C14—N2—C7121.01 (12)
C10—C11—C12119.69 (15)C8—N2—C7118.63 (12)
C10—C11—H11120.2C20—S1—C796.72 (7)
C6—C1—C2—C32.1 (2)C16—C17—C18—C192.2 (3)
N1—C1—C2—C3175.83 (12)C17—C18—C19—C200.9 (3)
C1—C2—C3—C41.6 (2)C18—C19—C20—C151.8 (2)
C1—C2—C3—C7178.93 (13)C18—C19—C20—S1179.74 (12)
C2—C3—C4—C50.1 (2)C16—C15—C20—C193.0 (2)
C7—C3—C4—C5179.38 (15)C14—C15—C20—C19171.23 (13)
C3—C4—C5—C61.5 (3)C16—C15—C20—S1179.07 (11)
C2—C1—C6—C50.7 (2)C14—C15—C20—S16.68 (19)
N1—C1—C6—C5177.16 (14)C6—C1—N1—O10.6 (2)
C4—C5—C6—C11.0 (3)C2—C1—N1—O1178.58 (14)
C2—C3—C7—N27.31 (19)C6—C1—N1—O2178.18 (14)
C4—C3—C7—N2172.17 (13)C2—C1—N1—O20.2 (2)
C2—C3—C7—S1118.72 (13)O3—C14—N2—C88.7 (2)
C4—C3—C7—S161.80 (16)C15—C14—N2—C8170.05 (12)
C13—C8—C9—C100.7 (2)O3—C14—N2—C7162.90 (13)
N2—C8—C9—C10179.50 (14)C15—C14—N2—C718.30 (18)
C8—C9—C10—C111.0 (2)C13—C8—N2—C1455.44 (18)
C9—C10—C11—C121.8 (3)C9—C8—N2—C14125.78 (15)
C10—C11—C12—C130.9 (3)C13—C8—N2—C7132.72 (14)
C11—C12—C13—C80.8 (2)C9—C8—N2—C746.06 (18)
C9—C8—C13—C121.6 (2)C3—C7—N2—C1469.47 (16)
N2—C8—C13—C12179.58 (13)S1—C7—N2—C1457.35 (15)
O3—C14—C15—C1612.9 (2)C3—C7—N2—C8102.28 (14)
N2—C14—C15—C16168.26 (13)S1—C7—N2—C8130.90 (11)
O3—C14—C15—C20161.39 (14)C19—C20—S1—C7155.36 (12)
N2—C14—C15—C2017.4 (2)C15—C20—S1—C726.72 (13)
C20—C15—C16—C171.7 (2)N2—C7—S1—C2054.94 (11)
C14—C15—C16—C17172.90 (14)C3—C7—S1—C2073.38 (11)
C15—C16—C17—C180.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O3i0.932.633.2912 (19)129
C7—H7···O2ii0.982.593.435 (2)145
C11—H11···O3iii0.932.713.363 (2)128
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O3i0.932.633.2912 (19)128.5
C7—H7···O2ii0.982.593.435 (2)145.2
C11—H11···O3iii0.932.713.363 (2)127.8
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

We acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer. We also express gratitude to Euticals for the gift of T3P in 2-methyl­tetra­hydro­furan.

References

First citationBruker (2001). SMART, SAINT, SADABS and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDunetz, J. R., Xiang, Y., Baldwin, A. & Ringling, J. (2011). Org. Lett. 13, 5048–5051.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. M. (2010). Eur. J. Med. Chem. 45, 572–580.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKollenz, G. & Ziegler, E. (1970). Monatsh. Chem. 101, 97–101.  CrossRef CAS Web of Science Google Scholar
First citationOae, S. & Numata, T. (1974). Tetrahedron, 30, 2641–2646.  CrossRef CAS Web of Science Google Scholar
First citationPonci, R., Baruffini, A. & Gialdi, F. (1963). Farmaco, Ed. Sci. 18, 653–657.  Google Scholar
First citationRyabukhin, Y. I., Korzhavina, O. B. & Suzdalev, K. F. (1996). Adv. Heterocycl. Chem. 66, 131–191.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUnsworth, W. P., Kitsiou, C. & Taylor, R. J. K. (2013). Org. Lett. 15, 258–261.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZarghi, A., Zebardast, T., Daraie, B. & Hedayati, M. (2009). Bioorg. Med. Chem. 17, 5369–5373.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds