organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Acetyl-3-[2-(eth­­oxy­carbon­yl)phen­yl]sydnone

aDepartment of Chemistry, Wright State University, Dayton, OH 45435, USA
*Correspondence e-mail: david.grossie@wright.edu

(Received 9 July 2013; accepted 2 October 2013; online 19 October 2013)

Sydnones, which contain a mesoionic five-membered heterocyclic ring, are more stable if synthesized with an aromatic substutuent at the N3 position. In the title compound {sys­tematic name: 4-acetyl-3-[2-(eth­oxy­carbon­yl)phen­yl]-1,2,3-oxa­diazol-3-ylium-5-olate}, C13H12N2O5, the aromatic substitutent is 2-(eth­oxy­carbon­yl)phenyl. Intra- and inter­molecular hydrogen bonds are observed. The inter­planar angle between the sydnone and benzene rings is 71.94 (8)°. π-ring⋯carbon­yl inter­actions of 3.2038 (16) Å arise between the sydnone ring and a symmetry-related C=O group.

Related literature

For more information on the sydnone family of compounds, see: Ohta & Kato (1969[Ohta, M. & Kato, H. (1969). Nonbenzenoid Aromatics, edited by J. P. Snyder, pp. 117-248. New York: Academic Press.]). For synthesis and structure information, see: Grossie & Turnbull (1992[Grossie, D. A. & Turnbull, K. (1992). Acta Cryst. C48, 377-379.]); Grossie et al. (2001[Grossie, D. A., Turnbull, K. & Krein, D. M. (2001). Acta Cryst. E57, o985-o987.], 2007[Grossie, D. A., Sun, L. & Turnbull, K. (2007). Acta Cryst. E63, o2042-o2043.]); Hope & Thiessen (1969[Hope, H. & Thiessen, W. E. (1969). Acta Cryst. B25, 1237-1247.]); Hodson & Turnbull (1985[Hodson, S. J. & Turnbull, K. (1985). J. Heterocycl. Chem. 22, 1223-1227.]); Riddle et al. (2004a[Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004a). Acta Cryst. E60, o977-o978.],b[Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004b). Acta Cryst. E60, o1568-o1570.],c[Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004c). Acta Cryst. E60, o258-o259.]); Hanley et al. (1976[Hanley, R. N., Ollis, W. D. & Ramsden, C. A. (1976). J. Chem. Soc. Chem. Commun. 9, 306-307.]). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O5

  • Mr = 276.25

  • Monoclinic, P 21 /n

  • a = 11.353 (3) Å

  • b = 8.093 (2) Å

  • c = 14.607 (4) Å

  • β = 112.582 (4)°

  • V = 1239.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 K

  • 0.22 × 0.20 × 0.17 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.90, Tmax = 0.98

  • 13826 measured reflections

  • 3718 independent reflections

  • 2783 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.121

  • S = 0.96

  • 3718 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C36—H361⋯O5i 0.95 2.51 3.253 (2) 136
C40—H401⋯O41ii 0.97 2.46 3.116 (2) 124
C42—H423⋯O5 0.96 2.51 3.065 (2) 117
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The bond distances and angles were within expected values. The sydnone ring (O1 – C5) and phenyl ring (C31 – C36) of the structure are planar as expected, with all deviations less than 0.1 Å. The angle between the planes of the sydnone (O1 – C5) and phenyl ring (C31 – C36) is 71.94 (8)°. π-atom interactions are seen between the sydnone ring and a symmetry-related O(5) with a distance of 3.2038 (16) Å. Numerous short intra and inter-molecular contacts are noted within the structure. The potential H bonds in the structure are tabulated below.

Related literature top

For more information on the sydnone family of compounds, see: Ohta & Kato (1969). For synthesis and structure information, see: Grossie & Turnbull (1992); Grossie et al. (2001, 2007); Hope & Thiessen (1969); Hodson & Turnbull (1985); Riddle et al. (2004a,b,c); Hanley et al. (1976). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

4-Acetyl-3-(2-ethoxycarbonylphenyl)sydnone was synthesized in 47% yield by heating 3-[2-(ethoxycarbonyl)phenyl]sydnone, acetic anhydride (5 eq), bismuth trifluoromethanesulfonate (25 mole %), and lithium perchlorate (25 mole %) in acetonitrile (2 ml) in a sealed tube at 140°C for 5 h.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
4-Acetyl-3-[2-(ethoxycarbonyl)phenyl]-1,2,3-oxadiazol-3-ylium-5-olate top
Crystal data top
C13H12N2O5F(000) = 576
Mr = 276.25Dx = 1.481 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2783 reflections
a = 11.353 (3) Åθ = 6–60°
b = 8.093 (2) ŵ = 0.12 mm1
c = 14.607 (4) ÅT = 173 K
β = 112.582 (4)°Block, colourless
V = 1239.1 (6) Å30.22 × 0.20 × 0.17 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
2783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 30.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.90, Tmax = 0.98k = 1111
13826 measured reflectionsl = 2020
3718 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 0.96 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 0.68P],
where P = (max(Fo2,0) + 2Fc2)/3
3718 reflections(Δ/σ)max = 0.0001892
181 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C13H12N2O5V = 1239.1 (6) Å3
Mr = 276.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.353 (3) ŵ = 0.12 mm1
b = 8.093 (2) ÅT = 173 K
c = 14.607 (4) Å0.22 × 0.20 × 0.17 mm
β = 112.582 (4)°
Data collection top
Bruker Kappa APEXII
diffractometer
3718 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2783 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 0.98Rint = 0.038
13826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 0.96Δρmax = 0.49 e Å3
3718 reflectionsΔρmin = 0.38 e Å3
181 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

Sydnone:O1—C5

0.6390 (6) x - 0.6043 (6) y - 0.4760 (7) z = -0.206 (6) (11)

* 0.005 (1) O1 * 0.003 (1) N2 * -0.010 (1) N3 * 0.012 (1) C4 *- 0.010 (2) C5

0.1671 (6) x - 0.0840 (6) y + 0.9824 (1) z = 5.3188 (17)

Attached phenyl ring: C31–36

* -0.003 (1) C31 * 0.004 (1) C32 * -0.002 (1) C33 * -0.001 (2) C34 * 0.002 (2) C35 * 0.000 (2) C36

Angle to previous plane (with approximate e.s.d.) = 71.94 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O410.40593 (10)0.21460 (14)0.17007 (8)0.0279
C410.49814 (14)0.30225 (18)0.18948 (11)0.0208
C40.60889 (13)0.28357 (17)0.28115 (10)0.0175
N30.62198 (11)0.16639 (15)0.35007 (9)0.0189
N20.72926 (12)0.16842 (18)0.42560 (10)0.0265
O10.79450 (10)0.29896 (15)0.40892 (9)0.0296
C50.72170 (14)0.37830 (19)0.31878 (11)0.0222
O50.76294 (11)0.49824 (14)0.29284 (9)0.0293
C310.53744 (14)0.03347 (17)0.35081 (11)0.0190
C360.57526 (15)0.12260 (18)0.33667 (12)0.0242
C350.50160 (16)0.25590 (18)0.34078 (12)0.0267
C340.39295 (15)0.23188 (19)0.35861 (12)0.0253
C330.35629 (14)0.07463 (18)0.37287 (11)0.0218
C320.42817 (14)0.06187 (17)0.36981 (10)0.0191
C370.39015 (14)0.23053 (18)0.38796 (11)0.0203
O380.28355 (10)0.22771 (13)0.40506 (8)0.0243
C400.23638 (15)0.38788 (19)0.42045 (13)0.0264
C390.12669 (18)0.3580 (2)0.45073 (15)0.0354
O370.44855 (11)0.35433 (13)0.38822 (9)0.0296
C420.50663 (16)0.4341 (2)0.12175 (12)0.0296
H3610.64940.13590.32240.0288*
H3510.52510.36390.33210.0328*
H3410.34410.32130.36140.0302*
H3310.28210.05860.38550.0256*
H4020.30530.44200.47360.0308*
H4010.20890.44940.35860.0317*
H3930.09420.46360.46130.0530*
H3920.15460.29740.51140.0523*
H3910.05880.29890.39910.0514*
H4230.54610.53160.15770.0481*
H4220.55910.39550.08740.0479*
H4210.42580.45940.07450.0459*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O410.0226 (5)0.0250 (6)0.0288 (6)0.0055 (4)0.0018 (4)0.0058 (5)
C410.0232 (7)0.0167 (6)0.0234 (7)0.0017 (5)0.0099 (6)0.0009 (5)
C40.0181 (6)0.0150 (6)0.0211 (6)0.0005 (5)0.0094 (5)0.0016 (5)
N30.0186 (5)0.0172 (5)0.0208 (6)0.0000 (4)0.0075 (5)0.0015 (5)
N20.0213 (6)0.0296 (7)0.0245 (6)0.0027 (5)0.0043 (5)0.0058 (5)
O10.0226 (5)0.0320 (6)0.0296 (6)0.0068 (5)0.0048 (5)0.0055 (5)
C50.0211 (7)0.0237 (7)0.0231 (7)0.0016 (5)0.0100 (6)0.0006 (6)
O50.0289 (6)0.0269 (6)0.0348 (6)0.0090 (5)0.0153 (5)0.0016 (5)
C310.0221 (7)0.0149 (6)0.0195 (6)0.0020 (5)0.0075 (5)0.0025 (5)
C360.0276 (7)0.0192 (7)0.0280 (8)0.0029 (6)0.0130 (6)0.0031 (6)
C350.0367 (9)0.0134 (6)0.0319 (8)0.0022 (6)0.0154 (7)0.0020 (6)
C340.0322 (8)0.0155 (7)0.0297 (8)0.0040 (6)0.0135 (7)0.0011 (6)
C330.0252 (7)0.0172 (6)0.0249 (7)0.0023 (5)0.0118 (6)0.0020 (6)
C320.0239 (7)0.0145 (6)0.0194 (7)0.0010 (5)0.0089 (6)0.0014 (5)
C370.0245 (7)0.0166 (6)0.0221 (7)0.0004 (5)0.0115 (6)0.0003 (5)
O380.0268 (5)0.0162 (5)0.0356 (6)0.0010 (4)0.0185 (5)0.0018 (4)
C400.0307 (8)0.0163 (7)0.0380 (9)0.0002 (6)0.0195 (7)0.0032 (6)
C390.0397 (10)0.0244 (8)0.0538 (11)0.0024 (7)0.0311 (9)0.0041 (8)
O370.0375 (6)0.0160 (5)0.0455 (7)0.0042 (4)0.0274 (6)0.0040 (5)
C420.0307 (8)0.0287 (8)0.0266 (8)0.0010 (6)0.0081 (7)0.0090 (6)
Geometric parameters (Å, º) top
O41—C411.2047 (18)C34—H3410.922
C41—C41.450 (2)C33—C321.3842 (19)
C41—C421.483 (2)C33—H3310.938
C4—N31.3490 (18)C32—C371.486 (2)
C4—C51.410 (2)C37—O381.3266 (18)
N3—N21.2918 (17)C37—O371.2006 (18)
N3—C311.4445 (18)O38—C401.4527 (18)
N2—O11.3648 (17)C40—C391.493 (2)
O1—C51.4118 (19)C40—H4020.969
C5—O51.2006 (18)C40—H4010.972
C31—C361.375 (2)C39—H3930.967
C31—C321.390 (2)C39—H3920.955
C36—C351.380 (2)C39—H3910.972
C36—H3610.948C42—H4230.958
C35—C341.369 (2)C42—H4220.966
C35—H3510.937C42—H4210.935
C34—C331.379 (2)
O41—C41—C4121.51 (13)C34—C33—H331120.2
O41—C41—C42122.68 (14)C32—C33—H331118.7
C4—C41—C42115.81 (13)C31—C32—C33117.18 (13)
C41—C4—N3124.76 (12)C31—C32—C37122.01 (12)
C41—C4—C5129.68 (13)C33—C32—C37120.81 (13)
N3—C4—C5105.55 (12)C32—C37—O38111.49 (12)
C4—N3—N2115.20 (12)C32—C37—O37124.70 (13)
C4—N3—C31130.25 (12)O38—C37—O37123.80 (13)
N2—N3—C31114.47 (12)C37—O38—C40115.53 (11)
N3—N2—O1104.81 (12)O38—C40—C39107.47 (13)
N2—O1—C5110.80 (11)O38—C40—H402107.1
O1—C5—C4103.58 (12)C39—C40—H402110.2
O1—C5—O5120.17 (14)O38—C40—H401108.6
C4—C5—O5136.25 (15)C39—C40—H401110.6
N3—C31—C36115.86 (13)H402—C40—H401112.7
N3—C31—C32121.65 (13)C40—C39—H393108.5
C36—C31—C32122.40 (13)C40—C39—H392109.9
C31—C36—C35118.82 (14)H393—C39—H392108.5
C31—C36—H361119.5C40—C39—H391110.7
C35—C36—H361121.7H393—C39—H391108.8
C36—C35—C34120.17 (14)H392—C39—H391110.5
C36—C35—H351120.9C41—C42—H423111.3
C34—C35—H351118.9C41—C42—H422108.9
C35—C34—C33120.39 (14)H423—C42—H422107.4
C35—C34—H341119.9C41—C42—H421110.7
C33—C34—H341119.7H423—C42—H421110.1
C34—C33—C32121.04 (14)H422—C42—H421108.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C36—H361···O5i0.952.513.253 (2)136
C40—H401···O41ii0.972.463.116 (2)124
C33—H331···O380.942.332.681 (2)101
C42—H423···O50.962.513.065 (2)117
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C36—H361···O5i0.952.513.253 (2)135.50
C40—H401···O41ii0.972.463.116 (2)124.35
C33—H331···O380.942.332.681 (2)101
C42—H423···O50.962.513.065 (2)117
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the diffractometer time granted by A. Hunter, Youngstown State University, USA.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrossie, D. A., Sun, L. & Turnbull, K. (2007). Acta Cryst. E63, o2042–o2043.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGrossie, D. A. & Turnbull, K. (1992). Acta Cryst. C48, 377–379.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrossie, D. A., Turnbull, K. & Krein, D. M. (2001). Acta Cryst. E57, o985–o987.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHanley, R. N., Ollis, W. D. & Ramsden, C. A. (1976). J. Chem. Soc. Chem. Commun. 9, 306–307.  CrossRef Web of Science Google Scholar
First citationHodson, S. J. & Turnbull, K. (1985). J. Heterocycl. Chem. 22, 1223–1227.  CrossRef CAS Google Scholar
First citationHope, H. & Thiessen, W. E. (1969). Acta Cryst. B25, 1237–1247.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOhta, M. & Kato, H. (1969). Nonbenzenoid Aromatics, edited by J. P. Snyder, pp. 117–248. New York: Academic Press.  Google Scholar
First citationRiddle, G. B., Grossie, D. A. & Turnbull, K. (2004a). Acta Cryst. E60, o977–o978.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRiddle, G. B., Grossie, D. A. & Turnbull, K. (2004b). Acta Cryst. E60, o1568–o1570.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRiddle, G. B., Grossie, D. A. & Turnbull, K. (2004c). Acta Cryst. E60, o258–o259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds