organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Fluoro­phen­yl)-2,6-di­methyl-1,3-dioxan-4-amine

aChemistry Department, GEBH, Sree Vidyanikethan Engineering College, A. Rangampet, Tirupati 517 102, India, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and cCentre for Organic and Medicinal Chemistry, VIT University, Vellore 632 014, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 10 September 2013; accepted 26 September 2013; online 2 October 2013)

In the title compound, C12H16FNO2, the dioxane ring adopts a chair conformation with the methyl substituents and the C—N bond in equatorial orientations. Its mean plane subtends a dihedral angle of 40.17 (6)° with the benzene ring. In the crystal, weak N—H⋯F hydrogen bonds link the mol­ecules into C(7) chains propagating in [100].

Related literature

For a related structure and background to dioxanes, see: Fatima et al. (2013[Fatima, Z., Rambabu, G., Reddy, B. P., Vijayakumar, V. & Velmurugan, D. (2013). Acta Cryst. E69, o1524.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16FNO2

  • Mr = 225.26

  • Monoclinic, P 21 /n

  • a = 10.4924 (10) Å

  • b = 10.0614 (10) Å

  • c = 11.0379 (11) Å

  • β = 90.136 (2)°

  • V = 1165.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.649, Tmax = 0.746

  • 10977 measured reflections

  • 2910 independent reflections

  • 2179 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.129

  • S = 1.01

  • 2910 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯F1i 0.86 2.48 3.1556 (14) 136
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of dioxane derivatives with possible biological activity (Fatima et al., 2013), we now describe the single-crystal structure determination of the title compound.

Molecules of the title compound, C12H16N1O2F1, (Fig.1) are linked by intermolecular N—H···F hydrogen bonds into infinite chains propagating along 'a' axis (Fig. 2). The dioxane ring (O1/O2/C2—C5) adopts a chair conformation and the best plane through the dioxane ring makes a dihedral angle of 40.17 (6)° with the phenyl ring (C7—C12).

Related literature top

For a related structure and background to dioxanes, see: Fatima et al. (2013).

Experimental top

To 4-Fluoroaniline (1 mmol), Acetaldehyde (3 mmol) was added dropwise and stirred for about 4 h at 0 °C. The progress of the reaction was monitored through TLC. The reaction mixture was washed with petroleum ether. Resultant was dissolved in diethylether and allowed to evaporate. Solid product obtained was recrystallized with diethylether.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93 Å to 0.98 Å refined in the riding model with fixed isotropic displacement parameters:Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down a axis. H-atoms not involved in H-bonds have been excluded for clarity.
N-(4-Fluorophenyl)-2,6-dimethyl-1,3-dioxan-4-amine top
Crystal data top
C12H16FNO2F(000) = 480
Mr = 225.26Dx = 1.284 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2910 reflections
a = 10.4924 (10) Åθ = 2.7–28.4°
b = 10.0614 (10) ŵ = 0.10 mm1
c = 11.0379 (11) ÅT = 293 K
β = 90.136 (2)°Block, colourless
V = 1165.2 (2) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2910 independent reflections
Radiation source: fine-focus sealed tube2179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and ϕ scansθmax = 28.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.649, Tmax = 0.746k = 1313
10977 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.1851P]
where P = (Fo2 + 2Fc2)/3
2910 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C12H16FNO2V = 1165.2 (2) Å3
Mr = 225.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4924 (10) ŵ = 0.10 mm1
b = 10.0614 (10) ÅT = 293 K
c = 11.0379 (11) Å0.25 × 0.20 × 0.15 mm
β = 90.136 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2910 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2179 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.746Rint = 0.020
10977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
2910 reflectionsΔρmin = 0.18 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.85420 (8)0.16432 (8)0.95248 (8)0.0469 (2)
O20.91002 (9)0.28191 (9)0.77911 (8)0.0509 (2)
C30.91619 (12)0.04131 (13)0.77606 (11)0.0491 (3)
H3A0.89700.03560.72630.059*
H3B1.00450.03510.80180.059*
C50.82700 (12)0.27629 (12)0.87937 (12)0.0482 (3)
H50.73860.27180.85090.058*
N10.84979 (10)0.06797 (11)0.96310 (10)0.0525 (3)
H10.91770.11480.95460.063*
C40.83024 (11)0.04228 (11)0.88605 (11)0.0453 (3)
H40.74130.04210.85870.054*
C20.89697 (13)0.16759 (13)0.70224 (12)0.0514 (3)
H20.81110.16690.66720.062*
F10.49573 (9)0.21970 (11)1.30521 (8)0.0788 (3)
C70.76261 (11)0.10329 (11)1.05237 (11)0.0442 (3)
C80.77421 (13)0.22492 (13)1.11186 (14)0.0556 (3)
H80.84240.28061.09390.067*
C90.68551 (15)0.26374 (15)1.19728 (14)0.0622 (4)
H90.69350.34501.23670.075*
C120.66199 (11)0.02028 (12)1.08440 (12)0.0497 (3)
H120.65460.06281.04810.060*
C110.57272 (13)0.05951 (14)1.16951 (12)0.0539 (3)
H110.50510.00411.18980.065*
C60.84563 (15)0.39947 (14)0.95358 (14)0.0630 (4)
H6A0.93180.40260.98300.095*
H6B0.78790.39851.02090.095*
H6C0.82920.47630.90440.095*
C100.58580 (13)0.18076 (15)1.22298 (12)0.0553 (3)
C10.99285 (17)0.18267 (17)0.60184 (14)0.0693 (4)
H1A0.97650.26370.55850.104*
H1B0.98600.10860.54740.104*
H1C1.07720.18540.63570.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0494 (5)0.0386 (4)0.0529 (5)0.0015 (3)0.0005 (4)0.0021 (3)
O20.0567 (5)0.0407 (5)0.0551 (5)0.0081 (4)0.0008 (4)0.0033 (4)
C30.0510 (7)0.0415 (6)0.0550 (7)0.0041 (5)0.0010 (5)0.0027 (5)
C50.0448 (6)0.0382 (6)0.0615 (7)0.0007 (5)0.0030 (5)0.0043 (5)
N10.0438 (5)0.0426 (5)0.0712 (7)0.0076 (4)0.0087 (5)0.0123 (5)
C40.0402 (6)0.0372 (6)0.0584 (7)0.0023 (4)0.0015 (5)0.0035 (5)
C20.0558 (7)0.0469 (7)0.0514 (7)0.0082 (5)0.0057 (6)0.0004 (5)
F10.0799 (6)0.0875 (7)0.0691 (6)0.0231 (5)0.0156 (5)0.0142 (5)
C70.0412 (6)0.0360 (6)0.0555 (7)0.0029 (4)0.0031 (5)0.0024 (5)
C80.0480 (7)0.0442 (7)0.0747 (9)0.0025 (5)0.0051 (6)0.0114 (6)
C90.0643 (8)0.0516 (7)0.0705 (9)0.0076 (6)0.0097 (7)0.0214 (7)
C120.0499 (6)0.0372 (6)0.0621 (7)0.0001 (5)0.0030 (5)0.0039 (5)
C110.0503 (7)0.0510 (7)0.0603 (8)0.0029 (5)0.0048 (6)0.0042 (6)
C60.0729 (9)0.0416 (7)0.0746 (9)0.0004 (6)0.0029 (7)0.0027 (6)
C100.0554 (7)0.0602 (8)0.0502 (7)0.0158 (6)0.0003 (6)0.0050 (6)
C10.0872 (11)0.0654 (9)0.0554 (8)0.0120 (8)0.0075 (8)0.0026 (7)
Geometric parameters (Å, º) top
O1—C51.4145 (14)C7—C81.3940 (17)
O1—C41.4517 (14)C7—C121.3924 (17)
O2—C51.4111 (16)C8—C91.383 (2)
O2—C21.4357 (15)C8—H80.9300
C3—C41.5141 (17)C9—C101.369 (2)
C3—C21.5226 (18)C9—H90.9300
C3—H3A0.9700C12—C111.3856 (17)
C3—H3B0.9700C12—H120.9300
C5—C61.4981 (19)C11—C101.362 (2)
C5—H50.9800C11—H110.9300
N1—C71.3922 (15)C6—H6A0.9600
N1—C41.4125 (15)C6—H6B0.9600
N1—H10.8600C6—H6C0.9600
C4—H40.9800C1—H1A0.9600
C2—C11.5061 (19)C1—H1B0.9600
C2—H20.9800C1—H1C0.9600
F1—C101.3691 (15)
C5—O1—C4110.55 (9)C8—C7—C12118.19 (12)
C5—O2—C2111.92 (9)N1—C7—C12121.77 (11)
C4—C3—C2110.20 (10)C9—C8—C7120.73 (13)
C4—C3—H3A109.6C9—C8—H8119.6
C2—C3—H3A109.6C7—C8—H8119.6
C4—C3—H3B109.6C10—C9—C8119.02 (13)
C2—C3—H3B109.6C10—C9—H9120.5
H3A—C3—H3B108.1C8—C9—H9120.5
O2—C5—O1110.80 (9)C11—C12—C7121.03 (12)
O2—C5—C6108.40 (10)C11—C12—H12119.5
O1—C5—C6108.73 (11)C7—C12—H12119.5
O2—C5—H5109.6C10—C11—C12118.78 (13)
O1—C5—H5109.6C10—C11—H11120.6
C6—C5—H5109.6C12—C11—H11120.6
C7—N1—C4122.13 (10)C5—C6—H6A109.5
C7—N1—H1118.9C5—C6—H6B109.5
C4—N1—H1118.9H6A—C6—H6B109.5
N1—C4—O1109.60 (10)C5—C6—H6C109.5
N1—C4—C3113.06 (10)H6A—C6—H6C109.5
O1—C4—C3107.92 (9)H6B—C6—H6C109.5
N1—C4—H4108.7C11—C10—C9122.19 (12)
O1—C4—H4108.7C11—C10—F1118.33 (13)
C3—C4—H4108.7C9—C10—F1119.47 (13)
O2—C2—C1106.93 (10)C2—C1—H1A109.5
O2—C2—C3109.87 (10)C2—C1—H1B109.5
C1—C2—C3112.96 (12)H1A—C1—H1B109.5
O2—C2—H2109.0C2—C1—H1C109.5
C1—C2—H2109.0H1A—C1—H1C109.5
C3—C2—H2109.0H1B—C1—H1C109.5
C8—C7—N1120.04 (11)
C2—O2—C5—O161.43 (13)C4—C3—C2—C1171.55 (11)
C2—O2—C5—C6179.33 (10)C4—N1—C7—C8168.84 (12)
C4—O1—C5—O264.23 (12)C4—N1—C7—C1210.76 (19)
C4—O1—C5—C6176.73 (10)N1—C7—C8—C9177.40 (13)
C7—N1—C4—O174.98 (14)C12—C7—C8—C92.2 (2)
C7—N1—C4—C3164.58 (11)C7—C8—C9—C100.1 (2)
C5—O1—C4—N1176.11 (9)C8—C7—C12—C112.58 (19)
C5—O1—C4—C360.37 (12)N1—C7—C12—C11177.03 (12)
C2—C3—C4—N1175.84 (10)C7—C12—C11—C100.8 (2)
C2—C3—C4—O154.45 (12)C12—C11—C10—C91.4 (2)
C5—O2—C2—C1178.06 (10)C12—C11—C10—F1178.74 (12)
C5—O2—C2—C355.13 (13)C8—C9—C10—C111.7 (2)
C4—C3—C2—O252.25 (14)C8—C9—C10—F1178.39 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F1i0.862.483.1556 (14)136
Symmetry code: (i) x+1/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F1i0.862.483.1556 (14)136
Symmetry code: (i) x+1/2, y1/2, z1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. ZF and DV acknowledge the UGC (SAP–CAS) for the departmental facilties. ZF also thanks the UGC for a meritorious fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFatima, Z., Rambabu, G., Reddy, B. P., Vijayakumar, V. & Velmurugan, D. (2013). Acta Cryst. E69, o1524.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds