organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1,3-Benzo­thia­zol-2-yl)acetamide

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 3 October 2013; accepted 4 October 2013; online 9 October 2013)

The title compound, C9H8N2OS, crystallizes with two mol­ecules (A and B) in the asymmetric unit. The dihedral angles between the mean planes of the 1,3-benzo­thia­zol-2-yl ring system and the acetamide group are 2.7 (4) (mol­ecule A) and 7.2 (2) Å (mol­ecule B). In the crystal, pairs of N—H⋯N hydrogen bonds link the A and B mol­ecules into dimers, generating R22(8) loops. The dimers stack along [100].

Related literature

For the related crystal structure of the acetamide derivatives, see: Jasinski et al. (2013[Jasinski, J. P., Guild, C. J., Yathirajan, H. S., Narayana, B. & Samshuddin, S. (2013). Acta Cryst. E69, o461.]); Fun et al. (2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.], 2012[Fun, H.-K., Loh, W.-S., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1348.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2OS

  • Mr = 192.24

  • Monoclinic, P 21 /c

  • a = 11.1852 (4) Å

  • b = 7.4037 (4) Å

  • c = 20.9189 (8) Å

  • β = 94.408 (3)°

  • V = 1727.21 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 173 K

  • 0.45 × 0.24 × 0.15 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.])Tmin = 0.770, Tmax = 1.000

  • 20845 measured reflections

  • 5918 independent reflections

  • 4622 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.109

  • S = 1.08

  • 5918 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯N1B 0.86 2.11 2.9700 (16) 176
N2B—H2B⋯N1A 0.86 2.14 2.9749 (16) 165

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

In continuation of our work on the synthesis of acetamide derivatives (Jasinski et al. 2013), we report herein the crystal structure of the title compound, C9H8N2OS, (I). Some of the related crystal structures of similar acetamide derivatives include, N-(3-chloro-4-fluorophenyl)acetamide, N-(4-bromophenyl)-2-(naphthalen-1- yl)acetamide and N-(3,5-dichlorophenyl)-2-(naphthalen-1-yl)acetamide (Fun et al. 2011a,b, 2012).

The title compound, (I) crystallizes with two independent molecules (A & B) in the asymmetric unit (Fig.1). The dihedral angle between the mean planes of the 1,3-benzothiazol-2-yl ring and the acetamide group is 2.7 (4)° (A) and 7.2 (2)Å (B),(Fig. 2). In the crystal, N—H···N hydrogen bonds forming R22(8) graph set motifs which link the molecules into dimers, which stack along [100].

Related literature top

For the related crystal structure of the acetamide derivatives, see: Jasinski et al. (2013); Fun et al. (2011a,b, 2012).

Experimental top

2-Aminobenzothiazole (1 mmol) were dissolved in a 30 ml acetic acid and it was refluxed for 3 hrs (Fig.3). The reaction mixture was cooled and poured into ice cold water. The precipitate obtained was obtained by filtration and recrystallized in ethanol. Colorless blocks were grown from methanol solution by the slow evaporation method and was used as such for X-ray studies (M.P.: 453-455 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3) times Ueq of the parent atom. Idealised methyl were refined as rotating groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) showing 50% probability displacement ellipsoids. Dashed lines indicate N—H···N intermolecular hydrogen bonds between A and B forming R22(8) graph set motifs.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate N—H···N intermolecular hydrogen bonds forming R22(8) graph set motifs which link the molecules into dimers along [100]. H atoms not involved in hydrogen bonding have been removed for clarity.
[Figure 3] Fig. 3. Synthesis scheme for (I).
N-(1,3-Benzothiazol-2-yl)acetamide top
Crystal data top
C9H8N2OSDx = 1.479 Mg m3
Mr = 192.24Melting point: 453 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.1852 (4) ÅCell parameters from 5326 reflections
b = 7.4037 (4) Åθ = 3.3–32.7°
c = 20.9189 (8) ŵ = 0.33 mm1
β = 94.408 (3)°T = 173 K
V = 1727.21 (13) Å3Block, colorless
Z = 80.45 × 0.24 × 0.15 mm
F(000) = 800
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
5918 independent reflections
Radiation source: Enhance (Mo) X-ray Source4622 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.033
ω scansθmax = 32.8°, θmin = 3.3°
Absorption correction: multi-scan
CrysAlis PRO and CrysAlis RED, Agilent (2012).
h = 1616
Tmin = 0.770, Tmax = 1.000k = 109
20845 measured reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.045P)2 + 0.4973P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5918 reflectionsΔρmax = 0.44 e Å3
237 parametersΔρmin = 0.26 e Å3
0 restraints
Crystal data top
C9H8N2OSV = 1727.21 (13) Å3
Mr = 192.24Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.1852 (4) ŵ = 0.33 mm1
b = 7.4037 (4) ÅT = 173 K
c = 20.9189 (8) Å0.45 × 0.24 × 0.15 mm
β = 94.408 (3)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
5918 independent reflections
Absorption correction: multi-scan
CrysAlis PRO and CrysAlis RED, Agilent (2012).
4622 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.033
20845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.08Δρmax = 0.44 e Å3
5918 reflectionsΔρmin = 0.26 e Å3
237 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.38148 (3)0.72688 (5)0.50197 (2)0.02464 (9)
O1A0.45185 (9)0.64286 (18)0.62295 (5)0.0349 (3)
N1A0.58652 (10)0.79642 (18)0.45587 (5)0.0242 (2)
N2A0.60552 (10)0.72112 (17)0.56435 (5)0.0232 (2)
H2A0.68150.73930.56500.028*
C1A0.53676 (11)0.75086 (19)0.50776 (6)0.0208 (3)
C2A0.49856 (11)0.8192 (2)0.40579 (6)0.0228 (3)
C3A0.51887 (13)0.8704 (2)0.34317 (7)0.0301 (3)
H3A0.59610.89490.33200.036*
C4A0.42227 (14)0.8841 (2)0.29819 (7)0.0315 (3)
H4A0.43490.91650.25630.038*
C5A0.30593 (13)0.8500 (2)0.31478 (7)0.0303 (3)
H5A0.24230.85960.28370.036*
C6A0.28360 (13)0.8024 (2)0.37647 (7)0.0284 (3)
H6A0.20590.78130.38760.034*
C7A0.38110 (12)0.7869 (2)0.42159 (6)0.0225 (3)
C8A0.55898 (12)0.6640 (2)0.61966 (6)0.0241 (3)
C9A0.64887 (14)0.6310 (2)0.67511 (7)0.0312 (3)
H9AA0.72670.61410.65970.047*
H9AB0.62680.52470.69770.047*
H9AC0.65080.73290.70350.047*
S1B1.06929 (3)0.76516 (5)0.50481 (2)0.02415 (9)
O1B0.99661 (9)0.63954 (18)0.38920 (5)0.0338 (3)
N1B0.86730 (10)0.77933 (17)0.55907 (5)0.0230 (2)
N2B0.84393 (10)0.70106 (17)0.45051 (5)0.0232 (2)
H2B0.76730.70640.45170.028*
C1B0.91433 (11)0.74614 (19)0.50500 (6)0.0200 (2)
C2B0.95787 (11)0.8261 (2)0.60567 (6)0.0210 (3)
C3B0.94173 (13)0.8677 (2)0.66959 (7)0.0288 (3)
H3B0.86540.86640.68440.035*
C4B1.04033 (14)0.9107 (2)0.71058 (7)0.0316 (3)
H4B1.03020.93760.75330.038*
C5B1.15469 (13)0.9140 (2)0.68865 (7)0.0303 (3)
H5B1.21980.94460.71690.036*
C6B1.17329 (12)0.8727 (2)0.62580 (7)0.0273 (3)
H6B1.24990.87450.61140.033*
C7B1.07368 (11)0.8283 (2)0.58475 (6)0.0219 (3)
C8B0.88922 (12)0.6480 (2)0.39429 (6)0.0242 (3)
C9B0.79789 (13)0.5998 (2)0.34107 (7)0.0300 (3)
H9BA0.72140.58270.35810.045*
H9BB0.82140.49020.32100.045*
H9BC0.79220.69540.31000.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.01604 (15)0.0370 (2)0.02094 (15)0.00082 (13)0.00206 (11)0.00004 (13)
O1A0.0235 (5)0.0539 (8)0.0277 (5)0.0055 (5)0.0038 (4)0.0070 (5)
N1A0.0172 (5)0.0334 (7)0.0218 (5)0.0006 (4)0.0010 (4)0.0034 (5)
N2A0.0165 (5)0.0327 (7)0.0203 (5)0.0008 (4)0.0007 (4)0.0012 (5)
C1A0.0166 (5)0.0248 (7)0.0211 (6)0.0002 (5)0.0012 (4)0.0005 (5)
C2A0.0187 (6)0.0268 (7)0.0226 (6)0.0007 (5)0.0003 (5)0.0013 (5)
C3A0.0244 (7)0.0408 (9)0.0253 (7)0.0003 (6)0.0038 (5)0.0061 (6)
C4A0.0329 (8)0.0394 (9)0.0222 (6)0.0038 (6)0.0014 (5)0.0054 (6)
C5A0.0278 (7)0.0382 (9)0.0239 (6)0.0065 (6)0.0045 (5)0.0010 (6)
C6A0.0201 (6)0.0391 (9)0.0256 (6)0.0033 (6)0.0010 (5)0.0024 (6)
C7A0.0192 (6)0.0273 (7)0.0210 (6)0.0017 (5)0.0015 (4)0.0012 (5)
C8A0.0243 (6)0.0273 (7)0.0206 (6)0.0008 (5)0.0015 (5)0.0001 (5)
C9A0.0303 (7)0.0387 (9)0.0240 (7)0.0007 (6)0.0016 (5)0.0046 (6)
S1B0.01533 (15)0.0370 (2)0.02013 (15)0.00067 (12)0.00165 (11)0.00226 (13)
O1B0.0229 (5)0.0521 (8)0.0269 (5)0.0017 (5)0.0051 (4)0.0072 (5)
N1B0.0174 (5)0.0326 (7)0.0190 (5)0.0015 (4)0.0010 (4)0.0006 (4)
N2B0.0154 (5)0.0346 (7)0.0193 (5)0.0008 (4)0.0010 (4)0.0007 (5)
C1B0.0154 (5)0.0247 (7)0.0199 (5)0.0008 (4)0.0002 (4)0.0008 (5)
C2B0.0181 (6)0.0251 (7)0.0194 (6)0.0021 (5)0.0005 (4)0.0006 (5)
C3B0.0244 (7)0.0398 (9)0.0223 (6)0.0002 (6)0.0030 (5)0.0037 (6)
C4B0.0332 (8)0.0413 (9)0.0200 (6)0.0007 (6)0.0002 (5)0.0040 (6)
C5B0.0277 (7)0.0366 (9)0.0252 (7)0.0039 (6)0.0065 (5)0.0018 (6)
C6B0.0194 (6)0.0369 (9)0.0249 (6)0.0025 (5)0.0020 (5)0.0010 (6)
C7B0.0191 (6)0.0255 (7)0.0209 (6)0.0006 (5)0.0001 (4)0.0006 (5)
C8B0.0226 (6)0.0297 (8)0.0203 (6)0.0026 (5)0.0010 (5)0.0004 (5)
C9B0.0310 (7)0.0377 (9)0.0208 (6)0.0051 (6)0.0014 (5)0.0038 (6)
Geometric parameters (Å, º) top
S1A—C1A1.7407 (13)S1B—C1B1.7392 (13)
S1A—C7A1.7390 (14)S1B—C7B1.7333 (13)
O1A—C8A1.2156 (17)O1B—C8B1.2157 (16)
N1A—C1A1.3018 (17)N1B—C1B1.3068 (16)
N1A—C2A1.3913 (17)N1B—C2B1.3945 (17)
N2A—H2A0.8600N2B—H2B0.8600
N2A—C1A1.3791 (17)N2B—C1B1.3757 (16)
N2A—C8A1.3715 (17)N2B—C8B1.3733 (17)
C2A—C3A1.3989 (19)C2B—C3B1.3974 (18)
C2A—C7A1.3997 (18)C2B—C7B1.3988 (18)
C3A—H3A0.9300C3B—H3B0.9300
C3A—C4A1.381 (2)C3B—C4B1.381 (2)
C4A—H4A0.9300C4B—H4B0.9300
C4A—C5A1.395 (2)C4B—C5B1.392 (2)
C5A—H5A0.9300C5B—H5B0.9300
C5A—C6A1.379 (2)C5B—C6B1.381 (2)
C6A—H6A0.9300C6B—H6B0.9300
C6A—C7A1.3910 (19)C6B—C7B1.3928 (18)
C8A—C9A1.4957 (19)C8B—C9B1.4952 (19)
C9A—H9AA0.9600C9B—H9BA0.9600
C9A—H9AB0.9600C9B—H9BB0.9600
C9A—H9AC0.9600C9B—H9BC0.9600
C7A—S1A—C1A88.25 (6)C7B—S1B—C1B88.51 (6)
C1A—N1A—C2A109.66 (11)C1B—N1B—C2B109.42 (11)
C1A—N2A—H2A118.3C1B—N2B—H2B118.2
C8A—N2A—H2A118.3C8B—N2B—H2B118.2
C8A—N2A—C1A123.41 (12)C8B—N2B—C1B123.62 (11)
N1A—C1A—S1A117.17 (10)N1B—C1B—S1B117.01 (10)
N1A—C1A—N2A120.74 (12)N1B—C1B—N2B121.32 (12)
N2A—C1A—S1A122.08 (10)N2B—C1B—S1B121.66 (10)
N1A—C2A—C3A125.57 (12)N1B—C2B—C3B125.69 (12)
N1A—C2A—C7A115.07 (12)N1B—C2B—C7B115.13 (11)
C3A—C2A—C7A119.36 (12)C3B—C2B—C7B119.18 (12)
C2A—C3A—H3A120.6C2B—C3B—H3B120.4
C4A—C3A—C2A118.89 (13)C4B—C3B—C2B119.29 (13)
C4A—C3A—H3A120.6C4B—C3B—H3B120.4
C3A—C4A—H4A119.6C3B—C4B—H4B119.7
C3A—C4A—C5A120.87 (13)C3B—C4B—C5B120.63 (13)
C5A—C4A—H4A119.6C5B—C4B—H4B119.7
C4A—C5A—H5A119.4C4B—C5B—H5B119.4
C6A—C5A—C4A121.23 (13)C6B—C5B—C4B121.29 (13)
C6A—C5A—H5A119.4C6B—C5B—H5B119.4
C5A—C6A—H6A121.1C5B—C6B—H6B121.1
C5A—C6A—C7A117.84 (13)C5B—C6B—C7B117.86 (13)
C7A—C6A—H6A121.1C7B—C6B—H6B121.1
C2A—C7A—S1A109.84 (10)C2B—C7B—S1B109.90 (10)
C6A—C7A—S1A128.36 (11)C6B—C7B—S1B128.35 (10)
C6A—C7A—C2A121.80 (12)C6B—C7B—C2B121.74 (12)
O1A—C8A—N2A121.82 (13)O1B—C8B—N2B121.45 (12)
O1A—C8A—C9A122.81 (13)O1B—C8B—C9B123.07 (13)
N2A—C8A—C9A115.37 (12)N2B—C8B—C9B115.48 (12)
C8A—C9A—H9AA109.5C8B—C9B—H9BA109.5
C8A—C9A—H9AB109.5C8B—C9B—H9BB109.5
C8A—C9A—H9AC109.5C8B—C9B—H9BC109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
N1A—C2A—C3A—C4A178.73 (15)N1B—C2B—C3B—C4B179.62 (15)
N1A—C2A—C7A—S1A0.23 (17)N1B—C2B—C7B—S1B1.33 (16)
N1A—C2A—C7A—C6A179.33 (14)N1B—C2B—C7B—C6B179.88 (14)
C1A—S1A—C7A—C2A0.29 (11)C1B—S1B—C7B—C2B1.31 (11)
C1A—S1A—C7A—C6A179.81 (15)C1B—S1B—C7B—C6B180.00 (15)
C1A—N1A—C2A—C3A179.14 (15)C1B—N1B—C2B—C3B178.89 (15)
C1A—N1A—C2A—C7A0.81 (19)C1B—N1B—C2B—C7B0.50 (18)
C1A—N2A—C8A—O1A3.1 (2)C1B—N2B—C8B—O1B0.8 (2)
C1A—N2A—C8A—C9A177.18 (14)C1B—N2B—C8B—C9B178.36 (13)
C2A—N1A—C1A—S1A1.07 (16)C2B—N1B—C1B—S1B0.60 (16)
C2A—N1A—C1A—N2A179.72 (13)C2B—N1B—C1B—N2B178.39 (13)
C2A—C3A—C4A—C5A0.9 (3)C2B—C3B—C4B—C5B0.4 (3)
C3A—C2A—C7A—S1A179.73 (12)C3B—C2B—C7B—S1B178.10 (12)
C3A—C2A—C7A—C6A0.7 (2)C3B—C2B—C7B—C6B0.7 (2)
C3A—C4A—C5A—C6A0.3 (3)C3B—C4B—C5B—C6B0.7 (3)
C4A—C5A—C6A—C7A0.9 (3)C4B—C5B—C6B—C7B0.3 (2)
C5A—C6A—C7A—S1A179.09 (13)C5B—C6B—C7B—S1B178.14 (13)
C5A—C6A—C7A—C2A0.4 (2)C5B—C6B—C7B—C2B0.4 (2)
C7A—S1A—C1A—N1A0.82 (12)C7B—S1B—C1B—N1B1.16 (12)
C7A—S1A—C1A—N2A179.98 (13)C7B—S1B—C1B—N2B177.82 (12)
C7A—C2A—C3A—C4A1.3 (2)C7B—C2B—C3B—C4B0.2 (2)
C8A—N2A—C1A—S1A2.6 (2)C8B—N2B—C1B—S1B7.6 (2)
C8A—N2A—C1A—N1A176.56 (14)C8B—N2B—C1B—N1B173.46 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···N1B0.862.112.9700 (16)176
N2B—H2B···N1A0.862.142.9749 (16)165
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···N1B0.862.112.9700 (16)176
N2B—H2B···N1A0.862.142.9749 (16)165
 

Acknowledgements

BN thanks the UGC for financial assistance through BSR one time grant for the purchase of chemicals and DST–PURSE for financial assistance. HSY thanks University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1348.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Yathirajan, H. S., Narayana, B. & Samshuddin, S. (2013). Acta Cryst. E69, o461.  CSD CrossRef IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds