metal-organic compounds
Tetraquinolinium ditelluro(VI)octavanadate(V) octahydrate
aLaboratoire de chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: samah.akriche@fsb.rnu.tn
In the title compound, (C9H8N)4[Te2V8O28]·8H2O, the complete heteropolyanion is generated by a crystallographic inversion centre. One of the two quniolinium ions forms an N—H⋯Op (p = polyoxidometallate) hydrogen bond and the other an N—H⋯Ow (w = water) hydrogen bond. The water molecules further link the components by O—H⋯Op and O—H⋯Ow hydrogen bonds. A number of C—H⋯O interactions and aromatic π–π stacking interactions [shortest centroid–centroid separation = 3.541 (7) Å] are also observed. Together, these generate a three-dimensional network.
CCDC reference: 964952
Related literature
For applications of polyoxidometallates, see: Fukuda & Yamase (1997); Rajakumar et al. (2000); Folbergrova & Mares (1987); Fantus et al. (1995). For bond-valence calculations, see: Brown & Altermatt (1985). For geometrical features in related structures, see: Lee et al. (2008); Joo et al. (2011); Strukan et al. (1997); Konaka et al. (2008, 2011); Evans et al. (1966); Hemissi et al. (2010).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 964952
10.1107/S1600536813027347/hb7146sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813027347/hb7146Isup2.hkl
Vanadium (V) oxide (1.26 g, 6.93 mmol), quinoline (0.74 ml, 6.16 mmol) and telluric acid Te(OH)6 (0.36 g, 1.55 mmol) were dissolved in a mixture of 30 ml of distilled water and 10 ml of ethanol and then stirred for 3 h. Yellow single crystals were obtained after one week by slow evaporation at room temperature.
All H atoms attached to C and N atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C, N) for aromatic rings. The water H atoms were refined using restraints [O—H = 0.85 (1) A °, H···H = 1.44 (2) A ° and Uiso(H) = 1.5Ueq(O)].
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. An ORTEP view of (I) with displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are represented as dashed lines. [Symmetry code: (i) 1 - x, 1 - y, - z] | |
Fig. 2. Structure projection of (I) along the [001] direction. The π ···π stacking interaction are represented as yellow dashed lines and the hydrogen bonds by red ones. The H-atoms not involved in H-bonding are omitted. |
(C9H8N)4[Te2V8O28]·8H2O | Z = 1 |
Mr = 1775.50 | F(000) = 868 |
Triclinic, P1 | Dx = 2.153 Mg m−3 |
Hall symbol: -P 1 | Ag Kα radiation, λ = 0.56087 Å |
a = 10.907 (3) Å | Cell parameters from 25 reflections |
b = 11.302 (3) Å | θ = 9–11° |
c = 13.169 (2) Å | µ = 1.28 mm−1 |
α = 106.45 (4)° | T = 295 K |
β = 107.71 (4)° | Rectangular, yellow |
γ = 105.34 (4)° | 0.19 × 0.15 × 0.09 mm |
V = 1369.4 (6) Å3 |
Enraf–Nonius CAD-4 diffractometer | 6549 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.045 |
Graphite monochromator | θmax = 28.0°, θmin = 2.3° |
non–profiled ω scans | h = −18→17 |
Absorption correction: analytical (Alcock, 1970) | k = −18→18 |
Tmin = 0.561, Tmax = 0.725 | l = −3→22 |
16455 measured reflections | 2 standard reflections every 120 min |
13245 independent reflections | intensity decay: 4% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.115 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.308 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0978P)2 + 22.5177P] where P = (Fo2 + 2Fc2)/3 |
13245 reflections | (Δ/σ)max < 0.001 |
385 parameters | Δρmax = 3.11 e Å−3 |
20 restraints | Δρmin = −2.28 e Å−3 |
(C9H8N)4[Te2V8O28]·8H2O | γ = 105.34 (4)° |
Mr = 1775.50 | V = 1369.4 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 10.907 (3) Å | Ag Kα radiation, λ = 0.56087 Å |
b = 11.302 (3) Å | µ = 1.28 mm−1 |
c = 13.169 (2) Å | T = 295 K |
α = 106.45 (4)° | 0.19 × 0.15 × 0.09 mm |
β = 107.71 (4)° |
Enraf–Nonius CAD-4 diffractometer | 6549 reflections with I > 2σ(I) |
Absorption correction: analytical (Alcock, 1970) | Rint = 0.045 |
Tmin = 0.561, Tmax = 0.725 | 2 standard reflections every 120 min |
16455 measured reflections | intensity decay: 4% |
13245 independent reflections |
R[F2 > 2σ(F2)] = 0.115 | 20 restraints |
wR(F2) = 0.308 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0978P)2 + 22.5177P] where P = (Fo2 + 2Fc2)/3 |
13245 reflections | Δρmax = 3.11 e Å−3 |
385 parameters | Δρmin = −2.28 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Te1 | 0.16225 (7) | 0.58886 (7) | 0.58253 (6) | 0.03140 (18) | |
V1 | 0.05217 (14) | 0.27420 (12) | 0.49481 (12) | 0.0177 (2) | |
V2 | 0.03656 (13) | 0.57033 (13) | 0.32457 (11) | 0.0166 (2) | |
V3 | 0.23652 (14) | 0.42319 (14) | 0.39532 (13) | 0.0213 (3) | |
V4 | 0.07774 (16) | 0.74944 (13) | 0.76322 (12) | 0.0215 (3) | |
O1 | 0.1649 (8) | 0.8702 (7) | 0.8882 (6) | 0.0356 (16) | |
O2 | −0.0552 (6) | 0.1678 (5) | 0.3401 (5) | 0.0198 (10) | |
O3 | 0.2094 (6) | 0.3145 (6) | 0.4763 (5) | 0.0209 (11) | |
O4 | 0.1186 (7) | 0.6932 (7) | 0.4925 (6) | 0.03140 (18) | |
O5 | 0.0293 (7) | 0.6753 (6) | 0.2649 (6) | 0.0261 (12) | |
O6 | −0.0685 (6) | 0.4051 (5) | 0.2031 (5) | 0.0209 (11) | |
O7 | 0.0538 (8) | 0.1673 (6) | 0.5536 (6) | 0.0289 (14) | |
O8 | 0.1039 (6) | 0.2887 (5) | 0.2588 (5) | 0.0208 (11) | |
O9 | 0.3794 (7) | 0.4249 (7) | 0.3844 (7) | 0.0322 (14) | |
O10 | −0.0326 (7) | 0.5676 (7) | 0.5778 (6) | 0.03140 (18) | |
O11 | 0.3065 (6) | 0.5744 (6) | 0.5518 (5) | 0.0233 (11) | |
O12 | 0.1318 (7) | 0.4462 (7) | 0.6351 (6) | 0.03140 (18) | |
O13 | 0.2328 (6) | 0.7205 (6) | 0.7204 (5) | 0.0215 (11) | |
O14 | 0.1984 (6) | 0.5518 (6) | 0.3384 (5) | 0.0203 (10) | |
O1W | 0.0759 (8) | 0.0847 (6) | 0.7344 (6) | 0.0335 (15) | |
H1W1 | 0.067 (3) | 0.118 (3) | 0.683 (2) | 0.040* | |
H2W1 | 0.0671 | 0.0039 | 0.7102 | 0.040* | |
O2W | 1.1818 (11) | 0.1180 (8) | 1.1089 (9) | 0.060 (3) | |
H1W2 | 1.176 (13) | 0.185 (2) | 1.154 (12) | 0.072* | |
H2W2 | 1.1280 | 0.0421 | 1.0989 | 0.072* | |
O3W | 0.9613 (14) | 0.3830 (8) | 1.0059 (9) | 0.065 (3) | |
H1W3 | 0.947 (18) | 0.401 (9) | 1.068 (8) | 0.078* | |
H2W3 | 0.9696 | 0.3095 | 0.9801 | 0.078* | |
O4W | 0.9969 (13) | 0.1478 (11) | 0.9221 (9) | 0.067 (3) | |
H1W4 | 1.0634 (19) | 0.121 (3) | 0.936 (5) | 0.081* | |
H2W4 | 0.947 (3) | 0.1236 (17) | 0.8506 (12) | 0.081* | |
N1 | 0.3469 (8) | 0.2174 (8) | 0.8833 (7) | 0.0351 (18) | |
H1 | 0.2632 | 0.1746 | 0.8307 | 0.042* | |
N2 | 0.4422 (8) | 0.7675 (7) | 0.4207 (8) | 0.0297 (16) | |
H2 | 0.3644 | 0.7027 | 0.3982 | 0.036* | |
C1 | 0.4842 (14) | 0.4522 (13) | 0.7670 (11) | 0.046 (3) | |
H1A | 0.4551 | 0.4753 | 0.7040 | 0.056* | |
C2 | 0.6262 (15) | 0.5203 (13) | 0.8545 (13) | 0.049 (3) | |
H2A | 0.6894 | 0.5873 | 0.8470 | 0.059* | |
C3 | 0.6670 (12) | 0.4882 (11) | 0.9452 (13) | 0.047 (3) | |
H3 | 0.7581 | 0.5342 | 1.0011 | 0.056* | |
C4 | 0.5747 (10) | 0.3857 (10) | 0.9581 (9) | 0.0305 (18) | |
C5 | 0.6157 (12) | 0.3427 (12) | 1.0502 (11) | 0.047 (3) | |
H5 | 0.7075 | 0.3808 | 1.1049 | 0.056* | |
C6 | 0.5166 (14) | 0.2435 (13) | 1.0568 (11) | 0.047 (3) | |
H6 | 0.5410 | 0.2175 | 1.1186 | 0.056* | |
C7 | 0.3861 (11) | 0.1844 (11) | 0.9754 (10) | 0.039 (2) | |
H7 | 0.3207 | 0.1189 | 0.9825 | 0.046* | |
C8 | 0.3937 (12) | 0.3527 (12) | 0.7797 (10) | 0.040 (2) | |
H8 | 0.3017 | 0.3089 | 0.7251 | 0.048* | |
C9 | 0.4371 (9) | 0.3171 (9) | 0.8717 (8) | 0.0274 (17) | |
C10 | 0.5429 (11) | 0.7920 (10) | 0.5154 (10) | 0.036 (2) | |
H10 | 0.5287 | 0.7373 | 0.5553 | 0.043* | |
C11 | 0.6672 (12) | 0.8923 (12) | 0.5600 (12) | 0.048 (3) | |
H11 | 0.7361 | 0.9090 | 0.6306 | 0.057* | |
C12 | 0.6909 (11) | 0.9708 (11) | 0.4981 (12) | 0.043 (3) | |
H12 | 0.7776 | 1.0383 | 0.5247 | 0.052* | |
C13 | 0.5836 (10) | 0.9467 (8) | 0.3967 (11) | 0.038 (2) | |
C14 | 0.5994 (13) | 1.0189 (12) | 0.3266 (13) | 0.049 (3) | |
H14 | 0.6845 | 1.0867 | 0.3490 | 0.059* | |
C15 | 0.4871 (19) | 0.9884 (14) | 0.2232 (16) | 0.063 (4) | |
H15 | 0.4970 | 1.0390 | 0.1793 | 0.076* | |
C16 | 0.3654 (17) | 0.8868 (15) | 0.1870 (15) | 0.066 (4) | |
H16 | 0.2949 | 0.8661 | 0.1159 | 0.080* | |
C17 | 0.3395 (11) | 0.8109 (10) | 0.2506 (11) | 0.038 (2) | |
H17 | 0.2524 | 0.7452 | 0.2267 | 0.046* | |
C18 | 0.4533 (9) | 0.8398 (8) | 0.3537 (9) | 0.0289 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Te1 | 0.0292 (3) | 0.0266 (3) | 0.0309 (3) | 0.0036 (2) | 0.0090 (2) | 0.0112 (2) |
V1 | 0.0244 (6) | 0.0124 (5) | 0.0195 (6) | 0.0075 (4) | 0.0102 (5) | 0.0092 (5) |
V2 | 0.0188 (5) | 0.0153 (5) | 0.0169 (6) | 0.0046 (4) | 0.0073 (5) | 0.0100 (5) |
V3 | 0.0195 (6) | 0.0223 (6) | 0.0271 (7) | 0.0087 (5) | 0.0126 (5) | 0.0129 (5) |
V4 | 0.0271 (7) | 0.0146 (5) | 0.0144 (6) | 0.0031 (5) | 0.0058 (5) | 0.0018 (4) |
O1 | 0.046 (4) | 0.027 (3) | 0.017 (3) | 0.003 (3) | 0.009 (3) | 0.000 (2) |
O2 | 0.027 (3) | 0.012 (2) | 0.019 (3) | 0.0035 (19) | 0.009 (2) | 0.0077 (19) |
O3 | 0.020 (2) | 0.022 (3) | 0.024 (3) | 0.008 (2) | 0.009 (2) | 0.014 (2) |
O4 | 0.0292 (3) | 0.0266 (3) | 0.0309 (3) | 0.0036 (2) | 0.0090 (2) | 0.0112 (2) |
O5 | 0.030 (3) | 0.025 (3) | 0.029 (3) | 0.011 (2) | 0.011 (3) | 0.020 (3) |
O6 | 0.023 (3) | 0.011 (2) | 0.017 (2) | −0.0030 (18) | 0.004 (2) | 0.0032 (18) |
O7 | 0.050 (4) | 0.018 (3) | 0.023 (3) | 0.014 (3) | 0.016 (3) | 0.013 (2) |
O8 | 0.029 (3) | 0.017 (2) | 0.016 (2) | 0.007 (2) | 0.009 (2) | 0.008 (2) |
O9 | 0.027 (3) | 0.042 (4) | 0.040 (4) | 0.017 (3) | 0.022 (3) | 0.022 (3) |
O10 | 0.0292 (3) | 0.0266 (3) | 0.0309 (3) | 0.0036 (2) | 0.0090 (2) | 0.0112 (2) |
O11 | 0.018 (2) | 0.025 (3) | 0.024 (3) | 0.003 (2) | 0.008 (2) | 0.011 (2) |
O12 | 0.0292 (3) | 0.0266 (3) | 0.0309 (3) | 0.0036 (2) | 0.0090 (2) | 0.0112 (2) |
O13 | 0.017 (2) | 0.019 (2) | 0.022 (3) | 0.0013 (19) | 0.006 (2) | 0.008 (2) |
O14 | 0.017 (2) | 0.023 (3) | 0.019 (3) | 0.0009 (19) | 0.007 (2) | 0.011 (2) |
O1W | 0.047 (4) | 0.022 (3) | 0.028 (3) | 0.013 (3) | 0.009 (3) | 0.013 (3) |
O2W | 0.080 (7) | 0.051 (5) | 0.058 (6) | 0.021 (5) | 0.051 (6) | 0.013 (5) |
O3W | 0.110 (9) | 0.050 (5) | 0.043 (5) | 0.027 (6) | 0.045 (6) | 0.019 (4) |
O4W | 0.095 (8) | 0.075 (7) | 0.052 (6) | 0.037 (6) | 0.045 (6) | 0.032 (5) |
N1 | 0.029 (4) | 0.030 (4) | 0.031 (4) | 0.001 (3) | 0.001 (3) | 0.013 (3) |
N2 | 0.028 (3) | 0.016 (3) | 0.040 (4) | 0.004 (3) | 0.012 (3) | 0.009 (3) |
C1 | 0.063 (8) | 0.053 (7) | 0.041 (6) | 0.026 (6) | 0.027 (6) | 0.033 (6) |
C2 | 0.062 (8) | 0.040 (6) | 0.065 (8) | 0.022 (6) | 0.045 (7) | 0.025 (6) |
C3 | 0.028 (5) | 0.033 (5) | 0.067 (8) | 0.000 (4) | 0.021 (5) | 0.013 (5) |
C4 | 0.030 (4) | 0.030 (4) | 0.030 (5) | 0.017 (4) | 0.007 (4) | 0.010 (4) |
C5 | 0.030 (5) | 0.042 (6) | 0.050 (7) | 0.000 (4) | −0.001 (5) | 0.024 (5) |
C6 | 0.051 (7) | 0.046 (6) | 0.043 (6) | 0.017 (5) | 0.012 (5) | 0.025 (5) |
C7 | 0.034 (5) | 0.039 (5) | 0.037 (5) | 0.002 (4) | 0.009 (4) | 0.024 (4) |
C8 | 0.040 (5) | 0.046 (6) | 0.028 (5) | 0.014 (5) | 0.007 (4) | 0.016 (4) |
C9 | 0.026 (4) | 0.027 (4) | 0.030 (4) | 0.004 (3) | 0.013 (3) | 0.016 (3) |
C10 | 0.037 (5) | 0.030 (4) | 0.043 (6) | 0.015 (4) | 0.020 (5) | 0.012 (4) |
C11 | 0.030 (5) | 0.043 (6) | 0.059 (8) | 0.016 (5) | 0.008 (5) | 0.014 (6) |
C12 | 0.026 (4) | 0.029 (5) | 0.065 (8) | 0.003 (4) | 0.019 (5) | 0.013 (5) |
C13 | 0.030 (4) | 0.011 (3) | 0.064 (7) | −0.001 (3) | 0.021 (5) | 0.008 (4) |
C14 | 0.039 (6) | 0.036 (5) | 0.073 (9) | 0.002 (4) | 0.026 (6) | 0.030 (6) |
C15 | 0.098 (12) | 0.043 (7) | 0.092 (12) | 0.033 (8) | 0.075 (11) | 0.042 (8) |
C16 | 0.063 (9) | 0.047 (7) | 0.061 (9) | 0.028 (7) | 0.001 (7) | 0.002 (7) |
C17 | 0.034 (5) | 0.025 (4) | 0.052 (7) | 0.006 (4) | 0.017 (5) | 0.018 (4) |
C18 | 0.025 (4) | 0.011 (3) | 0.043 (5) | −0.003 (3) | 0.018 (4) | 0.005 (3) |
Te1—O13 | 1.765 (6) | O12—V2i | 2.039 (7) |
Te1—O11 | 1.775 (6) | O1W—H1W1 | 0.853 (10) |
Te1—O12 | 1.918 (7) | O1W—H2W1 | 0.845 (5) |
Te1—O4 | 1.941 (7) | O2W—H1W2 | 0.849 (10) |
Te1—O10 | 2.054 (7) | O2W—H2W2 | 0.849 (7) |
Te1—O10i | 2.080 (7) | O3W—H1W3 | 0.850 (10) |
Te1—V4 | 3.095 (2) | O3W—H2W3 | 0.844 (7) |
Te1—V3 | 3.105 (2) | O4W—H1W4 | 0.850 (10) |
Te1—V1 | 3.161 (2) | O4W—H2W4 | 0.849 (10) |
Te1—V2 | 3.1740 (18) | N1—C7 | 1.348 (13) |
Te1—Te1i | 3.220 (3) | N1—C9 | 1.366 (11) |
V1—O7 | 1.610 (6) | N1—H1 | 0.8600 |
V1—O3 | 1.764 (6) | N2—C10 | 1.283 (14) |
V1—O2 | 1.840 (6) | N2—C18 | 1.372 (12) |
V1—O12 | 2.010 (7) | N2—H2 | 0.8600 |
V1—O4i | 2.037 (7) | C1—C8 | 1.373 (17) |
V1—O10i | 2.281 (7) | C1—C2 | 1.45 (2) |
V1—V2i | 3.101 (2) | C1—H1A | 0.9300 |
V1—V3 | 3.107 (2) | C2—C3 | 1.328 (19) |
V2—O5 | 1.603 (6) | C2—H2A | 0.9300 |
V2—O14 | 1.793 (6) | C3—C4 | 1.408 (15) |
V2—O6 | 1.849 (6) | C3—H3 | 0.9300 |
V2—O4 | 2.005 (7) | C4—C9 | 1.412 (13) |
V2—O12i | 2.039 (7) | C4—C5 | 1.423 (15) |
V2—O10i | 2.285 (7) | C5—C6 | 1.380 (17) |
V2—V1i | 3.101 (2) | C5—H5 | 0.9300 |
V3—O9 | 1.604 (7) | C6—C7 | 1.336 (16) |
V3—O8 | 1.828 (6) | C6—H6 | 0.9300 |
V3—O3 | 1.864 (6) | C7—H7 | 0.9300 |
V3—O14 | 1.895 (6) | C8—C9 | 1.372 (14) |
V3—O11 | 2.027 (7) | C8—H8 | 0.9300 |
V3—O10i | 2.380 (7) | C10—C11 | 1.339 (16) |
V3—V4i | 3.117 (3) | C10—H10 | 0.9300 |
V4—O1 | 1.602 (7) | C11—C12 | 1.390 (19) |
V4—O8i | 1.822 (6) | C11—H11 | 0.9300 |
V4—O2i | 1.851 (6) | C12—C13 | 1.379 (18) |
V4—O6i | 1.905 (6) | C12—H12 | 0.9300 |
V4—O13 | 2.013 (6) | C13—C14 | 1.413 (17) |
V4—O10 | 2.387 (7) | C13—C18 | 1.420 (12) |
V4—V3i | 3.117 (3) | C14—C15 | 1.40 (2) |
O2—V4i | 1.851 (6) | C14—H14 | 0.9300 |
O4—V1i | 2.037 (7) | C15—C16 | 1.34 (2) |
O6—V4i | 1.905 (6) | C15—H15 | 0.9300 |
O8—V4i | 1.822 (6) | C16—C17 | 1.39 (2) |
O10—Te1i | 2.080 (7) | C16—H16 | 0.9300 |
O10—V1i | 2.281 (7) | C17—C18 | 1.414 (16) |
O10—V2i | 2.285 (7) | C17—H17 | 0.9300 |
O10—V3i | 2.380 (7) | ||
O13—Te1—O11 | 106.2 (3) | O11—V3—Te1 | 32.64 (17) |
O13—Te1—O12 | 96.4 (3) | O10i—V3—Te1 | 42.03 (17) |
O11—Te1—O12 | 96.9 (3) | O9—V3—V1 | 133.6 (3) |
O13—Te1—O4 | 96.4 (3) | O8—V3—V1 | 81.44 (19) |
O11—Te1—O4 | 96.4 (3) | O3—V3—V1 | 30.14 (18) |
O12—Te1—O4 | 158.2 (3) | O14—V3—V1 | 122.84 (18) |
O13—Te1—O10 | 88.1 (3) | O11—V3—V1 | 82.33 (18) |
O11—Te1—O10 | 165.7 (3) | O10i—V3—V1 | 46.83 (17) |
O12—Te1—O10 | 81.5 (3) | Te1—V3—V1 | 61.17 (5) |
O4—Te1—O10 | 81.3 (3) | O9—V3—V4i | 134.2 (3) |
O13—Te1—O10i | 165.8 (3) | O8—V3—V4i | 31.3 (2) |
O11—Te1—O10i | 88.0 (3) | O3—V3—V4i | 83.04 (19) |
O12—Te1—O10i | 81.8 (3) | O14—V3—V4i | 83.61 (18) |
O4—Te1—O10i | 81.4 (3) | O11—V3—V4i | 123.93 (18) |
O10—Te1—O10i | 77.7 (3) | O10i—V3—V4i | 49.27 (17) |
O13—Te1—V4 | 37.73 (19) | Te1—V3—V4i | 91.29 (7) |
O11—Te1—V4 | 143.9 (2) | V1—V3—V4i | 61.01 (5) |
O12—Te1—V4 | 90.4 (2) | O1—V4—O8i | 104.6 (3) |
O4—Te1—V4 | 89.0 (2) | O1—V4—O2i | 104.4 (3) |
O10—Te1—V4 | 50.4 (2) | O8i—V4—O2i | 89.8 (3) |
O10i—Te1—V4 | 128.1 (2) | O1—V4—O6i | 103.4 (3) |
O13—Te1—V3 | 144.19 (19) | O8i—V4—O6i | 88.9 (3) |
O11—Te1—V3 | 38.0 (2) | O2i—V4—O6i | 151.5 (3) |
O12—Te1—V3 | 89.5 (2) | O1—V4—O13 | 100.9 (3) |
O4—Te1—V3 | 90.3 (2) | O8i—V4—O13 | 154.4 (3) |
O10—Te1—V3 | 127.7 (2) | O2i—V4—O13 | 85.6 (3) |
O10i—Te1—V3 | 50.0 (2) | O6i—V4—O13 | 83.4 (3) |
V4—Te1—V3 | 178.06 (5) | O1—V4—O10 | 174.8 (4) |
O13—Te1—V1 | 133.8 (2) | O8i—V4—O10 | 80.5 (3) |
O11—Te1—V1 | 84.6 (2) | O2i—V4—O10 | 76.5 (2) |
O12—Te1—V1 | 37.4 (2) | O6i—V4—O10 | 75.3 (2) |
O4—Te1—V1 | 127.5 (2) | O13—V4—O10 | 74.0 (2) |
O10—Te1—V1 | 85.7 (2) | O1—V4—Te1 | 133.3 (3) |
O10i—Te1—V1 | 46.1 (2) | O8i—V4—Te1 | 122.0 (2) |
V4—Te1—V1 | 119.73 (6) | O2i—V4—Te1 | 78.91 (19) |
V3—Te1—V1 | 59.45 (5) | O6i—V4—Te1 | 77.73 (19) |
O13—Te1—V2 | 133.6 (2) | O13—V4—Te1 | 32.45 (17) |
O11—Te1—V2 | 84.3 (2) | O10—V4—Te1 | 41.54 (17) |
O12—Te1—V2 | 127.7 (2) | O1—V4—V3i | 136.0 (3) |
O4—Te1—V2 | 37.1 (2) | O8i—V4—V3i | 31.41 (18) |
O10—Te1—V2 | 85.5 (2) | O2i—V4—V3i | 81.97 (19) |
O10i—Te1—V2 | 45.95 (19) | O6i—V4—V3i | 82.23 (18) |
V4—Te1—V2 | 118.35 (5) | O13—V4—V3i | 123.07 (18) |
V3—Te1—V2 | 60.30 (5) | O10—V4—V3i | 49.08 (18) |
V1—Te1—V2 | 91.45 (7) | Te1—V4—V3i | 90.62 (7) |
O13—Te1—Te1i | 127.3 (2) | V1—O2—V4i | 117.8 (3) |
O11—Te1—Te1i | 126.5 (2) | V1—O3—V3 | 117.8 (3) |
O12—Te1—Te1i | 79.3 (2) | Te1—O4—V2 | 107.1 (3) |
O4—Te1—Te1i | 78.9 (2) | Te1—O4—V1i | 107.2 (3) |
O10—Te1—Te1i | 39.14 (19) | V2—O4—V1i | 100.2 (3) |
O10i—Te1—Te1i | 38.5 (2) | V2—O6—V4i | 117.7 (3) |
V4—Te1—Te1i | 89.55 (6) | V4i—O8—V3 | 117.3 (3) |
V3—Te1—Te1i | 88.53 (6) | Te1—O10—Te1i | 102.3 (3) |
V1—Te1—Te1i | 60.25 (6) | Te1—O10—V1i | 95.2 (3) |
V2—Te1—Te1i | 60.03 (5) | Te1i—O10—V1i | 92.8 (3) |
O7—V1—O3 | 105.3 (3) | Te1—O10—V2i | 94.9 (3) |
O7—V1—O2 | 102.9 (3) | Te1i—O10—V2i | 93.2 (3) |
O3—V1—O2 | 93.8 (3) | V1i—O10—V2i | 167.0 (4) |
O7—V1—O12 | 101.4 (3) | Te1—O10—V3i | 169.7 (4) |
O3—V1—O12 | 91.1 (3) | Te1i—O10—V3i | 88.0 (2) |
O2—V1—O12 | 152.9 (3) | V1i—O10—V3i | 83.6 (2) |
O7—V1—O4i | 99.3 (3) | V2i—O10—V3i | 85.1 (2) |
O3—V1—O4i | 154.0 (3) | Te1—O10—V4 | 88.0 (2) |
O2—V1—O4i | 88.6 (3) | Te1i—O10—V4 | 169.6 (4) |
O12—V1—O4i | 75.9 (3) | V1i—O10—V4 | 85.2 (2) |
O7—V1—O10i | 172.9 (3) | V2i—O10—V4 | 86.9 (2) |
O3—V1—O10i | 81.1 (3) | V3i—O10—V4 | 81.7 (2) |
O2—V1—O10i | 79.5 (2) | Te1—O11—V3 | 109.4 (3) |
O12—V1—O10i | 75.0 (3) | Te1—O12—V1 | 107.1 (3) |
O4i—V1—O10i | 74.0 (3) | Te1—O12—V2i | 107.8 (3) |
O7—V1—V2i | 89.7 (2) | V1—O12—V2i | 99.9 (3) |
O3—V1—V2i | 131.4 (2) | Te1—O13—V4 | 109.8 (3) |
O2—V1—V2i | 128.1 (2) | V2—O14—V3 | 117.5 (3) |
O12—V1—V2i | 40.4 (2) | H1W1—O1W—H2W1 | 115 (3) |
O4i—V1—V2i | 39.5 (2) | H1W2—O2W—H2W2 | 115 (3) |
O10i—V1—V2i | 83.69 (19) | H1W3—O3W—H2W3 | 117 (3) |
O7—V1—V3 | 137.1 (3) | H1W4—O4W—H2W4 | 115 (3) |
O3—V1—V3 | 32.04 (18) | C7—N1—C9 | 121.5 (8) |
O2—V1—V3 | 82.40 (18) | C7—N1—H1 | 119.2 |
O12—V1—V3 | 87.9 (2) | C9—N1—H1 | 119.2 |
O4i—V1—V3 | 123.5 (2) | C10—N2—C18 | 123.0 (8) |
O10i—V1—V3 | 49.57 (18) | C10—N2—H2 | 118.5 |
V2i—V1—V3 | 120.78 (6) | C18—N2—H2 | 118.5 |
O7—V1—Te1 | 136.4 (2) | C8—C1—C2 | 118.3 (11) |
O3—V1—Te1 | 77.3 (2) | C8—C1—H1A | 120.9 |
O2—V1—Te1 | 120.50 (18) | C2—C1—H1A | 120.9 |
O12—V1—Te1 | 35.4 (2) | C3—C2—C1 | 120.7 (11) |
O4i—V1—Te1 | 79.20 (19) | C3—C2—H2A | 119.6 |
O10i—V1—Te1 | 41.10 (17) | C1—C2—H2A | 119.6 |
V2i—V1—Te1 | 61.43 (5) | C2—C3—C4 | 121.1 (11) |
V3—V1—Te1 | 59.39 (5) | C2—C3—H3 | 119.4 |
O5—V2—O14 | 105.6 (3) | C4—C3—H3 | 119.4 |
O5—V2—O6 | 104.4 (3) | C3—C4—C9 | 118.3 (10) |
O14—V2—O6 | 93.3 (3) | C3—C4—C5 | 123.2 (10) |
O5—V2—O4 | 100.4 (3) | C9—C4—C5 | 118.5 (9) |
O14—V2—O4 | 91.4 (3) | C6—C5—C4 | 118.8 (10) |
O6—V2—O4 | 152.5 (3) | C6—C5—H5 | 120.6 |
O5—V2—O12i | 100.0 (3) | C4—C5—H5 | 120.6 |
O14—V2—O12i | 153.2 (3) | C7—C6—C5 | 120.7 (11) |
O6—V2—O12i | 88.1 (3) | C7—C6—H6 | 119.6 |
O4—V2—O12i | 76.0 (3) | C5—C6—H6 | 119.6 |
O5—V2—O10i | 172.8 (3) | C6—C7—N1 | 121.6 (10) |
O14—V2—O10i | 80.5 (2) | C6—C7—H7 | 119.2 |
O6—V2—O10i | 78.9 (2) | N1—C7—H7 | 119.2 |
O4—V2—O10i | 75.1 (3) | C9—C8—C1 | 120.9 (11) |
O12i—V2—O10i | 73.5 (3) | C9—C8—H8 | 119.6 |
O5—V2—V1i | 89.4 (3) | C1—C8—H8 | 119.6 |
O14—V2—V1i | 131.6 (2) | N1—C9—C8 | 120.7 (9) |
O6—V2—V1i | 127.8 (2) | N1—C9—C4 | 118.7 (8) |
O4—V2—V1i | 40.3 (2) | C8—C9—C4 | 120.6 (9) |
O12i—V2—V1i | 39.7 (2) | N2—C10—C11 | 123.5 (11) |
O10i—V2—V1i | 83.49 (19) | N2—C10—H10 | 118.2 |
O5—V2—Te1 | 135.7 (3) | C11—C10—H10 | 118.2 |
O14—V2—Te1 | 77.17 (19) | C10—C11—C12 | 118.4 (12) |
O6—V2—Te1 | 119.75 (19) | C10—C11—H11 | 120.8 |
O4—V2—Te1 | 35.8 (2) | C12—C11—H11 | 120.8 |
O12i—V2—Te1 | 78.9 (2) | C13—C12—C11 | 118.9 (10) |
O10i—V2—Te1 | 40.88 (18) | C13—C12—H12 | 120.6 |
V1i—V2—Te1 | 61.38 (5) | C11—C12—H12 | 120.6 |
O9—V3—O8 | 102.9 (3) | C12—C13—C14 | 122.8 (9) |
O9—V3—O3 | 103.6 (3) | C12—C13—C18 | 120.4 (10) |
O8—V3—O3 | 91.2 (3) | C14—C13—C18 | 116.7 (11) |
O9—V3—O14 | 103.5 (3) | C15—C14—C13 | 120.2 (10) |
O8—V3—O14 | 90.2 (2) | C15—C14—H14 | 119.9 |
O3—V3—O14 | 151.8 (3) | C13—C14—H14 | 119.9 |
O9—V3—O11 | 101.9 (3) | C16—C15—C14 | 120.6 (13) |
O8—V3—O11 | 155.2 (3) | C16—C15—H15 | 119.7 |
O3—V3—O11 | 84.1 (3) | C14—C15—H15 | 119.7 |
O14—V3—O11 | 83.0 (3) | C15—C16—C17 | 123.3 (14) |
O9—V3—O10i | 176.5 (3) | C15—C16—H16 | 118.3 |
O8—V3—O10i | 80.6 (3) | C17—C16—H16 | 118.3 |
O3—V3—O10i | 76.5 (2) | C16—C17—C18 | 116.1 (10) |
O14—V3—O10i | 76.0 (2) | C16—C17—H17 | 122.0 |
O11—V3—O10i | 74.7 (2) | C18—C17—H17 | 122.0 |
O9—V3—Te1 | 134.5 (3) | N2—C18—C17 | 121.4 (8) |
O8—V3—Te1 | 122.6 (2) | N2—C18—C13 | 115.7 (10) |
O3—V3—Te1 | 77.75 (19) | C17—C18—C13 | 122.9 (9) |
O14—V3—Te1 | 77.87 (18) | ||
C8—C1—C2—C3 | −0.8 (19) | C18—N2—C10—C11 | 1.8 (17) |
C1—C2—C3—C4 | 1.2 (19) | N2—C10—C11—C12 | −2.8 (18) |
C2—C3—C4—C9 | 0.2 (17) | C10—C11—C12—C13 | 3.2 (18) |
C2—C3—C4—C5 | 176.4 (12) | C11—C12—C13—C14 | −178.1 (12) |
C3—C4—C5—C6 | 178.5 (12) | C11—C12—C13—C18 | −2.8 (17) |
C9—C4—C5—C6 | −5.3 (18) | C12—C13—C14—C15 | 178.9 (12) |
C4—C5—C6—C7 | 3 (2) | C18—C13—C14—C15 | 3.4 (18) |
C5—C6—C7—N1 | 1 (2) | C13—C14—C15—C16 | −3 (2) |
C9—N1—C7—C6 | −3.1 (18) | C14—C15—C16—C17 | 4 (2) |
C2—C1—C8—C9 | −1.1 (19) | C15—C16—C17—C18 | −5 (2) |
C7—N1—C9—C8 | −177.4 (11) | C10—N2—C18—C17 | −179.1 (10) |
C7—N1—C9—C4 | 0.7 (16) | C10—N2—C18—C13 | −1.1 (14) |
C1—C8—C9—N1 | −179.5 (11) | C16—C17—C18—N2 | −176.9 (10) |
C1—C8—C9—C4 | 2.5 (17) | C16—C17—C18—C13 | 5.2 (16) |
C3—C4—C9—N1 | 179.9 (10) | C12—C13—C18—N2 | 1.7 (14) |
C5—C4—C9—N1 | 3.5 (15) | C14—C13—C18—N2 | 177.3 (10) |
C3—C4—C9—C8 | −2.0 (15) | C12—C13—C18—C17 | 179.7 (10) |
C5—C4—C9—C8 | −178.4 (11) | C14—C13—C18—C17 | −4.7 (15) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W1···O2ii | 0.85 (1) | 1.82 (1) | 2.663 (8) | 178 (1) |
O1W—H1W1···O7 | 0.85 (1) | 1.92 (2) | 2.762 (9) | 170 (4) |
O2W—H1W2···O8iii | 0.85 (1) | 2.03 (2) | 2.842 (10) | 159 (4) |
O2W—H2W2···O4Wiv | 0.85 (1) | 2.10 (1) | 2.952 (14) | 177 (1) |
O3W—H2W3···O4W | 0.84 (1) | 1.91 (1) | 2.754 (14) | 177 (1) |
O3W—H1W3···O6iii | 0.85 (1) | 1.83 (2) | 2.665 (11) | 166 (6) |
O4W—H2W4···O1Wv | 0.85 (1) | 2.41 (3) | 2.826 (12) | 111 (3) |
O4W—H1W4···O2W | 0.85 (1) | 2.26 (5) | 2.836 (17) | 125 (5) |
N1—H1···O1W | 0.86 | 1.85 | 2.700 (11) | 172 |
N2—H2···O14 | 0.86 | 1.88 | 2.740 (9) | 175 |
C5—H5···O6iii | 0.93 | 2.29 | 3.180 (13) | 160 |
C6—H6···O13vi | 0.93 | 2.48 | 3.178 (14) | 132 |
C7—H7···O1vii | 0.93 | 2.56 | 3.350 (13) | 143 |
C7—H7···O2Wviii | 0.93 | 2.57 | 3.296 (14) | 135 |
C10—H10···O9ix | 0.93 | 2.51 | 3.275 (13) | 140 |
C14—H14···O4x | 0.93 | 2.58 | 3.403 (14) | 148 |
C17—H17···O5 | 0.93 | 2.60 | 3.411 (13) | 146 |
Symmetry codes: (ii) −x, −y, −z+1; (iii) x+1, y, z+1; (iv) −x+2, −y, −z+2; (v) x+1, y, z; (vi) −x+1, −y+1, −z+2; (vii) x, y−1, z; (viii) x−1, y, z; (ix) −x+1, −y+1, −z+1; (x) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W1···O2i | 0.845 (5) | 1.819 (5) | 2.663 (8) | 177.8 (6) |
O1W—H1W1···O7 | 0.853 (10) | 1.919 (18) | 2.762 (9) | 170 (4) |
O2W—H1W2···O8ii | 0.849 (10) | 2.03 (2) | 2.842 (10) | 159 (4) |
O2W—H2W2···O4Wiii | 0.849 (7) | 2.104 (12) | 2.952 (14) | 177.3 (9) |
O3W—H2W3···O4W | 0.844 (7) | 1.910 (11) | 2.754 (14) | 177.3 (9) |
O3W—H1W3···O6ii | 0.850 (10) | 1.83 (2) | 2.665 (11) | 166 (6) |
O4W—H2W4···O1Wiv | 0.849 (10) | 2.41 (3) | 2.826 (12) | 111 (3) |
O4W—H1W4···O2W | 0.850 (10) | 2.26 (5) | 2.836 (17) | 125 (5) |
N1—H1···O1W | 0.86 | 1.85 | 2.700 (11) | 172 |
N2—H2···O14 | 0.86 | 1.88 | 2.740 (9) | 175 |
C5—H5···O6ii | 0.93 | 2.29 | 3.180 (13) | 160 |
C6—H6···O13v | 0.93 | 2.48 | 3.178 (14) | 132 |
C7—H7···O1vi | 0.93 | 2.56 | 3.350 (13) | 143 |
C7—H7···O2Wvii | 0.93 | 2.57 | 3.296 (14) | 135 |
C10—H10···O9viii | 0.93 | 2.51 | 3.275 (13) | 140 |
C14—H14···O4ix | 0.93 | 2.58 | 3.403 (14) | 148 |
C17—H17···O5 | 0.93 | 2.60 | 3.411 (13) | 146 |
Symmetry codes: (i) −x, −y, −z+1; (ii) x+1, y, z+1; (iii) −x+2, −y, −z+2; (iv) x+1, y, z; (v) −x+1, −y+1, −z+2; (vi) x, y−1, z; (vii) x−1, y, z; (viii) −x+1, −y+1, −z+1; (ix) −x+1, −y+2, −z+1. |
References
Alcock, N. W. (1970). Crystallogr. Comput. p. 271. Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Evans, H. T. (1966). Inorg. Chem. 5, 967–977. CrossRef CAS Web of Science Google Scholar
Fantus, I. G., Deragon, G., Lai, R. & Tang, S. (1995). Mol. Cell. Biochem. 153, 103–112. CrossRef CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Folbergrova, J. & Mares, P. (1987). Neurochem. Res. 12, 537–540. CAS PubMed Web of Science Google Scholar
Fukuda, N. & Yamase, T. (1997). Biol. Pharm. Bull. 20, 927–930. CrossRef CAS PubMed Google Scholar
Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Google Scholar
Hemissi, H., Rzaigui, M. & Al Othman, Z. A. (2010). Acta Cryst. E66, m186–m187. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Joo, H.-C., Park, K.-M. & Lee, U. (2011). Acta Cryst. E67, m1801–m1802. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Konaka, S., Ozawa, Y., Shonaka, T., Watanabe, S. & Yagasaki, A. (2011). Inorg. Chem. 50, 6183–6188. Web of Science CSD CrossRef CAS PubMed Google Scholar
Konaka, S., Ozawa, Y. & Yagasaki, A. (2008). Inorg. Chem. Commun. 11, 1267–1269. Web of Science CSD CrossRef CAS Google Scholar
Lee, U., Joo, H. C., Park, K. M., Mal, S. S., Kortz, U., Keita, B. & Nadjo, L. (2008). Angew. Chem. Int. 47, 793–796. CrossRef CAS Google Scholar
Rajakumar, V. D., Barbara, H. & Amanda, L. (2000). Cardiovasc. Drugs Ther. 14, 463–470. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Strukan, N., Cindric, M. & Kamenar, B. (1997). Polyhedron, 16, 629–634. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The polyoxovanadate materials (POVs) are well established in magnetic, electric and biomedical fields because of their richness structural variety in relation with the vanadium element which can adopt different coordination geometries and variable oxidation states very interesting for redox applications in catalysis and materials science (Fukuda et al., 1997; Rajakumar et al., 2000; Folbergrova et al., 1987; Fantus et al.,1995). Furthermore, this family is dominated by the decavanadates, well known in their protonated forms [HxV10O28](6 - x)-. Nevertheless, incorporation of other elements besides vanadium into this structural type has not been reported yet. In particular, substitution of one or more vanadium atoms by PtIV (Lee et al., 2008; Joo et al., 2011), MoVI(Strukan et al., 1997) and TeVI (Konaka et al., 2008; Konaka et al., 2011) are investigated and resulted into novel materials with highly promising catalytic properties. To date in our knowledge, only two POVs incorporated one telluric, are known (Konaka et al., 2008). Here, we describe the synthesis and structure of the first ocatavanado-ditellurate ion, [Te2V8O28]4-, which was isolated as the hydrated quinolinium salt (C9H8N)4[Te2V8O28]·8H2O (I). The asymmetric unit of (I) contains one half of a [Te2V8O28]4- anion, two crystallographically independent quinolinium cations and four water molecules. Owing to the inversion symmetry, the whole polyanion is generated, resulting so to the title compound formulae (Fig. 1). The structure of the [Te2V8O28]4- polyanion is basically the same as that of decavanadate, [V10O28]6- (Evans et al., 1966). In [Te2V8O28]4- anion two of the central V atoms of [V10O28]6- are replaced with two Te atoms. The valence bond calculation (Brown & Altermatt, 1985) gives effective bond valences of 6.1647 for Te cation and of 5.0743, 5.0068, 5.0574 and 5.063 for the four independent V cations, consistent with their oxidation states Te(+VI) and V(+V). Replacement of central V atom with a heteroatom, has also been observed for [H2PtV9O28]5- (Lee et al.,2008; Joo et al., 2011). As for the decavanadate anion, the [Te2V8O28]4- anion is built up of 10 e dge sharing MO6 (M = V or Te) octahedra. Within VO6 octahedra, the V—O distances are also similar to those already observed and depend upon the type of oxo ligand: bond lengths to the terminal oxo oxygen V—Ot are between 1.602 (7) and 1.610 (6) Å, V—O2b bond lengths to the oxygen bonded to two V atoms vary from 1.767 (6) e t 1.864 (6) Å, V—O3b bond lengths to the oxygen bonded to three V atoms are 2.005 (7) and 2.039 (7) and finally, V—O6c bond lengths to the oxygen shared between six V atoms are 2.380 (7) and 2.387 (7) Å. The VO6 octahedra are significantly distorted, with the bond angles at the V atoms ranging from 73.5 (3) to 176.5 (3)°. The TeO6 octahedra are less distorted in comparison with VO6 ocathedra since the Te—O distances vary from 1.765 (6) to 2.080 (7) Å. Similar trends are also observable for similar heteropolyanion (Konaka et al., 2008; Konaka et al., 2011). The quinolinium cations exhibit the typical ranges in bond lengths and angles as found in the related structures (Hemissi et al., 2010).
In the crystal packing, the discrete [Te2V8O28]4- polyanions are hydrogen bonded through clusters of eight water molecules [H2O]8 forming layers [Te2V8O28(H2O)8]n4n- stacked along the [100] direction (Fig. 2). With regard to the organic moieties, the two crystallographically independent [C9H7—N(1)H]+ and [C9H7—N(2)H]+ cations are interconnected thanks to intermolecular π ···π stacking interactions with centroid-centroid ring separations between 3.54 (8) and 3.90 (7) Å as to develop chains extending along [011] direction. Furthermore, the quinolinium chains and the polyanion sheets are linked thanks to O1W, O2W water molecules and terminal oxygen atoms (O1, O5 and O9) and bridged oxygen atoms (µ 2-O6, µ 2-O13, µ 2-O14 and µ 3-O4) of the polyanion, into a three dimensional network by N—H···O and C—H···O hydrogen bonds with donor—acceptor distances ranging from 2.700 (11) to 3.411 (13) Å.