metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m595-m596

Tetra­quinolinium ditelluro(VI)octa­vanadate(V) octa­hydrate

aLaboratoire de chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: samah.akriche@fsb.rnu.tn

(Received 3 October 2013; accepted 4 October 2013; online 12 October 2013)

In the title compound, (C9H8N)4[Te2V8O28]·8H2O, the com­plete heteropolyanion is generated by a crystallographic inversion centre. One of the two quniolinium ions forms an N—H⋯Op (p = polyoxidometallate) hydrogen bond and the other an N—H⋯Ow (w = water) hydrogen bond. The water mol­ecules further link the components by O—H⋯Op and O—H⋯Ow hydrogen bonds. A number of C—H⋯O inter­actions and aromatic ππ stacking inter­actions [shortest centroid–centroid separation = 3.541 (7) Å] are also observed. Together, these generate a three-dimensional network.

Related literature

For applications of polyoxidometallates, see: Fukuda & Yamase (1997[Fukuda, N. & Yamase, T. (1997). Biol. Pharm. Bull. 20, 927-930.]); Rajakumar et al. (2000[Rajakumar, V. D., Barbara, H. & Amanda, L. (2000). Cardiovasc. Drugs Ther. 14, 463-470.]); Folbergrova & Mares (1987[Folbergrova, J. & Mares, P. (1987). Neurochem. Res. 12, 537-540.]); Fantus et al. (1995[Fantus, I. G., Deragon, G., Lai, R. & Tang, S. (1995). Mol. Cell. Biochem. 153, 103-112.]). For bond-valence calculations, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). For geometrical features in related structures, see: Lee et al. (2008[Lee, U., Joo, H. C., Park, K. M., Mal, S. S., Kortz, U., Keita, B. & Nadjo, L. (2008). Angew. Chem. Int. 47, 793-796.]); Joo et al. (2011[Joo, H.-C., Park, K.-M. & Lee, U. (2011). Acta Cryst. E67, m1801-m1802.]); Strukan et al. (1997[Strukan, N., Cindric, M. & Kamenar, B. (1997). Polyhedron, 16, 629-634.]); Konaka et al. (2008[Konaka, S., Ozawa, Y. & Yagasaki, A. (2008). Inorg. Chem. Commun. 11, 1267-1269.], 2011[Konaka, S., Ozawa, Y., Shonaka, T., Watanabe, S. & Yagasaki, A. (2011). Inorg. Chem. 50, 6183-6188.]); Evans et al. (1966[Evans, H. T. (1966). Inorg. Chem. 5, 967-977.]); Hemissi et al. (2010[Hemissi, H., Rzaigui, M. & Al Othman, Z. A. (2010). Acta Cryst. E66, m186-m187.]).

[Scheme 1]

Experimental

Crystal data
  • (C9H8N)4[Te2V8O28]·8H2O

  • Mr = 1775.50

  • Triclinic, [P \overline 1]

  • a = 10.907 (3) Å

  • b = 11.302 (3) Å

  • c = 13.169 (2) Å

  • α = 106.45 (4)°

  • β = 107.71 (4)°

  • γ = 105.34 (4)°

  • V = 1369.4 (6) Å3

  • Z = 1

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 1.28 mm−1

  • T = 295 K

  • 0.19 × 0.15 × 0.09 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: analytical (Alcock, 1970[Alcock, N. W. (1970). Crystallogr. Comput. p. 271.]) Tmin = 0.561, Tmax = 0.725

  • 16455 measured reflections

  • 13245 independent reflections

  • 6549 reflections with I > 2σ(I)

  • Rint = 0.045

  • 2 standard reflections every 120 min intensity decay: 4%

Refinement
  • R[F2 > 2σ(F2)] = 0.115

  • wR(F2) = 0.308

  • S = 1.05

  • 13245 reflections

  • 385 parameters

  • 20 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 3.11 e Å−3

  • Δρmin = −2.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯O2i 0.85 (1) 1.82 (1) 2.663 (8) 178 (1)
O1W—H1W1⋯O7 0.85 (1) 1.92 (2) 2.762 (9) 170 (4)
O2W—H1W2⋯O8ii 0.85 (1) 2.03 (2) 2.842 (10) 159 (4)
O2W—H2W2⋯O4Wiii 0.85 (1) 2.10 (1) 2.952 (14) 177 (1)
O3W—H2W3⋯O4W 0.84 (1) 1.91 (1) 2.754 (14) 177 (1)
O3W—H1W3⋯O6ii 0.85 (1) 1.83 (2) 2.665 (11) 166 (6)
O4W—H2W4⋯O1Wiv 0.85 (1) 2.41 (3) 2.826 (12) 111 (3)
O4W—H1W4⋯O2W 0.85 (1) 2.26 (5) 2.836 (17) 125 (5)
N1—H1⋯O1W 0.86 1.85 2.700 (11) 172
N2—H2⋯O14 0.86 1.88 2.740 (9) 175
C5—H5⋯O6ii 0.93 2.29 3.180 (13) 160
C6—H6⋯O13v 0.93 2.48 3.178 (14) 132
C7—H7⋯O1vi 0.93 2.56 3.350 (13) 143
C7—H7⋯O2Wvii 0.93 2.57 3.296 (14) 135
C10—H10⋯O9viii 0.93 2.51 3.275 (13) 140
C14—H14⋯O4ix 0.93 2.58 3.403 (14) 148
C17—H17⋯O5 0.93 2.60 3.411 (13) 146
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z+1; (iii) -x+2, -y, -z+2; (iv) x+1, y, z; (v) -x+1, -y+1, -z+2; (vi) x, y-1, z; (vii) x-1, y, z; (viii) -x+1, -y+1, -z+1; (ix) -x+1, -y+2, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The polyoxovanadate materials (POVs) are well established in magnetic, electric and biomedical fields because of their richness structural variety in relation with the vanadium element which can adopt different coordination geometries and variable oxidation states very interesting for redox applications in catalysis and materials science (Fukuda et al., 1997; Rajakumar et al., 2000; Folbergrova et al., 1987; Fantus et al.,1995). Furthermore, this family is dominated by the decavanadates, well known in their protonated forms [HxV10O28](6 - x)-. Nevertheless, incorporation of other elements besides vanadium into this structural type has not been reported yet. In particular, substitution of one or more vanadium atoms by PtIV (Lee et al., 2008; Joo et al., 2011), MoVI(Strukan et al., 1997) and TeVI (Konaka et al., 2008; Konaka et al., 2011) are investigated and resulted into novel materials with highly promising catalytic properties. To date in our knowledge, only two POVs incorporated one telluric, are known (Konaka et al., 2008). Here, we describe the synthesis and structure of the first ocatavanado-ditellurate ion, [Te2V8O28]4-, which was isolated as the hydrated quinolinium salt (C9H8N)4[Te2V8O28]·8H2O (I). The asymmetric unit of (I) contains one half of a [Te2V8O28]4- anion, two crystallographically independent quinolinium cations and four water molecules. Owing to the inversion symmetry, the whole polyanion is generated, resulting so to the title compound formulae (Fig. 1). The structure of the [Te2V8O28]4- polyanion is basically the same as that of decavanadate, [V10O28]6- (Evans et al., 1966). In [Te2V8O28]4- anion two of the central V atoms of [V10O28]6- are replaced with two Te atoms. The valence bond calculation (Brown & Altermatt, 1985) gives effective bond valences of 6.1647 for Te cation and of 5.0743, 5.0068, 5.0574 and 5.063 for the four independent V cations, consistent with their oxidation states Te(+VI) and V(+V). Replacement of central V atom with a heteroatom, has also been observed for [H2PtV9O28]5- (Lee et al.,2008; Joo et al., 2011). As for the decavanadate anion, the [Te2V8O28]4- anion is built up of 10 e dge sharing MO6 (M = V or Te) octahedra. Within VO6 octahedra, the V—O distances are also similar to those already observed and depend upon the type of oxo ligand: bond lengths to the terminal oxo oxygen V—Ot are between 1.602 (7) and 1.610 (6) Å, V—O2b bond lengths to the oxygen bonded to two V atoms vary from 1.767 (6) e t 1.864 (6) Å, V—O3b bond lengths to the oxygen bonded to three V atoms are 2.005 (7) and 2.039 (7) and finally, V—O6c bond lengths to the oxygen shared between six V atoms are 2.380 (7) and 2.387 (7) Å. The VO6 octahedra are significantly distorted, with the bond angles at the V atoms ranging from 73.5 (3) to 176.5 (3)°. The TeO6 octahedra are less distorted in comparison with VO6 ocathedra since the Te—O distances vary from 1.765 (6) to 2.080 (7) Å. Similar trends are also observable for similar heteropolyanion (Konaka et al., 2008; Konaka et al., 2011). The quinolinium cations exhibit the typical ranges in bond lengths and angles as found in the related structures (Hemissi et al., 2010).

In the crystal packing, the discrete [Te2V8O28]4- polyanions are hydrogen bonded through clusters of eight water molecules [H2O]8 forming layers [Te2V8O28(H2O)8]n4n- stacked along the [100] direction (Fig. 2). With regard to the organic moieties, the two crystallographically independent [C9H7—N(1)H]+ and [C9H7—N(2)H]+ cations are interconnected thanks to intermolecular π ···π stacking interactions with centroid-centroid ring separations between 3.54 (8) and 3.90 (7) Å as to develop chains extending along [011] direction. Furthermore, the quinolinium chains and the polyanion sheets are linked thanks to O1W, O2W water molecules and terminal oxygen atoms (O1, O5 and O9) and bridged oxygen atoms (µ 2-O6, µ 2-O13, µ 2-O14 and µ 3-O4) of the polyanion, into a three dimensional network by N—H···O and C—H···O hydrogen bonds with donor—acceptor distances ranging from 2.700 (11) to 3.411 (13) Å.

Related literature top

For applications of polyoxometallates, see: Fukuda et al. (1997); Rajakumar et al. (2000); Folbergrova et al. (1987); Fantus et al. (1995). For bond-valence calculations, see: Brown & Altermatt (1985). For geometrical features in related structures, see: Lee et al. (2008); Joo et al. (2011); Strukan et al. (1997); Konaka et al. (2008); Konaka et al. (2011); Evans et al. (1966); Hemissi et al. (2010).

Experimental top

Vanadium (V) oxide (1.26 g, 6.93 mmol), quinoline (0.74 ml, 6.16 mmol) and telluric acid Te(OH)6 (0.36 g, 1.55 mmol) were dissolved in a mixture of 30 ml of distilled water and 10 ml of ethanol and then stirred for 3 h. Yellow single crystals were obtained after one week by slow evaporation at room temperature.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C, N) for aromatic rings. The water H atoms were refined using restraints [O—H = 0.85 (1) A °, H···H = 1.44 (2) A ° and Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are represented as dashed lines. [Symmetry code: (i) 1 - x, 1 - y, - z]
[Figure 2] Fig. 2. Structure projection of (I) along the [001] direction. The π ···π stacking interaction are represented as yellow dashed lines and the hydrogen bonds by red ones. The H-atoms not involved in H-bonding are omitted.
Tetraquinolinium ditelluro(VI)octavanadate(V) octahydrate top
Crystal data top
(C9H8N)4[Te2V8O28]·8H2OZ = 1
Mr = 1775.50F(000) = 868
Triclinic, P1Dx = 2.153 Mg m3
Hall symbol: -P 1Ag Kα radiation, λ = 0.56087 Å
a = 10.907 (3) ÅCell parameters from 25 reflections
b = 11.302 (3) Åθ = 9–11°
c = 13.169 (2) ŵ = 1.28 mm1
α = 106.45 (4)°T = 295 K
β = 107.71 (4)°Rectangular, yellow
γ = 105.34 (4)°0.19 × 0.15 × 0.09 mm
V = 1369.4 (6) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
6549 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 28.0°, θmin = 2.3°
non–profiled ω scansh = 1817
Absorption correction: analytical
(Alcock, 1970)
k = 1818
Tmin = 0.561, Tmax = 0.725l = 322
16455 measured reflections2 standard reflections every 120 min
13245 independent reflections intensity decay: 4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.115Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.308H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0978P)2 + 22.5177P]
where P = (Fo2 + 2Fc2)/3
13245 reflections(Δ/σ)max < 0.001
385 parametersΔρmax = 3.11 e Å3
20 restraintsΔρmin = 2.28 e Å3
Crystal data top
(C9H8N)4[Te2V8O28]·8H2Oγ = 105.34 (4)°
Mr = 1775.50V = 1369.4 (6) Å3
Triclinic, P1Z = 1
a = 10.907 (3) ÅAg Kα radiation, λ = 0.56087 Å
b = 11.302 (3) ŵ = 1.28 mm1
c = 13.169 (2) ÅT = 295 K
α = 106.45 (4)°0.19 × 0.15 × 0.09 mm
β = 107.71 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
6549 reflections with I > 2σ(I)
Absorption correction: analytical
(Alcock, 1970)
Rint = 0.045
Tmin = 0.561, Tmax = 0.7252 standard reflections every 120 min
16455 measured reflections intensity decay: 4%
13245 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.11520 restraints
wR(F2) = 0.308H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0978P)2 + 22.5177P]
where P = (Fo2 + 2Fc2)/3
13245 reflectionsΔρmax = 3.11 e Å3
385 parametersΔρmin = 2.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.16225 (7)0.58886 (7)0.58253 (6)0.03140 (18)
V10.05217 (14)0.27420 (12)0.49481 (12)0.0177 (2)
V20.03656 (13)0.57033 (13)0.32457 (11)0.0166 (2)
V30.23652 (14)0.42319 (14)0.39532 (13)0.0213 (3)
V40.07774 (16)0.74944 (13)0.76322 (12)0.0215 (3)
O10.1649 (8)0.8702 (7)0.8882 (6)0.0356 (16)
O20.0552 (6)0.1678 (5)0.3401 (5)0.0198 (10)
O30.2094 (6)0.3145 (6)0.4763 (5)0.0209 (11)
O40.1186 (7)0.6932 (7)0.4925 (6)0.03140 (18)
O50.0293 (7)0.6753 (6)0.2649 (6)0.0261 (12)
O60.0685 (6)0.4051 (5)0.2031 (5)0.0209 (11)
O70.0538 (8)0.1673 (6)0.5536 (6)0.0289 (14)
O80.1039 (6)0.2887 (5)0.2588 (5)0.0208 (11)
O90.3794 (7)0.4249 (7)0.3844 (7)0.0322 (14)
O100.0326 (7)0.5676 (7)0.5778 (6)0.03140 (18)
O110.3065 (6)0.5744 (6)0.5518 (5)0.0233 (11)
O120.1318 (7)0.4462 (7)0.6351 (6)0.03140 (18)
O130.2328 (6)0.7205 (6)0.7204 (5)0.0215 (11)
O140.1984 (6)0.5518 (6)0.3384 (5)0.0203 (10)
O1W0.0759 (8)0.0847 (6)0.7344 (6)0.0335 (15)
H1W10.067 (3)0.118 (3)0.683 (2)0.040*
H2W10.06710.00390.71020.040*
O2W1.1818 (11)0.1180 (8)1.1089 (9)0.060 (3)
H1W21.176 (13)0.185 (2)1.154 (12)0.072*
H2W21.12800.04211.09890.072*
O3W0.9613 (14)0.3830 (8)1.0059 (9)0.065 (3)
H1W30.947 (18)0.401 (9)1.068 (8)0.078*
H2W30.96960.30950.98010.078*
O4W0.9969 (13)0.1478 (11)0.9221 (9)0.067 (3)
H1W41.0634 (19)0.121 (3)0.936 (5)0.081*
H2W40.947 (3)0.1236 (17)0.8506 (12)0.081*
N10.3469 (8)0.2174 (8)0.8833 (7)0.0351 (18)
H10.26320.17460.83070.042*
N20.4422 (8)0.7675 (7)0.4207 (8)0.0297 (16)
H20.36440.70270.39820.036*
C10.4842 (14)0.4522 (13)0.7670 (11)0.046 (3)
H1A0.45510.47530.70400.056*
C20.6262 (15)0.5203 (13)0.8545 (13)0.049 (3)
H2A0.68940.58730.84700.059*
C30.6670 (12)0.4882 (11)0.9452 (13)0.047 (3)
H30.75810.53421.00110.056*
C40.5747 (10)0.3857 (10)0.9581 (9)0.0305 (18)
C50.6157 (12)0.3427 (12)1.0502 (11)0.047 (3)
H50.70750.38081.10490.056*
C60.5166 (14)0.2435 (13)1.0568 (11)0.047 (3)
H60.54100.21751.11860.056*
C70.3861 (11)0.1844 (11)0.9754 (10)0.039 (2)
H70.32070.11890.98250.046*
C80.3937 (12)0.3527 (12)0.7797 (10)0.040 (2)
H80.30170.30890.72510.048*
C90.4371 (9)0.3171 (9)0.8717 (8)0.0274 (17)
C100.5429 (11)0.7920 (10)0.5154 (10)0.036 (2)
H100.52870.73730.55530.043*
C110.6672 (12)0.8923 (12)0.5600 (12)0.048 (3)
H110.73610.90900.63060.057*
C120.6909 (11)0.9708 (11)0.4981 (12)0.043 (3)
H120.77761.03830.52470.052*
C130.5836 (10)0.9467 (8)0.3967 (11)0.038 (2)
C140.5994 (13)1.0189 (12)0.3266 (13)0.049 (3)
H140.68451.08670.34900.059*
C150.4871 (19)0.9884 (14)0.2232 (16)0.063 (4)
H150.49701.03900.17930.076*
C160.3654 (17)0.8868 (15)0.1870 (15)0.066 (4)
H160.29490.86610.11590.080*
C170.3395 (11)0.8109 (10)0.2506 (11)0.038 (2)
H170.25240.74520.22670.046*
C180.4533 (9)0.8398 (8)0.3537 (9)0.0289 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.0292 (3)0.0266 (3)0.0309 (3)0.0036 (2)0.0090 (2)0.0112 (2)
V10.0244 (6)0.0124 (5)0.0195 (6)0.0075 (4)0.0102 (5)0.0092 (5)
V20.0188 (5)0.0153 (5)0.0169 (6)0.0046 (4)0.0073 (5)0.0100 (5)
V30.0195 (6)0.0223 (6)0.0271 (7)0.0087 (5)0.0126 (5)0.0129 (5)
V40.0271 (7)0.0146 (5)0.0144 (6)0.0031 (5)0.0058 (5)0.0018 (4)
O10.046 (4)0.027 (3)0.017 (3)0.003 (3)0.009 (3)0.000 (2)
O20.027 (3)0.012 (2)0.019 (3)0.0035 (19)0.009 (2)0.0077 (19)
O30.020 (2)0.022 (3)0.024 (3)0.008 (2)0.009 (2)0.014 (2)
O40.0292 (3)0.0266 (3)0.0309 (3)0.0036 (2)0.0090 (2)0.0112 (2)
O50.030 (3)0.025 (3)0.029 (3)0.011 (2)0.011 (3)0.020 (3)
O60.023 (3)0.011 (2)0.017 (2)0.0030 (18)0.004 (2)0.0032 (18)
O70.050 (4)0.018 (3)0.023 (3)0.014 (3)0.016 (3)0.013 (2)
O80.029 (3)0.017 (2)0.016 (2)0.007 (2)0.009 (2)0.008 (2)
O90.027 (3)0.042 (4)0.040 (4)0.017 (3)0.022 (3)0.022 (3)
O100.0292 (3)0.0266 (3)0.0309 (3)0.0036 (2)0.0090 (2)0.0112 (2)
O110.018 (2)0.025 (3)0.024 (3)0.003 (2)0.008 (2)0.011 (2)
O120.0292 (3)0.0266 (3)0.0309 (3)0.0036 (2)0.0090 (2)0.0112 (2)
O130.017 (2)0.019 (2)0.022 (3)0.0013 (19)0.006 (2)0.008 (2)
O140.017 (2)0.023 (3)0.019 (3)0.0009 (19)0.007 (2)0.011 (2)
O1W0.047 (4)0.022 (3)0.028 (3)0.013 (3)0.009 (3)0.013 (3)
O2W0.080 (7)0.051 (5)0.058 (6)0.021 (5)0.051 (6)0.013 (5)
O3W0.110 (9)0.050 (5)0.043 (5)0.027 (6)0.045 (6)0.019 (4)
O4W0.095 (8)0.075 (7)0.052 (6)0.037 (6)0.045 (6)0.032 (5)
N10.029 (4)0.030 (4)0.031 (4)0.001 (3)0.001 (3)0.013 (3)
N20.028 (3)0.016 (3)0.040 (4)0.004 (3)0.012 (3)0.009 (3)
C10.063 (8)0.053 (7)0.041 (6)0.026 (6)0.027 (6)0.033 (6)
C20.062 (8)0.040 (6)0.065 (8)0.022 (6)0.045 (7)0.025 (6)
C30.028 (5)0.033 (5)0.067 (8)0.000 (4)0.021 (5)0.013 (5)
C40.030 (4)0.030 (4)0.030 (5)0.017 (4)0.007 (4)0.010 (4)
C50.030 (5)0.042 (6)0.050 (7)0.000 (4)0.001 (5)0.024 (5)
C60.051 (7)0.046 (6)0.043 (6)0.017 (5)0.012 (5)0.025 (5)
C70.034 (5)0.039 (5)0.037 (5)0.002 (4)0.009 (4)0.024 (4)
C80.040 (5)0.046 (6)0.028 (5)0.014 (5)0.007 (4)0.016 (4)
C90.026 (4)0.027 (4)0.030 (4)0.004 (3)0.013 (3)0.016 (3)
C100.037 (5)0.030 (4)0.043 (6)0.015 (4)0.020 (5)0.012 (4)
C110.030 (5)0.043 (6)0.059 (8)0.016 (5)0.008 (5)0.014 (6)
C120.026 (4)0.029 (5)0.065 (8)0.003 (4)0.019 (5)0.013 (5)
C130.030 (4)0.011 (3)0.064 (7)0.001 (3)0.021 (5)0.008 (4)
C140.039 (6)0.036 (5)0.073 (9)0.002 (4)0.026 (6)0.030 (6)
C150.098 (12)0.043 (7)0.092 (12)0.033 (8)0.075 (11)0.042 (8)
C160.063 (9)0.047 (7)0.061 (9)0.028 (7)0.001 (7)0.002 (7)
C170.034 (5)0.025 (4)0.052 (7)0.006 (4)0.017 (5)0.018 (4)
C180.025 (4)0.011 (3)0.043 (5)0.003 (3)0.018 (4)0.005 (3)
Geometric parameters (Å, º) top
Te1—O131.765 (6)O12—V2i2.039 (7)
Te1—O111.775 (6)O1W—H1W10.853 (10)
Te1—O121.918 (7)O1W—H2W10.845 (5)
Te1—O41.941 (7)O2W—H1W20.849 (10)
Te1—O102.054 (7)O2W—H2W20.849 (7)
Te1—O10i2.080 (7)O3W—H1W30.850 (10)
Te1—V43.095 (2)O3W—H2W30.844 (7)
Te1—V33.105 (2)O4W—H1W40.850 (10)
Te1—V13.161 (2)O4W—H2W40.849 (10)
Te1—V23.1740 (18)N1—C71.348 (13)
Te1—Te1i3.220 (3)N1—C91.366 (11)
V1—O71.610 (6)N1—H10.8600
V1—O31.764 (6)N2—C101.283 (14)
V1—O21.840 (6)N2—C181.372 (12)
V1—O122.010 (7)N2—H20.8600
V1—O4i2.037 (7)C1—C81.373 (17)
V1—O10i2.281 (7)C1—C21.45 (2)
V1—V2i3.101 (2)C1—H1A0.9300
V1—V33.107 (2)C2—C31.328 (19)
V2—O51.603 (6)C2—H2A0.9300
V2—O141.793 (6)C3—C41.408 (15)
V2—O61.849 (6)C3—H30.9300
V2—O42.005 (7)C4—C91.412 (13)
V2—O12i2.039 (7)C4—C51.423 (15)
V2—O10i2.285 (7)C5—C61.380 (17)
V2—V1i3.101 (2)C5—H50.9300
V3—O91.604 (7)C6—C71.336 (16)
V3—O81.828 (6)C6—H60.9300
V3—O31.864 (6)C7—H70.9300
V3—O141.895 (6)C8—C91.372 (14)
V3—O112.027 (7)C8—H80.9300
V3—O10i2.380 (7)C10—C111.339 (16)
V3—V4i3.117 (3)C10—H100.9300
V4—O11.602 (7)C11—C121.390 (19)
V4—O8i1.822 (6)C11—H110.9300
V4—O2i1.851 (6)C12—C131.379 (18)
V4—O6i1.905 (6)C12—H120.9300
V4—O132.013 (6)C13—C141.413 (17)
V4—O102.387 (7)C13—C181.420 (12)
V4—V3i3.117 (3)C14—C151.40 (2)
O2—V4i1.851 (6)C14—H140.9300
O4—V1i2.037 (7)C15—C161.34 (2)
O6—V4i1.905 (6)C15—H150.9300
O8—V4i1.822 (6)C16—C171.39 (2)
O10—Te1i2.080 (7)C16—H160.9300
O10—V1i2.281 (7)C17—C181.414 (16)
O10—V2i2.285 (7)C17—H170.9300
O10—V3i2.380 (7)
O13—Te1—O11106.2 (3)O11—V3—Te132.64 (17)
O13—Te1—O1296.4 (3)O10i—V3—Te142.03 (17)
O11—Te1—O1296.9 (3)O9—V3—V1133.6 (3)
O13—Te1—O496.4 (3)O8—V3—V181.44 (19)
O11—Te1—O496.4 (3)O3—V3—V130.14 (18)
O12—Te1—O4158.2 (3)O14—V3—V1122.84 (18)
O13—Te1—O1088.1 (3)O11—V3—V182.33 (18)
O11—Te1—O10165.7 (3)O10i—V3—V146.83 (17)
O12—Te1—O1081.5 (3)Te1—V3—V161.17 (5)
O4—Te1—O1081.3 (3)O9—V3—V4i134.2 (3)
O13—Te1—O10i165.8 (3)O8—V3—V4i31.3 (2)
O11—Te1—O10i88.0 (3)O3—V3—V4i83.04 (19)
O12—Te1—O10i81.8 (3)O14—V3—V4i83.61 (18)
O4—Te1—O10i81.4 (3)O11—V3—V4i123.93 (18)
O10—Te1—O10i77.7 (3)O10i—V3—V4i49.27 (17)
O13—Te1—V437.73 (19)Te1—V3—V4i91.29 (7)
O11—Te1—V4143.9 (2)V1—V3—V4i61.01 (5)
O12—Te1—V490.4 (2)O1—V4—O8i104.6 (3)
O4—Te1—V489.0 (2)O1—V4—O2i104.4 (3)
O10—Te1—V450.4 (2)O8i—V4—O2i89.8 (3)
O10i—Te1—V4128.1 (2)O1—V4—O6i103.4 (3)
O13—Te1—V3144.19 (19)O8i—V4—O6i88.9 (3)
O11—Te1—V338.0 (2)O2i—V4—O6i151.5 (3)
O12—Te1—V389.5 (2)O1—V4—O13100.9 (3)
O4—Te1—V390.3 (2)O8i—V4—O13154.4 (3)
O10—Te1—V3127.7 (2)O2i—V4—O1385.6 (3)
O10i—Te1—V350.0 (2)O6i—V4—O1383.4 (3)
V4—Te1—V3178.06 (5)O1—V4—O10174.8 (4)
O13—Te1—V1133.8 (2)O8i—V4—O1080.5 (3)
O11—Te1—V184.6 (2)O2i—V4—O1076.5 (2)
O12—Te1—V137.4 (2)O6i—V4—O1075.3 (2)
O4—Te1—V1127.5 (2)O13—V4—O1074.0 (2)
O10—Te1—V185.7 (2)O1—V4—Te1133.3 (3)
O10i—Te1—V146.1 (2)O8i—V4—Te1122.0 (2)
V4—Te1—V1119.73 (6)O2i—V4—Te178.91 (19)
V3—Te1—V159.45 (5)O6i—V4—Te177.73 (19)
O13—Te1—V2133.6 (2)O13—V4—Te132.45 (17)
O11—Te1—V284.3 (2)O10—V4—Te141.54 (17)
O12—Te1—V2127.7 (2)O1—V4—V3i136.0 (3)
O4—Te1—V237.1 (2)O8i—V4—V3i31.41 (18)
O10—Te1—V285.5 (2)O2i—V4—V3i81.97 (19)
O10i—Te1—V245.95 (19)O6i—V4—V3i82.23 (18)
V4—Te1—V2118.35 (5)O13—V4—V3i123.07 (18)
V3—Te1—V260.30 (5)O10—V4—V3i49.08 (18)
V1—Te1—V291.45 (7)Te1—V4—V3i90.62 (7)
O13—Te1—Te1i127.3 (2)V1—O2—V4i117.8 (3)
O11—Te1—Te1i126.5 (2)V1—O3—V3117.8 (3)
O12—Te1—Te1i79.3 (2)Te1—O4—V2107.1 (3)
O4—Te1—Te1i78.9 (2)Te1—O4—V1i107.2 (3)
O10—Te1—Te1i39.14 (19)V2—O4—V1i100.2 (3)
O10i—Te1—Te1i38.5 (2)V2—O6—V4i117.7 (3)
V4—Te1—Te1i89.55 (6)V4i—O8—V3117.3 (3)
V3—Te1—Te1i88.53 (6)Te1—O10—Te1i102.3 (3)
V1—Te1—Te1i60.25 (6)Te1—O10—V1i95.2 (3)
V2—Te1—Te1i60.03 (5)Te1i—O10—V1i92.8 (3)
O7—V1—O3105.3 (3)Te1—O10—V2i94.9 (3)
O7—V1—O2102.9 (3)Te1i—O10—V2i93.2 (3)
O3—V1—O293.8 (3)V1i—O10—V2i167.0 (4)
O7—V1—O12101.4 (3)Te1—O10—V3i169.7 (4)
O3—V1—O1291.1 (3)Te1i—O10—V3i88.0 (2)
O2—V1—O12152.9 (3)V1i—O10—V3i83.6 (2)
O7—V1—O4i99.3 (3)V2i—O10—V3i85.1 (2)
O3—V1—O4i154.0 (3)Te1—O10—V488.0 (2)
O2—V1—O4i88.6 (3)Te1i—O10—V4169.6 (4)
O12—V1—O4i75.9 (3)V1i—O10—V485.2 (2)
O7—V1—O10i172.9 (3)V2i—O10—V486.9 (2)
O3—V1—O10i81.1 (3)V3i—O10—V481.7 (2)
O2—V1—O10i79.5 (2)Te1—O11—V3109.4 (3)
O12—V1—O10i75.0 (3)Te1—O12—V1107.1 (3)
O4i—V1—O10i74.0 (3)Te1—O12—V2i107.8 (3)
O7—V1—V2i89.7 (2)V1—O12—V2i99.9 (3)
O3—V1—V2i131.4 (2)Te1—O13—V4109.8 (3)
O2—V1—V2i128.1 (2)V2—O14—V3117.5 (3)
O12—V1—V2i40.4 (2)H1W1—O1W—H2W1115 (3)
O4i—V1—V2i39.5 (2)H1W2—O2W—H2W2115 (3)
O10i—V1—V2i83.69 (19)H1W3—O3W—H2W3117 (3)
O7—V1—V3137.1 (3)H1W4—O4W—H2W4115 (3)
O3—V1—V332.04 (18)C7—N1—C9121.5 (8)
O2—V1—V382.40 (18)C7—N1—H1119.2
O12—V1—V387.9 (2)C9—N1—H1119.2
O4i—V1—V3123.5 (2)C10—N2—C18123.0 (8)
O10i—V1—V349.57 (18)C10—N2—H2118.5
V2i—V1—V3120.78 (6)C18—N2—H2118.5
O7—V1—Te1136.4 (2)C8—C1—C2118.3 (11)
O3—V1—Te177.3 (2)C8—C1—H1A120.9
O2—V1—Te1120.50 (18)C2—C1—H1A120.9
O12—V1—Te135.4 (2)C3—C2—C1120.7 (11)
O4i—V1—Te179.20 (19)C3—C2—H2A119.6
O10i—V1—Te141.10 (17)C1—C2—H2A119.6
V2i—V1—Te161.43 (5)C2—C3—C4121.1 (11)
V3—V1—Te159.39 (5)C2—C3—H3119.4
O5—V2—O14105.6 (3)C4—C3—H3119.4
O5—V2—O6104.4 (3)C3—C4—C9118.3 (10)
O14—V2—O693.3 (3)C3—C4—C5123.2 (10)
O5—V2—O4100.4 (3)C9—C4—C5118.5 (9)
O14—V2—O491.4 (3)C6—C5—C4118.8 (10)
O6—V2—O4152.5 (3)C6—C5—H5120.6
O5—V2—O12i100.0 (3)C4—C5—H5120.6
O14—V2—O12i153.2 (3)C7—C6—C5120.7 (11)
O6—V2—O12i88.1 (3)C7—C6—H6119.6
O4—V2—O12i76.0 (3)C5—C6—H6119.6
O5—V2—O10i172.8 (3)C6—C7—N1121.6 (10)
O14—V2—O10i80.5 (2)C6—C7—H7119.2
O6—V2—O10i78.9 (2)N1—C7—H7119.2
O4—V2—O10i75.1 (3)C9—C8—C1120.9 (11)
O12i—V2—O10i73.5 (3)C9—C8—H8119.6
O5—V2—V1i89.4 (3)C1—C8—H8119.6
O14—V2—V1i131.6 (2)N1—C9—C8120.7 (9)
O6—V2—V1i127.8 (2)N1—C9—C4118.7 (8)
O4—V2—V1i40.3 (2)C8—C9—C4120.6 (9)
O12i—V2—V1i39.7 (2)N2—C10—C11123.5 (11)
O10i—V2—V1i83.49 (19)N2—C10—H10118.2
O5—V2—Te1135.7 (3)C11—C10—H10118.2
O14—V2—Te177.17 (19)C10—C11—C12118.4 (12)
O6—V2—Te1119.75 (19)C10—C11—H11120.8
O4—V2—Te135.8 (2)C12—C11—H11120.8
O12i—V2—Te178.9 (2)C13—C12—C11118.9 (10)
O10i—V2—Te140.88 (18)C13—C12—H12120.6
V1i—V2—Te161.38 (5)C11—C12—H12120.6
O9—V3—O8102.9 (3)C12—C13—C14122.8 (9)
O9—V3—O3103.6 (3)C12—C13—C18120.4 (10)
O8—V3—O391.2 (3)C14—C13—C18116.7 (11)
O9—V3—O14103.5 (3)C15—C14—C13120.2 (10)
O8—V3—O1490.2 (2)C15—C14—H14119.9
O3—V3—O14151.8 (3)C13—C14—H14119.9
O9—V3—O11101.9 (3)C16—C15—C14120.6 (13)
O8—V3—O11155.2 (3)C16—C15—H15119.7
O3—V3—O1184.1 (3)C14—C15—H15119.7
O14—V3—O1183.0 (3)C15—C16—C17123.3 (14)
O9—V3—O10i176.5 (3)C15—C16—H16118.3
O8—V3—O10i80.6 (3)C17—C16—H16118.3
O3—V3—O10i76.5 (2)C16—C17—C18116.1 (10)
O14—V3—O10i76.0 (2)C16—C17—H17122.0
O11—V3—O10i74.7 (2)C18—C17—H17122.0
O9—V3—Te1134.5 (3)N2—C18—C17121.4 (8)
O8—V3—Te1122.6 (2)N2—C18—C13115.7 (10)
O3—V3—Te177.75 (19)C17—C18—C13122.9 (9)
O14—V3—Te177.87 (18)
C8—C1—C2—C30.8 (19)C18—N2—C10—C111.8 (17)
C1—C2—C3—C41.2 (19)N2—C10—C11—C122.8 (18)
C2—C3—C4—C90.2 (17)C10—C11—C12—C133.2 (18)
C2—C3—C4—C5176.4 (12)C11—C12—C13—C14178.1 (12)
C3—C4—C5—C6178.5 (12)C11—C12—C13—C182.8 (17)
C9—C4—C5—C65.3 (18)C12—C13—C14—C15178.9 (12)
C4—C5—C6—C73 (2)C18—C13—C14—C153.4 (18)
C5—C6—C7—N11 (2)C13—C14—C15—C163 (2)
C9—N1—C7—C63.1 (18)C14—C15—C16—C174 (2)
C2—C1—C8—C91.1 (19)C15—C16—C17—C185 (2)
C7—N1—C9—C8177.4 (11)C10—N2—C18—C17179.1 (10)
C7—N1—C9—C40.7 (16)C10—N2—C18—C131.1 (14)
C1—C8—C9—N1179.5 (11)C16—C17—C18—N2176.9 (10)
C1—C8—C9—C42.5 (17)C16—C17—C18—C135.2 (16)
C3—C4—C9—N1179.9 (10)C12—C13—C18—N21.7 (14)
C5—C4—C9—N13.5 (15)C14—C13—C18—N2177.3 (10)
C3—C4—C9—C82.0 (15)C12—C13—C18—C17179.7 (10)
C5—C4—C9—C8178.4 (11)C14—C13—C18—C174.7 (15)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O2ii0.85 (1)1.82 (1)2.663 (8)178 (1)
O1W—H1W1···O70.85 (1)1.92 (2)2.762 (9)170 (4)
O2W—H1W2···O8iii0.85 (1)2.03 (2)2.842 (10)159 (4)
O2W—H2W2···O4Wiv0.85 (1)2.10 (1)2.952 (14)177 (1)
O3W—H2W3···O4W0.84 (1)1.91 (1)2.754 (14)177 (1)
O3W—H1W3···O6iii0.85 (1)1.83 (2)2.665 (11)166 (6)
O4W—H2W4···O1Wv0.85 (1)2.41 (3)2.826 (12)111 (3)
O4W—H1W4···O2W0.85 (1)2.26 (5)2.836 (17)125 (5)
N1—H1···O1W0.861.852.700 (11)172
N2—H2···O140.861.882.740 (9)175
C5—H5···O6iii0.932.293.180 (13)160
C6—H6···O13vi0.932.483.178 (14)132
C7—H7···O1vii0.932.563.350 (13)143
C7—H7···O2Wviii0.932.573.296 (14)135
C10—H10···O9ix0.932.513.275 (13)140
C14—H14···O4x0.932.583.403 (14)148
C17—H17···O50.932.603.411 (13)146
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x+2, y, z+2; (v) x+1, y, z; (vi) x+1, y+1, z+2; (vii) x, y1, z; (viii) x1, y, z; (ix) x+1, y+1, z+1; (x) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O2i0.845 (5)1.819 (5)2.663 (8)177.8 (6)
O1W—H1W1···O70.853 (10)1.919 (18)2.762 (9)170 (4)
O2W—H1W2···O8ii0.849 (10)2.03 (2)2.842 (10)159 (4)
O2W—H2W2···O4Wiii0.849 (7)2.104 (12)2.952 (14)177.3 (9)
O3W—H2W3···O4W0.844 (7)1.910 (11)2.754 (14)177.3 (9)
O3W—H1W3···O6ii0.850 (10)1.83 (2)2.665 (11)166 (6)
O4W—H2W4···O1Wiv0.849 (10)2.41 (3)2.826 (12)111 (3)
O4W—H1W4···O2W0.850 (10)2.26 (5)2.836 (17)125 (5)
N1—H1···O1W0.861.852.700 (11)172
N2—H2···O140.861.882.740 (9)175
C5—H5···O6ii0.932.293.180 (13)160
C6—H6···O13v0.932.483.178 (14)132
C7—H7···O1vi0.932.563.350 (13)143
C7—H7···O2Wvii0.932.573.296 (14)135
C10—H10···O9viii0.932.513.275 (13)140
C14—H14···O4ix0.932.583.403 (14)148
C17—H17···O50.932.603.411 (13)146
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+2, y, z+2; (iv) x+1, y, z; (v) x+1, y+1, z+2; (vi) x, y1, z; (vii) x1, y, z; (viii) x+1, y+1, z+1; (ix) x+1, y+2, z+1.
 

References

First citationAlcock, N. W. (1970). Crystallogr. Comput. p. 271.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEvans, H. T. (1966). Inorg. Chem. 5, 967–977.  CrossRef CAS Web of Science Google Scholar
First citationFantus, I. G., Deragon, G., Lai, R. & Tang, S. (1995). Mol. Cell. Biochem. 153, 103–112.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFolbergrova, J. & Mares, P. (1987). Neurochem. Res. 12, 537–540.  CAS PubMed Web of Science Google Scholar
First citationFukuda, N. & Yamase, T. (1997). Biol. Pharm. Bull. 20, 927–930.  CrossRef CAS PubMed Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHemissi, H., Rzaigui, M. & Al Othman, Z. A. (2010). Acta Cryst. E66, m186–m187.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJoo, H.-C., Park, K.-M. & Lee, U. (2011). Acta Cryst. E67, m1801–m1802.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKonaka, S., Ozawa, Y., Shonaka, T., Watanabe, S. & Yagasaki, A. (2011). Inorg. Chem. 50, 6183–6188.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKonaka, S., Ozawa, Y. & Yagasaki, A. (2008). Inorg. Chem. Commun. 11, 1267–1269.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, U., Joo, H. C., Park, K. M., Mal, S. S., Kortz, U., Keita, B. & Nadjo, L. (2008). Angew. Chem. Int. 47, 793–796.  CrossRef CAS Google Scholar
First citationRajakumar, V. D., Barbara, H. & Amanda, L. (2000). Cardiovasc. Drugs Ther. 14, 463–470.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrukan, N., Cindric, M. & Kamenar, B. (1997). Polyhedron, 16, 629–634.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m595-m596
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds