organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-3-Bromo­benzyl­­idene]pyrazine-2-carbohydrazide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, bMedicinal Botanic Centre, PCSIR Laboratories Complex, Peshawar, Pakistan, cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and dDepartment of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 6 October 2013; accepted 6 October 2013; online 12 October 2013)

In the title compound, C12H9BrN4O, the dihedral angle between the aromatic rings is 12.16 (12)°. An intra­molecular N—H⋯N hydrogen bond closes an S(5) ring. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into C(6) chains propagating in [010]. Very weak aromatic ππ stacking [centroid–centroid separations = 3.9189 (15) and 3.9357 (15) Å] is also observed.

Related literature

For related structures, see: Hameed et al. (2013a[Hameed, S., Ahmad, M., Tahir, M. N., Israr, M. & Anwar, M. (2013a). Acta Cryst. E69, o1419.],b[Hameed, S., Ahmad, M., Tahir, M. N., Shah, M. A. & Shad, H. A. (2013b). Acta Cryst. E69, o1141.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9BrN4O

  • Mr = 305.14

  • Monoclinic, C 2/c

  • a = 14.4115 (8) Å

  • b = 6.2128 (3) Å

  • c = 27.5992 (15) Å

  • β = 104.379 (2)°

  • V = 2393.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.43 mm−1

  • T = 296 K

  • 0.34 × 0.25 × 0.23 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.389, Tmax = 0.506

  • 9373 measured reflections

  • 2415 independent reflections

  • 1670 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.02

  • 2415 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2 0.86 2.24 2.646 (3) 109
C6—H6⋯O1i 0.93 2.26 3.150 (3) 160
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) has been prepared in continuation of synthesizing different compounds containing pyrazine-2-carbohydrazide moiety (Hameed et al., 2013a, 2013b).

In (I) the parts A (C1–C5/N1—N4/O1) and B (C6—C12/Br1) of pyrazine-2-carbohydrazide and 3-bromobenzaldehyde moieties are close to planar with r.m. s. deviations of 0.0259 Å and 0.0149 Å, respectively. The dihedral angle between A/B is 13.950 (54)°. There exist intramolecular H-bondings of N—H····N type (Table 1, Fig. 2) forming S(5) ring motif. Molecules are linked due to H-bonding of C—H····O type (Table 1, Fig. 2) forming C (6) chains. There exist ππ interactions at a distance of 3.9190 Å [Cg1—Cg2i & Cg2—Cg1i: i = 1/2 - x, 1/2 - y, -z] and 3.9356 Å [Cg1—Cg2ii & Cg2—Cg1ii: ii = 1 - x, 1 - y, -z], between the centroids of Cg1 (C1/C2/N1/C3/C4/N2) and Cg2 (C7—C12), respectively.

Related literature top

For related structures, see: Hameed et al. (2013a,b).

Experimental top

The title compound was synthesized by the condensation of equimolar ratio of pyrazine-2-carbohydrazide with 3-bromobenzaldehyde, both dissolved in methanol. The resulting reaction mixture was stirred well and then refluxed for 5 h and allowed to cool over night. The precipitated solid was filtered, washed with petroleum ether and recrystallized from chloroform in pet ether and dried under reduced pressure over CaCl2 giving white crystalline compound. The crystals were re-grown in the same solvent system for crystallographic studies, yielding colourless prisms (m.p. 475–476 K).

Refinement top

The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing that molecules form polymeric chains.
N'-[(E)-3-Bromobenzylidene]pyrazine-2-carbohydrazide top
Crystal data top
C12H9BrN4OF(000) = 1216
Mr = 305.14Dx = 1.693 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.4115 (8) ÅCell parameters from 1670 reflections
b = 6.2128 (3) Åθ = 1.5–26.3°
c = 27.5992 (15) ŵ = 3.43 mm1
β = 104.379 (2)°T = 296 K
V = 2393.7 (2) Å3Prism, colorless
Z = 80.34 × 0.25 × 0.23 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2415 independent reflections
Radiation source: fine-focus sealed tube1670 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.00 pixels mm-1θmax = 26.3°, θmin = 1.5°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 57
Tmin = 0.389, Tmax = 0.506l = 3434
9373 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0348P)2 + 1.0725P]
where P = (Fo2 + 2Fc2)/3
2415 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C12H9BrN4OV = 2393.7 (2) Å3
Mr = 305.14Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.4115 (8) ŵ = 3.43 mm1
b = 6.2128 (3) ÅT = 296 K
c = 27.5992 (15) Å0.34 × 0.25 × 0.23 mm
β = 104.379 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2415 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1670 reflections with I > 2σ(I)
Tmin = 0.389, Tmax = 0.506Rint = 0.029
9373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
2415 reflectionsΔρmin = 0.34 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.62227 (2)0.43755 (5)0.23030 (2)0.07124 (14)
O10.34544 (12)0.8178 (3)0.01354 (6)0.0572 (5)
N10.15137 (16)0.8142 (4)0.15404 (8)0.0650 (6)
N20.23320 (14)0.4402 (3)0.10560 (7)0.0489 (5)
N30.35102 (14)0.4532 (3)0.01526 (7)0.0501 (5)
H3A0.33130.34010.03280.060*
N40.41296 (14)0.4300 (3)0.03159 (7)0.0470 (5)
C10.25220 (16)0.6348 (4)0.08500 (8)0.0421 (5)
C20.21160 (18)0.8185 (5)0.10872 (9)0.0565 (7)
H20.22660.95020.09270.068*
C30.13278 (19)0.6199 (5)0.17444 (10)0.0620 (8)
H30.09110.60870.20600.074*
C40.17254 (18)0.4358 (5)0.15084 (9)0.0567 (7)
H40.15680.30410.16680.068*
C50.32089 (16)0.6472 (4)0.03412 (8)0.0432 (6)
C60.43789 (17)0.2363 (4)0.04277 (8)0.0488 (6)
H60.41440.12870.01950.059*
C70.50180 (16)0.1759 (4)0.09064 (8)0.0429 (5)
C80.52751 (15)0.3190 (4)0.13043 (8)0.0441 (6)
H80.50430.45930.12740.053*
C90.58834 (16)0.2486 (4)0.17454 (8)0.0457 (6)
C100.62372 (18)0.0415 (4)0.17990 (10)0.0557 (7)
H100.66490.00270.20980.067*
C110.59711 (19)0.0986 (4)0.14028 (11)0.0599 (7)
H110.62100.23830.14340.072*
C120.53564 (19)0.0348 (4)0.09608 (10)0.0538 (6)
H120.51670.13220.06990.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0841 (2)0.0729 (2)0.04238 (16)0.00330 (16)0.01146 (13)0.00346 (13)
O10.0665 (11)0.0511 (11)0.0501 (10)0.0134 (9)0.0073 (8)0.0144 (8)
N10.0630 (15)0.0746 (17)0.0523 (13)0.0077 (13)0.0045 (11)0.0107 (12)
N20.0511 (11)0.0532 (13)0.0392 (10)0.0028 (11)0.0048 (9)0.0096 (10)
N30.0553 (12)0.0501 (13)0.0367 (10)0.0022 (11)0.0042 (9)0.0109 (9)
N40.0491 (11)0.0522 (13)0.0345 (9)0.0025 (10)0.0004 (8)0.0063 (9)
C10.0402 (13)0.0502 (15)0.0365 (11)0.0016 (11)0.0110 (10)0.0043 (10)
C20.0604 (16)0.0557 (17)0.0519 (14)0.0006 (14)0.0110 (12)0.0003 (13)
C30.0508 (16)0.089 (2)0.0411 (13)0.0007 (15)0.0011 (12)0.0039 (14)
C40.0538 (15)0.0694 (19)0.0416 (13)0.0048 (14)0.0018 (11)0.0103 (13)
C50.0432 (13)0.0496 (15)0.0375 (12)0.0041 (12)0.0113 (10)0.0053 (11)
C60.0544 (15)0.0505 (16)0.0385 (12)0.0080 (13)0.0058 (10)0.0083 (11)
C70.0425 (13)0.0453 (15)0.0408 (12)0.0035 (11)0.0102 (10)0.0001 (10)
C80.0458 (13)0.0422 (14)0.0412 (12)0.0002 (11)0.0048 (10)0.0016 (11)
C90.0432 (13)0.0499 (15)0.0418 (12)0.0046 (12)0.0064 (10)0.0019 (11)
C100.0482 (14)0.0611 (18)0.0537 (15)0.0025 (13)0.0049 (11)0.0138 (13)
C110.0620 (17)0.0510 (17)0.0680 (17)0.0106 (13)0.0183 (14)0.0095 (13)
C120.0620 (16)0.0472 (15)0.0547 (15)0.0002 (13)0.0195 (13)0.0038 (12)
Geometric parameters (Å, º) top
Br1—C91.901 (2)C3—H30.9300
O1—C51.213 (3)C4—H40.9300
N1—C31.331 (4)C6—C71.459 (3)
N1—C21.334 (3)C6—H60.9300
N2—C41.335 (3)C7—C81.390 (3)
N2—C11.335 (3)C7—C121.392 (4)
N3—C51.341 (3)C8—C91.383 (3)
N3—N41.384 (2)C8—H80.9300
N3—H3A0.8600C9—C101.378 (4)
N4—C61.272 (3)C10—C111.376 (4)
C1—C21.372 (3)C10—H100.9300
C1—C51.506 (3)C11—C121.376 (4)
C2—H20.9300C11—H110.9300
C3—C41.369 (4)C12—H120.9300
C3—N1—C2115.5 (2)N4—C6—C7122.6 (2)
C4—N2—C1115.7 (2)N4—C6—H6118.7
C5—N3—N4121.85 (19)C7—C6—H6118.7
C5—N3—H3A119.1C8—C7—C12119.9 (2)
N4—N3—H3A119.1C8—C7—C6122.4 (2)
C6—N4—N3113.77 (18)C12—C7—C6117.7 (2)
N2—C1—C2122.1 (2)C9—C8—C7118.7 (2)
N2—C1—C5117.5 (2)C9—C8—H8120.7
C2—C1—C5120.4 (2)C7—C8—H8120.7
N1—C2—C1122.1 (3)C10—C9—C8121.8 (2)
N1—C2—H2118.9C10—C9—Br1118.40 (18)
C1—C2—H2118.9C8—C9—Br1119.78 (19)
N1—C3—C4122.7 (2)C11—C10—C9118.9 (2)
N1—C3—H3118.7C11—C10—H10120.6
C4—C3—H3118.7C9—C10—H10120.6
N2—C4—C3121.8 (3)C10—C11—C12120.9 (2)
N2—C4—H4119.1C10—C11—H11119.6
C3—C4—H4119.1C12—C11—H11119.6
O1—C5—N3125.1 (2)C11—C12—C7119.9 (2)
O1—C5—C1121.9 (2)C11—C12—H12120.1
N3—C5—C1113.0 (2)C7—C12—H12120.1
C5—N3—N4—C6176.9 (2)C2—C1—C5—N3177.4 (2)
C4—N2—C1—C20.3 (4)N3—N4—C6—C7179.2 (2)
C4—N2—C1—C5179.6 (2)N4—C6—C7—C810.8 (4)
C3—N1—C2—C10.5 (4)N4—C6—C7—C12170.6 (2)
N2—C1—C2—N10.7 (4)C12—C7—C8—C91.3 (3)
C5—C1—C2—N1179.2 (2)C6—C7—C8—C9179.9 (2)
C2—N1—C3—C40.1 (4)C7—C8—C9—C100.0 (4)
C1—N2—C4—C30.1 (4)C7—C8—C9—Br1178.32 (17)
N1—C3—C4—N20.3 (4)C8—C9—C10—C110.4 (4)
N4—N3—C5—O11.9 (4)Br1—C9—C10—C11177.9 (2)
N4—N3—C5—C1178.7 (2)C9—C10—C11—C120.5 (4)
N2—C1—C5—O1176.8 (2)C10—C11—C12—C71.8 (4)
C2—C1—C5—O13.1 (4)C8—C7—C12—C112.3 (4)
N2—C1—C5—N32.7 (3)C6—C7—C12—C11179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N20.862.242.646 (3)109
C6—H6···O1i0.932.263.150 (3)160
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N20.862.242.646 (3)109
C6—H6···O1i0.932.263.150 (3)160
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors are also thankful to the Higher Education Commission (HEC) of Pakistan for financial support. M. Ahmad is thankful to the Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories of Pakistan for financial support throughout his study leave.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHameed, S., Ahmad, M., Tahir, M. N., Israr, M. & Anwar, M. (2013a). Acta Cryst. E69, o1419.  CSD CrossRef IUCr Journals Google Scholar
First citationHameed, S., Ahmad, M., Tahir, M. N., Shah, M. A. & Shad, H. A. (2013b). Acta Cryst. E69, o1141.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds