organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(Tri­fluoro­meth­yl)phenyl­sulfan­yl]benzoic acid

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 13 October 2013; accepted 20 October 2013; online 26 October 2013)

In the title compound, C14H9F3O2S, the dihedral angle between the mean planes of the benzene rings is 88.7 (2)°. The carb­oxy­lic acid group is twisted by 13.6 (7)° from the mean plane of its attached aromatic ring. One of the F atoms of the tri­fluoro­methyl group is disordered over two sites in a 0.61 (7):0.39 (7) ratio. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(8) loops. Weak C—H⋯F inter­actions are also observed.

Related literature

For background to the neuroleptic agent flupentixol (systematic name: (EZ)-2-[4-[3-[2-(tri­fluoro­meth­yl)thio­xan­then-9-yl­idene]prop­yl]piperazin-1-yl]ethanol), see: Young et al. (1976[Young, J. P. R., Hughes, W. C. & Lader, M. H. (1976). Br. Med. J. 1, 1116-1118.]). For related structures, see: Post et al. (1975a[Post, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724-2726.],b[Post, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366-2368.]); Siddegowda et al. (2011a[Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2079-o2080.],b[Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh, A. R. (2011b). Acta Cryst. E67, o2017-o2018.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9F3O2S

  • Mr = 298.28

  • Triclinic, [P \overline 1]

  • a = 7.3071 (5) Å

  • b = 8.0790 (7) Å

  • c = 11.3878 (11) Å

  • α = 82.678 (8)°

  • β = 83.642 (7)°

  • γ = 72.309 (7)°

  • V = 633.41 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.63 mm−1

  • T = 173 K

  • 0.24 × 0.22 × 0.12 mm

Data collection
  • Agilent Gemini EOS diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.848, Tmax = 1.000

  • 3701 measured reflections

  • 2419 independent reflections

  • 2049 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.155

  • S = 1.04

  • 2419 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.86 2.677 (3) 175
C6—H6⋯F3ii 0.93 2.59 3.319 (10) 136
C6—H6⋯F3Aii 0.93 2.50 3.294 (16) 144
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+2, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound, (I), is a starting material for the synthesis of flupentixol, a well-documented neuroleptic (Young et al., 1976). The crystal structures of α-flupentixol (Post et al., 1975a) and β-flupentixol (Post et al., 1975b) have been reported. As part of our onging studies in this area (Siddegowda et al., 2011a,b), we now describe the crystal structure of (I).

The dihedral angle between the mean planes of the phenyl rings is 88.7 (2)°. The carboxylic acid group (C2/C1/O2/O1) is twisted by 13.6 (7)° from the mean plane of the adjacent benzene ring (C2–C7). Disorder was modeled over two sets of sites for one fluorine atom (F3), of the trifluoromethyl group with an occupancy ratio of 0.61 (7) : 0.39 (7). In the crystal, O—H···O hydrogen bonds (Table 1) link the molecules into dimers with R22[8] graph-set motifs (Fig. 2). Weak C—H···F interactions are also observed.

Related literature top

For background to the neuroleptic agent flupentixol (systematic name: (EZ)-2-[4-[3-[2-(trifluoromethyl)thioxanthen-9-ylidene]propyl]piperazin-1-yl]ethanol), see: Young et al. (1976). For related structures, see: Post et al. (1975a,b); Siddegowda et al. (2011a,b).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine chemicals, Bengaluru. It was dissolved in 15 ml of mixture of acetonitrile and dimethyl sulphoxide (1:2), stirred for 10 minutes at room temperature. After few days, irregular colourless crystals were formed by slow evaporation of the solvent mixture (m.p: 413-418 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH) or 0.82Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (OH) times Ueq of the parent atom. Disorder was modeled over two sets of sites for one fluorine atom (F3) in the trifluoromethyl group with an occupancy ratio of 0.61 (7) : 0.39 (7). Idealised tetrahderal OH refined as rotating group.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) showing 50% probability displacement ellipsoids. Disordered atom, F3A (0.39 (7) occupancy) has been removed for clarity.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the c axis. Dashed lines indicate O—H···O intermolecular hydrogen bonds which link the molecules into dimers with R22[8] graph-set motifs and influence the crystal packing. Disordered atom, F3A (0.39 (7) occupancy) and H atoms not involved in hydrogen bonding have been removed for clarity.
2-[4-(Trifluoromethyl)phenylsulfanyl]benzoic acid top
Crystal data top
C14H9F3O2SZ = 2
Mr = 298.28F(000) = 304
Triclinic, P1Dx = 1.564 Mg m3
a = 7.3071 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.0790 (7) ÅCell parameters from 1645 reflections
c = 11.3878 (11) Åθ = 5.8–72.1°
α = 82.678 (8)°µ = 2.63 mm1
β = 83.642 (7)°T = 173 K
γ = 72.309 (7)°Irregular, colourless
V = 633.41 (10) Å30.24 × 0.22 × 0.12 mm
Data collection top
Agilent Gemini EOS
diffractometer
2419 independent reflections
Radiation source: Enhance (Cu) X-ray Source2049 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.038
ω scansθmax = 72.2°, θmin = 5.8°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 86
Tmin = 0.848, Tmax = 1.000k = 96
3701 measured reflectionsl = 1314
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0889P)2 + 0.2312P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.155(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.71 e Å3
2419 reflectionsΔρmin = 0.38 e Å3
193 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0044 (14)
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H9F3O2Sγ = 72.309 (7)°
Mr = 298.28V = 633.41 (10) Å3
Triclinic, P1Z = 2
a = 7.3071 (5) ÅCu Kα radiation
b = 8.0790 (7) ŵ = 2.63 mm1
c = 11.3878 (11) ÅT = 173 K
α = 82.678 (8)°0.24 × 0.22 × 0.12 mm
β = 83.642 (7)°
Data collection top
Agilent Gemini EOS
diffractometer
2419 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2049 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 1.000Rint = 0.038
3701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.04Δρmax = 0.71 e Å3
2419 reflectionsΔρmin = 0.38 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.51402 (10)0.35821 (8)0.70404 (6)0.0398 (3)
F11.2832 (3)0.1041 (3)1.0280 (2)0.0764 (7)
F21.0648 (3)0.1392 (4)1.16595 (19)0.0849 (8)
F31.1664 (14)0.3549 (10)1.0613 (12)0.054 (2)0.61 (7)
F3A1.094 (10)0.3613 (16)1.106 (6)0.100 (14)0.39 (7)
O10.2047 (3)0.4458 (2)0.56512 (17)0.0405 (5)
O20.0035 (3)0.7122 (2)0.54064 (19)0.0427 (5)
H20.06460.65920.51210.064*
C10.1620 (4)0.6021 (3)0.5733 (2)0.0332 (5)
C20.2907 (4)0.6861 (3)0.6177 (2)0.0316 (5)
C30.2487 (4)0.8678 (3)0.5973 (2)0.0376 (6)
H30.13870.93150.55950.045*
C40.3668 (4)0.9550 (3)0.6319 (2)0.0396 (6)
H40.33751.07570.61720.048*
C50.5291 (4)0.8595 (4)0.6888 (2)0.0400 (6)
H50.60980.91660.71250.048*
C60.5730 (4)0.6794 (3)0.7109 (2)0.0362 (6)
H60.68250.61740.74970.043*
C70.4555 (3)0.5897 (3)0.6759 (2)0.0303 (5)
C80.6908 (4)0.3131 (3)0.8091 (2)0.0328 (5)
C90.6355 (4)0.3133 (3)0.9291 (2)0.0378 (6)
H90.50550.33960.95480.045*
C100.7722 (4)0.2748 (4)1.0114 (2)0.0405 (6)
H100.73430.27401.09210.049*
C110.9646 (4)0.2375 (3)0.9731 (2)0.0335 (6)
C121.0216 (4)0.2340 (4)0.8540 (3)0.0447 (7)
H121.15180.20700.82880.054*
C130.8857 (4)0.2704 (4)0.7719 (3)0.0461 (7)
H130.92460.26630.69150.055*
C141.1122 (4)0.2104 (4)1.0605 (3)0.0450 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0441 (4)0.0305 (4)0.0495 (4)0.0120 (3)0.0242 (3)0.0013 (3)
F10.0508 (12)0.0796 (15)0.0942 (17)0.0002 (10)0.0385 (11)0.0105 (12)
F20.0770 (15)0.134 (2)0.0508 (12)0.0459 (15)0.0335 (10)0.0265 (12)
F30.057 (5)0.0356 (19)0.078 (4)0.0181 (19)0.034 (4)0.002 (2)
F3A0.15 (3)0.034 (3)0.14 (2)0.024 (7)0.11 (2)0.002 (6)
O10.0417 (10)0.0349 (10)0.0504 (11)0.0126 (8)0.0228 (8)0.0039 (8)
O20.0356 (10)0.0404 (10)0.0559 (12)0.0100 (8)0.0219 (8)0.0055 (9)
C10.0336 (13)0.0385 (14)0.0295 (12)0.0123 (10)0.0104 (10)0.0000 (10)
C20.0343 (13)0.0335 (12)0.0293 (12)0.0112 (10)0.0075 (9)0.0039 (9)
C30.0381 (13)0.0339 (13)0.0410 (14)0.0075 (11)0.0138 (11)0.0026 (10)
C40.0456 (15)0.0300 (13)0.0460 (15)0.0124 (11)0.0143 (12)0.0016 (11)
C50.0415 (15)0.0410 (15)0.0452 (15)0.0190 (12)0.0141 (12)0.0055 (11)
C60.0331 (13)0.0373 (14)0.0412 (14)0.0117 (11)0.0143 (11)0.0019 (11)
C70.0308 (12)0.0316 (12)0.0302 (12)0.0101 (10)0.0078 (9)0.0023 (9)
C80.0339 (12)0.0267 (12)0.0393 (13)0.0082 (9)0.0143 (10)0.0009 (10)
C90.0317 (13)0.0391 (14)0.0441 (15)0.0103 (11)0.0066 (11)0.0067 (11)
C100.0466 (15)0.0464 (16)0.0333 (13)0.0192 (12)0.0066 (11)0.0041 (11)
C110.0387 (13)0.0219 (11)0.0424 (14)0.0100 (9)0.0145 (11)0.0005 (9)
C120.0320 (13)0.0542 (17)0.0466 (16)0.0077 (12)0.0078 (11)0.0086 (13)
C130.0395 (15)0.0595 (18)0.0365 (14)0.0091 (13)0.0037 (11)0.0071 (13)
C140.0550 (18)0.0317 (13)0.0538 (17)0.0154 (12)0.0258 (14)0.0006 (12)
Geometric parameters (Å, º) top
S1—C71.782 (2)C5—H50.9300
S1—C81.783 (2)C5—C61.387 (4)
F1—C141.328 (4)C6—H60.9300
F2—C141.322 (4)C6—C71.396 (3)
F3—C141.343 (8)C8—C91.381 (4)
F3A—C141.35 (2)C8—C131.390 (4)
O1—C11.218 (3)C9—H90.9300
O2—H20.8200C9—C101.384 (4)
O2—C11.324 (3)C10—H100.9300
C1—C21.477 (3)C10—C111.378 (4)
C2—C31.400 (4)C11—C121.375 (4)
C2—C71.404 (3)C11—C141.496 (4)
C3—H30.9300C12—H120.9300
C3—C41.383 (4)C12—C131.380 (4)
C4—H40.9300C13—H130.9300
C4—C51.381 (4)
C7—S1—C8101.59 (11)C13—C8—S1120.6 (2)
C1—O2—H2109.5C8—C9—H9119.7
O1—C1—O2122.6 (2)C8—C9—C10120.5 (2)
O1—C1—C2123.3 (2)C10—C9—H9119.7
O2—C1—C2114.1 (2)C9—C10—H10120.2
C3—C2—C1118.3 (2)C11—C10—C9119.7 (2)
C3—C2—C7119.4 (2)C11—C10—H10120.2
C7—C2—C1122.3 (2)C10—C11—C14120.1 (2)
C2—C3—H3119.2C12—C11—C10120.3 (2)
C4—C3—C2121.6 (2)C12—C11—C14119.5 (3)
C4—C3—H3119.2C11—C12—H12120.0
C3—C4—H4120.6C11—C12—C13120.0 (3)
C5—C4—C3118.8 (2)C13—C12—H12120.0
C5—C4—H4120.6C8—C13—H13119.9
C4—C5—H5119.7C12—C13—C8120.2 (3)
C4—C5—C6120.7 (2)C12—C13—H13119.9
C6—C5—H5119.7F1—C14—F397.8 (5)
C5—C6—H6119.5F1—C14—F3A122 (3)
C5—C6—C7121.1 (2)F1—C14—C11113.7 (2)
C7—C6—H6119.5F2—C14—F1104.4 (2)
C2—C7—S1120.83 (18)F2—C14—F3115.3 (6)
C6—C7—S1120.71 (19)F2—C14—F3A91 (3)
C6—C7—C2118.5 (2)F2—C14—C11113.2 (2)
C9—C8—S1120.1 (2)F3—C14—C11111.3 (4)
C9—C8—C13119.2 (2)F3A—C14—C11110.3 (8)
S1—C8—C9—C10178.6 (2)C8—S1—C7—C2165.8 (2)
S1—C8—C13—C12179.4 (2)C8—S1—C7—C614.5 (2)
O1—C1—C2—C3165.0 (3)C8—C9—C10—C110.6 (4)
O1—C1—C2—C713.0 (4)C9—C8—C13—C122.0 (4)
O2—C1—C2—C313.7 (3)C9—C10—C11—C121.7 (4)
O2—C1—C2—C7168.3 (2)C9—C10—C11—C14174.9 (2)
C1—C2—C3—C4177.4 (2)C10—C11—C12—C131.0 (4)
C1—C2—C7—S12.1 (3)C10—C11—C14—F1151.3 (3)
C1—C2—C7—C6177.6 (2)C10—C11—C14—F232.4 (4)
C2—C3—C4—C50.5 (4)C10—C11—C14—F399.4 (7)
C3—C2—C7—S1179.85 (19)C10—C11—C14—F3A68 (4)
C3—C2—C7—C60.4 (4)C11—C12—C13—C80.9 (5)
C3—C4—C5—C60.0 (4)C12—C11—C14—F132.1 (4)
C4—C5—C6—C70.3 (4)C12—C11—C14—F2151.0 (3)
C5—C6—C7—S1179.6 (2)C12—C11—C14—F377.2 (7)
C5—C6—C7—C20.1 (4)C12—C11—C14—F3A109 (4)
C7—S1—C8—C989.1 (2)C13—C8—C9—C101.2 (4)
C7—S1—C8—C1393.5 (2)C14—C11—C12—C13175.6 (3)
C7—C2—C3—C40.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.862.677 (3)175
C6—H6···F3ii0.932.593.319 (10)136
C6—H6···F3Aii0.932.503.294 (16)144
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.862.677 (3)175
C6—H6···F3ii0.932.593.319 (10)136
C6—H6···F3Aii0.932.503.294 (16)144
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y+1, z+2.
 

Acknowledgements

TSY thanks University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPost, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724–2726.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPost, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366–2368.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2079–o2080.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSiddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh, A. R. (2011b). Acta Cryst. E67, o2017–o2018.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYoung, J. P. R., Hughes, W. C. & Lader, M. H. (1976). Br. Med. J. 1, 1116–1118.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds