organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3,5-Di­fluoro­phen­yl)-4,4,4-tri­fluoro­butane-1,3-dione

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, bDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, cDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, and dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore, India
*Correspondence e-mail: drsreenivasa@yahoo.co.in

(Received 14 October 2013; accepted 17 October 2013; online 26 October 2013)

In the title compound, C10H5F5O2, the C=O bonds are syn to one another. In the crystal, mol­ecules are linked into C(9) chains parallel to [101] through weak C—H⋯O inter­actions, with the O atom adjacent to the –CF3 group acting as the acceptor.

Related literature

For biological-activity studies of compounds with tri­fluoro­methyl substituents, see: Manoj Kumar et al. (2013[Manoj Kumar, K. E., Sreenivasa, S., Shivaraja, G. & Madhu Chakrapani Rao, T. (2013). Molbank, M803, doi:10.3390/M803.]).

[Scheme 1]

Experimental

Crystal data
  • C10H5F5O2

  • Mr = 252.14

  • Monoclinic, C 2/c

  • a = 12.393 (4) Å

  • b = 13.433 (5) Å

  • c = 12.877 (5) Å

  • β = 112.49 (2)°

  • V = 1980.7 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 294 K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.972

  • 5651 measured reflections

  • 1604 independent reflections

  • 1246 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.239

  • S = 1.08

  • 1604 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.53 3.462 (5) 177
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing studies of the biological activities of compounds with a trifluoromethyl substituent (Manoj Kumar et al., 2013), we now describe the structure of the title compound, (I).

The two C=O bonds are syn to one another (Fig.1), the O1—C7—C8—C9 and O2—C9—C8—C7 torsion angles being 0.4 (5) and -0.3 (6)°, respectively. In the crystal, the molecules are linked into C(9) chains parallel to [101] through a weak C3—H3···O2 interaction (Fig.2).

Related literature top

For biological-activity studies of compounds with trifluoromethyl substituents, see: Manoj Kumar et al. (2013).

Experimental top

3,5-Difluoroacetophenone (1 mmol) and sodium hydride (1.5 mmol) were taken in dry THF (20 ml), and the solution was stirred for 30 min at 0°C. To this solution trifluoroethylacetate (1.2 mmol) was added and the reaction mixture was stirred for 10 h at room temperature under nitrogen atmosphere. The reaction was monitored by TLC. The crude mass was purified by column chromatography using petroleum ether and ethyl acetate as an eluent (7:3), to obtain a yellow solid. Pale yellow prisms were obtained by recrystallisation fron dichloromethane/methanol (9:1) solution.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing foming C(9) chains parallel to [101] with hydrogen bonding shown as dashed lines.
1-(3,5-Difluorophenyl)-4,4,4-trifluorobutane-1,3-dione top
Crystal data top
C10H5F5O2Prism
Mr = 252.14Dx = 1.691 Mg m3
Monoclinic, C2/cMelting point: 393 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 12.393 (4) ÅCell parameters from 1023 reflections
b = 13.433 (5) Åθ = 0.0–24.6°
c = 12.877 (5) ŵ = 0.18 mm1
β = 112.49 (2)°T = 294 K
V = 1980.7 (13) Å3Prism, colourless
Z = 80.24 × 0.20 × 0.16 mm
F(000) = 1008
Data collection top
Bruker APEXII CCD
diffractometer
1604 independent reflections
Radiation source: fine-focus sealed tube1246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
phi and ω scansθmax = 24.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.959, Tmax = 0.972k = 157
5651 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1433P)2 + 2.2069P]
where P = (Fo2 + 2Fc2)/3
1604 reflections(Δ/σ)max = 0.012
154 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C10H5F5O2V = 1980.7 (13) Å3
Mr = 252.14Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.393 (4) ŵ = 0.18 mm1
b = 13.433 (5) ÅT = 294 K
c = 12.877 (5) Å0.24 × 0.20 × 0.16 mm
β = 112.49 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1604 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1246 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.972Rint = 0.040
5651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.239H-atom parameters constrained
S = 1.08Δρmax = 0.43 e Å3
1604 reflectionsΔρmin = 0.47 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0373 (3)0.3441 (3)0.4970 (3)0.0558 (9)
H10.06910.40580.49230.067*
C20.0308 (3)0.3323 (3)0.5594 (3)0.0624 (10)
C30.0787 (4)0.2426 (3)0.5705 (3)0.0684 (11)
H30.12380.23600.61350.082*
C40.0565 (4)0.1636 (3)0.5147 (4)0.0649 (10)
C50.0106 (3)0.1700 (3)0.4506 (3)0.0574 (9)
H50.02420.11430.41440.069*
C60.0574 (3)0.2624 (2)0.4416 (3)0.0474 (8)
C70.1298 (3)0.2699 (2)0.3734 (3)0.0476 (8)
C80.1640 (3)0.3603 (3)0.3419 (3)0.0511 (8)
H8A0.09370.39830.30190.061*
H8B0.20770.39670.41010.061*
C90.2304 (3)0.3596 (3)0.2760 (3)0.0515 (9)
C100.2656 (3)0.4562 (3)0.2375 (3)0.0624 (10)
F10.0500 (3)0.4121 (2)0.6129 (3)0.1000 (11)
F20.1027 (3)0.0740 (2)0.5224 (3)0.1010 (11)
F30.2245 (3)0.4627 (2)0.1272 (2)0.0913 (9)
F40.3807 (2)0.4629 (2)0.2695 (3)0.0989 (10)
F50.2306 (3)0.5370 (2)0.2748 (3)0.1110 (13)
O10.1598 (2)0.18650 (19)0.3425 (2)0.0671 (8)
O20.2645 (2)0.2827 (2)0.2411 (2)0.0666 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (2)0.051 (2)0.066 (2)0.0018 (15)0.0410 (17)0.0022 (16)
C20.072 (2)0.063 (2)0.070 (2)0.0110 (18)0.0473 (19)0.0002 (17)
C30.070 (2)0.083 (3)0.073 (2)0.007 (2)0.050 (2)0.012 (2)
C40.072 (2)0.059 (2)0.081 (2)0.0095 (18)0.048 (2)0.0108 (19)
C50.064 (2)0.050 (2)0.069 (2)0.0058 (15)0.0380 (17)0.0011 (15)
C60.0508 (18)0.0460 (18)0.0561 (18)0.0013 (13)0.0323 (15)0.0034 (14)
C70.0473 (16)0.0457 (18)0.0588 (19)0.0002 (13)0.0306 (15)0.0036 (14)
C80.0564 (18)0.0448 (19)0.065 (2)0.0001 (14)0.0373 (16)0.0009 (15)
C90.0535 (18)0.048 (2)0.063 (2)0.0011 (14)0.0335 (16)0.0016 (15)
C100.069 (2)0.058 (2)0.079 (3)0.0047 (17)0.049 (2)0.0035 (18)
F10.146 (3)0.0803 (18)0.121 (2)0.0129 (16)0.105 (2)0.0090 (15)
F20.125 (2)0.0773 (18)0.138 (3)0.0305 (16)0.092 (2)0.0011 (16)
F30.112 (2)0.0859 (19)0.0818 (18)0.0116 (15)0.0440 (15)0.0191 (13)
F40.0676 (15)0.096 (2)0.139 (3)0.0226 (13)0.0460 (15)0.0177 (17)
F50.169 (3)0.0515 (16)0.173 (3)0.0089 (16)0.133 (3)0.0034 (16)
O10.0897 (19)0.0399 (14)0.102 (2)0.0042 (12)0.0704 (16)0.0031 (12)
O20.0793 (17)0.0555 (16)0.0924 (19)0.0030 (12)0.0633 (15)0.0029 (13)
Geometric parameters (Å, º) top
C1—C21.379 (5)C6—C71.479 (5)
C1—C61.383 (5)C7—O11.290 (4)
C1—H10.9300C7—C81.396 (5)
C2—F11.344 (5)C8—C91.389 (5)
C2—C31.374 (6)C8—H8A0.9700
C3—C41.367 (6)C8—H8B0.9700
C3—H30.9300C9—O21.262 (4)
C4—F21.353 (5)C9—C101.512 (5)
C4—C51.381 (5)C10—F31.316 (5)
C5—C61.393 (5)C10—F51.327 (5)
C5—H50.9300C10—F41.328 (4)
C2—C1—C6118.8 (3)O1—C7—C8120.7 (3)
C2—C1—H1120.6O1—C7—C6115.8 (3)
C6—C1—H1120.6C8—C7—C6123.5 (3)
F1—C2—C3118.5 (3)C9—C8—C7119.2 (3)
F1—C2—C1118.4 (4)C9—C8—H8A107.5
C3—C2—C1123.1 (4)C7—C8—H8A107.5
C4—C3—C2116.4 (3)C9—C8—H8B107.5
C4—C3—H3121.8C7—C8—H8B107.5
C2—C3—H3121.8H8A—C8—H8B107.0
F2—C4—C3118.5 (3)O2—C9—C8125.5 (3)
F2—C4—C5117.9 (4)O2—C9—C10114.0 (3)
C3—C4—C5123.7 (4)C8—C9—C10120.5 (3)
C4—C5—C6118.0 (4)F3—C10—F5106.9 (4)
C4—C5—H5121.0F3—C10—F4104.9 (3)
C6—C5—H5121.0F5—C10—F4107.1 (3)
C1—C6—C5120.0 (3)F3—C10—C9111.8 (3)
C1—C6—C7121.5 (3)F5—C10—C9114.1 (3)
C5—C6—C7118.4 (3)F4—C10—C9111.5 (3)
C6—C1—C2—F1179.9 (3)C5—C6—C7—O111.0 (5)
C6—C1—C2—C30.8 (6)C1—C6—C7—C812.7 (5)
F1—C2—C3—C4179.9 (4)C5—C6—C7—C8168.3 (3)
C1—C2—C3—C40.6 (6)O1—C7—C8—C90.4 (5)
C2—C3—C4—F2179.5 (4)C6—C7—C8—C9178.9 (3)
C2—C3—C4—C50.4 (6)C7—C8—C9—O20.3 (6)
F2—C4—C5—C6179.4 (3)C7—C8—C9—C10178.1 (3)
C3—C4—C5—C60.5 (6)O2—C9—C10—F359.0 (4)
C2—C1—C6—C50.9 (5)C8—C9—C10—F3119.5 (4)
C2—C1—C6—C7179.9 (3)O2—C9—C10—F5179.5 (3)
C4—C5—C6—C10.7 (5)C8—C9—C10—F51.9 (5)
C4—C5—C6—C7179.8 (3)O2—C9—C10—F458.1 (4)
C1—C6—C7—O1168.0 (3)C8—C9—C10—F4123.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.533.462 (5)177
Symmetry code: (i) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.533.462 (5)177
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the IOE X-ray diffractometer Facility, University of Mysore, Mysore, for the data collection. KEM and SS acknowledge Tumkur University, Tumkur, for providing laboratory facilities.

References

First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManoj Kumar, K. E., Sreenivasa, S., Shivaraja, G. & Madhu Chakrapani Rao, T. (2013). Molbank, M803, doi:10.3390/M803.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds