organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Dieth­­oxy-2,2′-[4-methyl-1,2-phenyl­enebis(nitrilo­methanylyl­­idene)]diphenol aceto­nitrile monosolvate

aLiaocheng University, Department of Chemistry, Liaocheng, Shandong Province 252059, People's Republic of China
*Correspondence e-mail: drzengsy@163.com

(Received 5 October 2013; accepted 21 October 2013; online 26 October 2013)

The title solvated Schiff base compound, C25H26N2O4·CH3CN, possesses an O2N2 donor set affording a potentially tetra­dentate metal complex ligand. The central ring makes dihedral angles of 6.7 (3) and 48.4 (2)° with the pendant rings. Intra­molecular N—H⋯O hydrogen-bonding inter­actions are observed.

Related literature

For background to the properties of tetra­dentate Schiff-base ligands with O2N2 donor sets, see Zhang et al. (2009[Zhang, D. P., Wang, H. L., Chen, Y. T., Ni, Z. H., Tian, L. J. & Jiang, J. Z. (2009). Inorg. Chem. 48, 11215-11225.]); Nayka et al. (2006[Nayka, M., Koner, R., Lin, H. H., Florke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem. 45, 10764-10773.]). For related crystal structures, see Liu et al. (2006[Liu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, o5908-o5909.]); Kargar et al. (2009[Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776-o777.]).

[Scheme 1]

Experimental

Crystal data
  • C25H26N2O4·C2H3N

  • Mr = 459.53

  • Monoclinic, P 21 /c

  • a = 11.580 (3) Å

  • b = 24.999 (7) Å

  • c = 8.995 (3) Å

  • β = 106.891 (6)°

  • V = 2491.7 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.17 × 0.11 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.986, Tmax = 0.993

  • 12206 measured reflections

  • 4387 independent reflections

  • 2242 reflections with I > 2σ(I)

  • Rint = 0.122

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.171

  • S = 0.91

  • 4387 reflections

  • 313 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.90 2.610 (5) 145
O2—H2⋯N2 0.82 1.91 2.605 (5) 142

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the past several decades, tetradentate Schiff-base ligands with O2N2 donor sets have been studied intensively, partially due to the interesting magnetic properties observed for their metal complexes (Zhang et al., 2009; Nayak etal.. Herein, we present the crystal structure of a new tetradentate Schiff base ligand N,N'-Bis(2-hydroxy-3-ethoxybenzylidene)-4-methyl-1,2-phenylenediamine as its acetonitrile solvate.

As shown in Figure 1, the title compound possesses a O2N2 donor set affording the potentially tetradentate ligand. The imide bond lengths 1.296 (5)Å for N1—C7 and 1.269 (5)Å for N2—C16 are slightly shorter than that of related Schiff-base ligands N,N'-Bis(2-hydroxy-3-methoxybenzylidene)-1,2- phenylenediamine (Liu, et al., 2006) and 6,6'-Diethoxy-2,2'- [4,5-dimethyl-o-phenylenebis(nitrilomethylidyne)]diphenol (Kargar, et al. 2009). In this compound, two relative strong O-H···N intramolecular bonds, O1-H1···N1 and O2-H2···N2 are observed (Table 1).

Related literature top

For background to the properties of tetradentate Schiff-base ligands with O2N2 donor sets, see Zhang et al. (2009); Nayka et al. (2006). For related crystal structures, see Liu et al. (2006); Kargar et al. (2009).

Experimental top

The Schiff base ligand was prepared by condensation 4-methyl-1,2-phenylenediamine (10 mmol, 1.22 g) and 2-hydroxy-3-ethoxybenzaldehyde (20 mmol, 3.32 g) in a mixture of ethanol and acetonitrile(1:1). The mixture formed was allowed to partial evaporate in air for about one week to produce crystals suitable for X-ray diffraction.

Refinement top

All the H atoms bonded to C atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.93, 0.96, 0.97Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) (methyl) respectively. The hydroxyl protons were located from difference Fourier maps with the O—H bond length restrained to 0.82 Å and was allowed for as riding atoms with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The solvent molecule has been omitted for clarity.
6,6'-Diethoxy-2,2'-[4-methyl-1,2-phenylenebis(nitrilomethanylylidene)]diphenol acetonitrile monosolvate top
Crystal data top
C25H26N2O4·C2H3NF(000) = 976
Mr = 459.53Dx = 1.225 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1236 reflections
a = 11.580 (3) Åθ = 2.3–26.3°
b = 24.999 (7) ŵ = 0.08 mm1
c = 8.995 (3) ÅT = 293 K
β = 106.891 (6)°Block, orange
V = 2491.7 (12) Å30.17 × 0.11 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4387 independent reflections
Radiation source: fine-focus sealed tube2242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.122
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1312
Tmin = 0.986, Tmax = 0.993k = 2929
12206 measured reflectionsl = 410
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0517P)2]
where P = (Fo2 + 2Fc2)/3
4387 reflections(Δ/σ)max = 0.011
313 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C25H26N2O4·C2H3NV = 2491.7 (12) Å3
Mr = 459.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.580 (3) ŵ = 0.08 mm1
b = 24.999 (7) ÅT = 293 K
c = 8.995 (3) Å0.17 × 0.11 × 0.09 mm
β = 106.891 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4387 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2242 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.993Rint = 0.122
12206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 0.91Δρmax = 0.14 e Å3
4387 reflectionsΔρmin = 0.17 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7285 (3)0.11495 (14)0.4282 (4)0.0813 (10)
H10.74860.09450.36880.122*
O20.5747 (3)0.09311 (14)0.0478 (4)0.0904 (11)
H20.63130.07320.08890.136*
O30.6804 (4)0.19431 (15)0.5910 (4)0.1040 (13)
O40.3638 (3)0.13571 (16)0.0824 (4)0.1035 (13)
N10.8803 (3)0.06746 (18)0.3066 (4)0.0636 (11)
N20.7374 (3)0.02192 (14)0.0410 (4)0.0625 (11)
N30.2332 (5)0.1357 (3)0.3047 (7)0.163 (3)
C10.9221 (5)0.1516 (2)0.4400 (5)0.0645 (13)
C20.8122 (5)0.1537 (2)0.4743 (6)0.0672 (13)
C30.7888 (6)0.1968 (2)0.5600 (6)0.0740 (15)
C40.8739 (6)0.2366 (2)0.6093 (6)0.0879 (17)
H40.85910.26490.66820.105*
C50.9807 (6)0.2343 (3)0.5712 (7)0.0958 (19)
H51.03610.26210.60170.115*
C61.0070 (5)0.1926 (2)0.4900 (6)0.0831 (16)
H61.08060.19120.46790.100*
C70.9526 (4)0.1072 (2)0.3588 (5)0.0668 (14)
H71.02830.10680.34240.080*
C80.6624 (6)0.2277 (3)0.7098 (7)0.136 (2)
H8A0.64990.26430.67290.163*
H8B0.73330.22680.79950.163*
C90.5578 (7)0.2092 (3)0.7534 (9)0.161 (3)
H9A0.48860.20860.66320.242*
H9B0.54280.23300.82960.242*
H9C0.57270.17380.79610.242*
C100.3962 (5)0.0948 (2)0.1623 (7)0.0775 (15)
C110.5093 (4)0.0717 (2)0.0890 (6)0.0646 (13)
C120.5510 (4)0.0303 (2)0.1607 (6)0.0676 (14)
C130.4802 (5)0.0110 (2)0.3033 (6)0.1016 (19)
H130.50820.01690.35210.122*
C140.3700 (5)0.0329 (3)0.3710 (7)0.1034 (19)
H140.32260.01960.46560.124*
C150.3277 (5)0.0744 (2)0.3020 (7)0.0897 (17)
H150.25200.08890.35010.108*
C160.6679 (5)0.00675 (19)0.0889 (6)0.0761 (15)
H160.69350.02100.14060.091*
C170.2618 (5)0.1673 (2)0.1656 (7)0.119 (2)
H17A0.18790.14670.18400.142*
H17B0.27050.17850.26500.142*
C180.2581 (6)0.2146 (3)0.0671 (8)0.164 (3)
H18A0.26070.20290.03550.246*
H18B0.18510.23430.11160.246*
H18C0.32640.23710.06150.246*
C190.9238 (4)0.0225 (2)0.2448 (6)0.0616 (13)
C200.8512 (4)0.0026 (2)0.1097 (6)0.0606 (13)
C210.8941 (4)0.0476 (2)0.0549 (5)0.0726 (14)
H210.84610.06440.03380.087*
C221.0074 (5)0.0684 (2)0.1290 (6)0.0714 (15)
C231.0780 (5)0.0442 (2)0.2597 (7)0.0825 (16)
H231.15370.05820.31020.099*
C241.0373 (4)0.0007 (2)0.3168 (5)0.0755 (15)
H241.08660.01710.40560.091*
C251.0510 (4)0.1184 (2)0.0656 (6)0.1002 (18)
H25A1.13630.11580.08020.150*
H25B1.00970.12180.04320.150*
H25C1.03450.14930.11970.150*
C260.4564 (5)0.1408 (2)0.3195 (7)0.142 (3)
H26A0.47750.17710.30370.213*
H26B0.47100.11840.24020.213*
H26C0.50460.12870.41960.213*
C270.3299 (7)0.1382 (2)0.3121 (7)0.107 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.062 (2)0.089 (3)0.090 (3)0.013 (2)0.0185 (18)0.025 (2)
O20.078 (3)0.113 (3)0.068 (2)0.030 (2)0.001 (2)0.010 (2)
O30.091 (3)0.121 (3)0.103 (3)0.009 (2)0.032 (2)0.045 (2)
O40.088 (3)0.118 (3)0.095 (3)0.047 (2)0.013 (2)0.004 (3)
N10.059 (3)0.070 (3)0.060 (3)0.003 (2)0.013 (2)0.004 (2)
N20.052 (3)0.068 (3)0.061 (3)0.004 (2)0.006 (2)0.004 (2)
N30.094 (4)0.244 (7)0.155 (5)0.029 (5)0.045 (5)0.001 (5)
C10.073 (4)0.066 (4)0.046 (3)0.008 (3)0.006 (3)0.002 (3)
C20.059 (4)0.072 (4)0.063 (3)0.000 (3)0.006 (3)0.006 (3)
C30.079 (4)0.080 (4)0.055 (4)0.008 (4)0.007 (3)0.008 (3)
C40.106 (5)0.069 (4)0.074 (4)0.003 (4)0.003 (4)0.011 (3)
C50.085 (5)0.090 (5)0.096 (5)0.025 (4)0.000 (4)0.009 (4)
C60.082 (4)0.083 (4)0.075 (4)0.008 (4)0.008 (3)0.012 (3)
C70.057 (3)0.089 (4)0.052 (3)0.001 (3)0.011 (3)0.008 (3)
C80.141 (6)0.161 (7)0.106 (5)0.008 (6)0.035 (5)0.044 (5)
C90.178 (7)0.151 (7)0.192 (7)0.023 (5)0.112 (6)0.049 (5)
C100.065 (4)0.089 (4)0.074 (4)0.007 (3)0.014 (3)0.012 (4)
C110.053 (3)0.081 (4)0.053 (4)0.002 (3)0.005 (3)0.006 (3)
C120.065 (4)0.073 (4)0.060 (4)0.006 (3)0.011 (3)0.002 (3)
C130.093 (4)0.110 (5)0.077 (4)0.016 (4)0.015 (4)0.018 (4)
C140.088 (5)0.116 (5)0.080 (4)0.006 (4)0.016 (4)0.012 (4)
C150.069 (4)0.110 (5)0.075 (5)0.002 (4)0.003 (4)0.017 (4)
C160.070 (4)0.085 (4)0.070 (4)0.015 (3)0.015 (3)0.009 (3)
C170.099 (5)0.125 (6)0.121 (5)0.047 (4)0.014 (4)0.035 (5)
C180.164 (7)0.154 (7)0.158 (7)0.094 (5)0.023 (5)0.004 (6)
C190.050 (3)0.083 (4)0.052 (3)0.009 (3)0.015 (3)0.012 (3)
C200.059 (3)0.066 (4)0.059 (4)0.009 (3)0.021 (3)0.011 (3)
C210.073 (4)0.067 (4)0.077 (4)0.003 (3)0.020 (3)0.002 (3)
C220.082 (4)0.067 (4)0.078 (4)0.027 (3)0.043 (3)0.021 (3)
C230.070 (4)0.100 (5)0.072 (4)0.016 (4)0.012 (3)0.022 (4)
C240.058 (4)0.101 (5)0.067 (4)0.004 (3)0.017 (3)0.006 (3)
C250.095 (4)0.100 (4)0.105 (4)0.023 (4)0.027 (4)0.014 (4)
C260.061 (4)0.164 (6)0.192 (7)0.002 (4)0.024 (4)0.054 (5)
C270.099 (5)0.119 (5)0.103 (5)0.009 (5)0.029 (5)0.013 (4)
Geometric parameters (Å, º) top
O1—C21.347 (5)C11—C121.381 (6)
O1—H10.8200C12—C131.393 (6)
O2—C111.353 (5)C12—C161.444 (6)
O2—H20.8200C13—C141.361 (6)
O3—C31.364 (6)C13—H130.9300
O3—C81.418 (6)C14—C151.369 (6)
O4—C101.364 (5)C14—H140.9300
O4—C171.437 (5)C15—H150.9300
N1—C71.296 (5)C16—H160.9300
N1—C191.411 (5)C17—C181.486 (7)
N2—C161.269 (5)C17—H17A0.9700
N2—C201.421 (5)C17—H17B0.9700
N3—C271.105 (6)C18—H18A0.9600
C1—C21.394 (6)C18—H18B0.9600
C1—C61.400 (6)C18—H18C0.9600
C1—C71.428 (6)C19—C241.396 (6)
C2—C31.397 (6)C19—C201.407 (6)
C3—C41.379 (6)C20—C211.378 (5)
C4—C51.377 (6)C21—C221.388 (6)
C4—H40.9300C21—H210.9300
C5—C61.359 (6)C22—C231.362 (6)
C5—H50.9300C22—C251.521 (6)
C6—H60.9300C23—C241.375 (6)
C7—H70.9300C23—H230.9300
C8—C91.453 (7)C24—H240.9300
C8—H8A0.9700C25—H25A0.9600
C8—H8B0.9700C25—H25B0.9600
C9—H9A0.9600C25—H25C0.9600
C9—H9B0.9600C26—C271.448 (7)
C9—H9C0.9600C26—H26A0.9600
C10—C151.375 (6)C26—H26B0.9600
C10—C111.407 (6)C26—H26C0.9600
C2—O1—H1109.5C13—C14—H14119.5
C11—O2—H2109.5C15—C14—H14119.5
C3—O3—C8118.2 (5)C14—C15—C10120.5 (5)
C10—O4—C17116.6 (4)C14—C15—H15119.7
C7—N1—C19119.2 (4)C10—C15—H15119.7
C16—N2—C20122.1 (4)N2—C16—C12123.5 (5)
C2—C1—C6120.2 (5)N2—C16—H16118.3
C2—C1—C7121.3 (5)C12—C16—H16118.3
C6—C1—C7118.5 (6)O4—C17—C18106.7 (5)
O1—C2—C1121.8 (5)O4—C17—H17A110.4
O1—C2—C3119.1 (5)C18—C17—H17A110.4
C1—C2—C3119.1 (5)O4—C17—H17B110.4
O3—C3—C4125.5 (6)C18—C17—H17B110.4
O3—C3—C2114.6 (5)H17A—C17—H17B108.6
C4—C3—C2119.9 (6)C17—C18—H18A109.5
C5—C4—C3120.0 (6)C17—C18—H18B109.5
C5—C4—H4120.0H18A—C18—H18B109.5
C3—C4—H4120.0C17—C18—H18C109.5
C6—C5—C4121.5 (6)H18A—C18—H18C109.5
C6—C5—H5119.3H18B—C18—H18C109.5
C4—C5—H5119.3C24—C19—C20118.3 (5)
C5—C6—C1119.3 (6)C24—C19—N1121.5 (5)
C5—C6—H6120.4C20—C19—N1120.2 (4)
C1—C6—H6120.4C21—C20—C19119.0 (5)
N1—C7—C1123.5 (5)C21—C20—N2125.5 (5)
N1—C7—H7118.3C19—C20—N2115.5 (5)
C1—C7—H7118.3C20—C21—C22121.5 (5)
O3—C8—C9109.5 (6)C20—C21—H21119.2
O3—C8—H8A109.8C22—C21—H21119.2
C9—C8—H8A109.8C23—C22—C21119.6 (5)
O3—C8—H8B109.8C23—C22—C25120.4 (5)
C9—C8—H8B109.8C21—C22—C25119.9 (6)
H8A—C8—H8B108.2C22—C23—C24120.0 (5)
C8—C9—H9A109.5C22—C23—H23120.0
C8—C9—H9B109.5C24—C23—H23120.0
H9A—C9—H9B109.5C23—C24—C19121.5 (5)
C8—C9—H9C109.5C23—C24—H24119.2
H9A—C9—H9C109.5C19—C24—H24119.2
H9B—C9—H9C109.5C22—C25—H25A109.5
O4—C10—C15125.9 (5)C22—C25—H25B109.5
O4—C10—C11114.9 (5)H25A—C25—H25B109.5
C15—C10—C11119.2 (6)C22—C25—H25C109.5
O2—C11—C12122.8 (5)H25A—C25—H25C109.5
O2—C11—C10117.6 (5)H25B—C25—H25C109.5
C12—C11—C10119.6 (5)C27—C26—H26A109.5
C11—C12—C13119.9 (5)C27—C26—H26B109.5
C11—C12—C16120.4 (5)H26A—C26—H26B109.5
C13—C12—C16119.7 (5)C27—C26—H26C109.5
C14—C13—C12119.8 (5)H26A—C26—H26C109.5
C14—C13—H13120.1H26B—C26—H26C109.5
C12—C13—H13120.1N3—C27—C26179.0 (8)
C13—C14—C15121.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.610 (5)145
O2—H2···N20.821.912.605 (5)142
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.610 (5)145
O2—H2···N20.821.912.605 (5)142
 

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776–o777.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, o5908–o5909.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNayka, M., Koner, R., Lin, H. H., Florke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem. 45, 10764–10773.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, D. P., Wang, H. L., Chen, Y. T., Ni, Z. H., Tian, L. J. & Jiang, J. Z. (2009). Inorg. Chem. 48, 11215–11225.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds