organic compounds
2-(2-Chloro-8-methylquinolin-3-yl)-4-phenyl-1,2-dihydroquinazoline
aLaboratoire de Synthèse des Molécules d'intérêts Biologiques, Département de Chimie, Faculté des Sciences Exactes, Université de Constantine 1, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000, Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi 04000, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title compound, C24H18ClN3, the dihydroquinazoline and methyl-substituted quinoline benzene rings make a dihedral angle of 78.18 (4)° and form dihedral angles of 45.91 (5) and 79.80 (4)°, respectively, with the phenyl ring. The dihedral angle between the phenyl ring of dihydroquinazoline and the methyl-substituted benzene ring of quinoline is 78.18 (4)°. The crystal packing can be described as crossed layers parallel to the (011) and (0-11) planes. The structure features N—H⋯N hydrogen bonds and π–π interactions [centroid–centroid distance between phenyl rings = 3.7301 (9) Å].
CCDC reference: 968360
Related literature
For the preparation and applications of quinazoline and quinoline derivatives, see: Jenekhe et al. (2001); Hoemann et al. (2000); Connolly et al. (2005); Besson et al. (2007); Roma et al. (2000); Chen et al. (2001); Debache et al. (2008, 2009); Nemouchi et al. (2012).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 968360
10.1107/S1600536813029334/hg5353sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813029334/hg5353Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813029334/hg5353Isup3.cml
A mixture of 2-chloro-8-methylquinoline-3-carbaldehyde (1.0 equiv), 2-aminobenzophenone (1.0 equiv), ammonium acetate (2.0 equiv), and 4-(N,N-dimethylamino)pyridine (0.2 equiv.) in 5 ml of absolute ethanol was stirred at 40°C. After completion of the reaction as monitored by TLC, the reaction mixture was poured into ice cold water; solid product was filtered, washed with water (3–5 ml) and dried. The crude product was recrystallized from ethyl acetate to give pure dihydroquinazoline as a yellow solid; m.p. 182–184 °C; IR (KBr) ν 3329, 1605, 1551, 1470, 1315, 1080, 756, 698 cm-1; 1H NMR (CDCl3, 250 MHz) δ 8.52 (s, 1H, arom.), 7.74–7.41 (m, 8H, arom.), 7.34–7.26 (m, 2H, arom.), 6.83–6.74 (m, 2H, arom.), 6.48 (s, 1H, CH), 4.79 (s, 1H, NH), 2.81 (s, 3H, CH3); 13 C NMR (CDCl3, 62.5 MHz) δ 167.4, 148.2, 146.8, 146.6, 139.3, 138.0, 136.4, 133.2, 132.6, 130.9, 129.9, 129.3, 123.0, 128.4, 127.5, 127.1, 126.1, 120.4, 118.9, 117.9, 114.8, 68.8, 18.0. Anal. calcd for C24H18N3Cl: C, 75.09; H, 4.73; N, 10.95; Found: C, 75.18; H, 4.94; N, 11.37. HRMS calcd f or C24H19N3Cl (MH+) 384.1189; found 384.1162.
Hydrogen atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and N) with C—H = 0.96 Å (methyl); C—H = 0.93 Å (aromatic) or C—H = 0.98 Å (methine); N—H = 0.86 Å and with Uiso(H) = 1.2 Ueq(Caryl; Cmethine or N) and Uiso(H) = 1.5 Ueq(Cmethyl).
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).C24H18ClN3 | F(000) = 800 |
Mr = 383.86 | Dx = 1.376 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4868 reflections |
a = 14.4553 (13) Å | θ = 2.4–25.1° |
b = 8.7501 (9) Å | µ = 0.22 mm−1 |
c = 16.8630 (16) Å | T = 150 K |
β = 119.696 (6)° | Stick, colourless |
V = 1852.8 (3) Å3 | 0.12 × 0.04 × 0.02 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2894 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −17→17 |
Tmin = 0.959, Tmax = 1.000 | k = −10→10 |
10282 measured reflections | l = −20→20 |
3276 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0364P)2 + 0.8263P] where P = (Fo2 + 2Fc2)/3 |
3276 reflections | (Δ/σ)max = 0.001 |
254 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C24H18ClN3 | V = 1852.8 (3) Å3 |
Mr = 383.86 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.4553 (13) Å | µ = 0.22 mm−1 |
b = 8.7501 (9) Å | T = 150 K |
c = 16.8630 (16) Å | 0.12 × 0.04 × 0.02 mm |
β = 119.696 (6)° |
Bruker APEXII CCD area-detector diffractometer | 3276 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 2894 reflections with I > 2σ(I) |
Tmin = 0.959, Tmax = 1.000 | Rint = 0.027 |
10282 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.26 e Å−3 |
3276 reflections | Δρmin = −0.26 e Å−3 |
254 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.69552 (11) | 0.67980 (16) | 0.79870 (9) | 0.0147 (3) | |
C2 | 0.59188 (11) | 0.61713 (15) | 0.74927 (9) | 0.0127 (3) | |
C3 | 0.57150 (11) | 0.53348 (16) | 0.67390 (9) | 0.0146 (3) | |
H3 | 0.5049 | 0.4887 | 0.6391 | 0.018* | |
C4 | 0.64981 (11) | 0.51388 (16) | 0.64785 (9) | 0.0159 (3) | |
C5 | 0.63045 (12) | 0.43142 (17) | 0.56897 (10) | 0.0209 (3) | |
H5 | 0.5646 | 0.3853 | 0.5328 | 0.025* | |
C6 | 0.70818 (13) | 0.41953 (19) | 0.54594 (11) | 0.0254 (4) | |
H6 | 0.6951 | 0.3665 | 0.4936 | 0.031* | |
C7 | 0.80782 (13) | 0.4873 (2) | 0.60120 (11) | 0.0282 (4) | |
H7 | 0.8602 | 0.4765 | 0.5849 | 0.034* | |
C8 | 0.83123 (12) | 0.5691 (2) | 0.67858 (11) | 0.0269 (4) | |
C9 | 0.93732 (14) | 0.6438 (3) | 0.73654 (13) | 0.0489 (6) | |
H9A | 0.9794 | 0.6349 | 0.7071 | 0.073* | |
H9B | 0.9734 | 0.5944 | 0.795 | 0.073* | |
H9C | 0.927 | 0.7498 | 0.7446 | 0.073* | |
C10 | 0.74979 (11) | 0.58353 (17) | 0.70258 (10) | 0.0178 (3) | |
C11 | 0.50792 (11) | 0.63352 (16) | 0.77731 (9) | 0.0131 (3) | |
H11 | 0.5314 | 0.7111 | 0.8254 | 0.016* | |
C12 | 0.32475 (11) | 0.66315 (15) | 0.71152 (9) | 0.0138 (3) | |
C13 | 0.21909 (11) | 0.71284 (16) | 0.63629 (10) | 0.0146 (3) | |
C14 | 0.21119 (11) | 0.84104 (17) | 0.58439 (10) | 0.0167 (3) | |
H14 | 0.2721 | 0.8973 | 0.5986 | 0.02* | |
C15 | 0.11447 (11) | 0.88597 (18) | 0.51219 (10) | 0.0202 (3) | |
H15 | 0.1106 | 0.9722 | 0.4785 | 0.024* | |
C16 | 0.02306 (12) | 0.80291 (18) | 0.48979 (10) | 0.0217 (3) | |
H16 | −0.0421 | 0.8325 | 0.4409 | 0.026* | |
C17 | 0.02994 (12) | 0.67590 (18) | 0.54081 (11) | 0.0223 (3) | |
H17 | −0.0313 | 0.6204 | 0.5264 | 0.027* | |
C18 | 0.12673 (11) | 0.62970 (17) | 0.61323 (10) | 0.0193 (3) | |
H18 | 0.1302 | 0.5431 | 0.6466 | 0.023* | |
C19 | 0.33313 (11) | 0.58635 (16) | 0.79269 (10) | 0.0158 (3) | |
C20 | 0.25708 (12) | 0.59518 (18) | 0.82105 (10) | 0.0215 (3) | |
H20 | 0.2009 | 0.6641 | 0.7931 | 0.026* | |
C21 | 0.26503 (13) | 0.5023 (2) | 0.89021 (11) | 0.0261 (4) | |
H21 | 0.2146 | 0.5094 | 0.909 | 0.031* | |
C22 | 0.34775 (13) | 0.39837 (19) | 0.93189 (10) | 0.0237 (4) | |
H22 | 0.3507 | 0.333 | 0.9765 | 0.028* | |
C23 | 0.42583 (12) | 0.39113 (17) | 0.90769 (10) | 0.0192 (3) | |
H23 | 0.482 | 0.3226 | 0.9367 | 0.023* | |
C24 | 0.41994 (11) | 0.48728 (16) | 0.83933 (9) | 0.0145 (3) | |
N1 | 0.77105 (9) | 0.66658 (15) | 0.77866 (8) | 0.0185 (3) | |
N2 | 0.40582 (9) | 0.68184 (13) | 0.69974 (8) | 0.0136 (3) | |
N3 | 0.49626 (9) | 0.48955 (14) | 0.81327 (8) | 0.0177 (3) | |
H3N | 0.5343 | 0.4108 | 0.818 | 0.021* | |
Cl1 | 0.72959 (3) | 0.78522 (4) | 0.89821 (2) | 0.02018 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0142 (7) | 0.0167 (7) | 0.0124 (7) | 0.0004 (6) | 0.0059 (6) | 0.0021 (6) |
C2 | 0.0125 (7) | 0.0110 (7) | 0.0142 (7) | 0.0021 (5) | 0.0064 (6) | 0.0036 (5) |
C3 | 0.0134 (7) | 0.0122 (7) | 0.0170 (7) | −0.0001 (6) | 0.0064 (6) | 0.0020 (6) |
C4 | 0.0191 (7) | 0.0134 (7) | 0.0168 (7) | 0.0053 (6) | 0.0100 (6) | 0.0053 (6) |
C5 | 0.0259 (8) | 0.0171 (7) | 0.0212 (8) | 0.0033 (6) | 0.0129 (7) | −0.0001 (6) |
C6 | 0.0348 (9) | 0.0253 (9) | 0.0221 (8) | 0.0093 (7) | 0.0186 (7) | 0.0019 (7) |
C7 | 0.0273 (9) | 0.0406 (10) | 0.0267 (8) | 0.0135 (8) | 0.0209 (8) | 0.0093 (8) |
C8 | 0.0184 (8) | 0.0441 (10) | 0.0214 (8) | 0.0068 (7) | 0.0122 (7) | 0.0075 (7) |
C9 | 0.0188 (9) | 0.1013 (19) | 0.0341 (10) | −0.0071 (10) | 0.0188 (8) | −0.0086 (11) |
C10 | 0.0157 (7) | 0.0236 (8) | 0.0155 (7) | 0.0050 (6) | 0.0089 (6) | 0.0058 (6) |
C11 | 0.0124 (7) | 0.0129 (7) | 0.0138 (7) | −0.0008 (5) | 0.0064 (6) | −0.0002 (6) |
C12 | 0.0146 (7) | 0.0101 (7) | 0.0176 (7) | −0.0012 (5) | 0.0088 (6) | −0.0041 (5) |
C13 | 0.0124 (7) | 0.0160 (7) | 0.0173 (7) | 0.0009 (6) | 0.0087 (6) | −0.0039 (6) |
C14 | 0.0129 (7) | 0.0180 (7) | 0.0215 (7) | −0.0008 (6) | 0.0102 (6) | −0.0027 (6) |
C15 | 0.0188 (7) | 0.0232 (8) | 0.0211 (7) | 0.0056 (6) | 0.0118 (6) | 0.0041 (6) |
C16 | 0.0125 (7) | 0.0302 (9) | 0.0201 (8) | 0.0047 (6) | 0.0064 (6) | −0.0008 (7) |
C17 | 0.0122 (7) | 0.0241 (8) | 0.0299 (8) | −0.0023 (6) | 0.0098 (7) | −0.0041 (7) |
C18 | 0.0162 (7) | 0.0179 (7) | 0.0251 (8) | 0.0001 (6) | 0.0112 (6) | 0.0003 (6) |
C19 | 0.0166 (7) | 0.0146 (7) | 0.0179 (7) | −0.0029 (6) | 0.0099 (6) | −0.0041 (6) |
C20 | 0.0195 (8) | 0.0251 (8) | 0.0243 (8) | −0.0009 (6) | 0.0142 (7) | −0.0052 (7) |
C21 | 0.0265 (8) | 0.0354 (10) | 0.0268 (8) | −0.0073 (7) | 0.0210 (7) | −0.0067 (7) |
C22 | 0.0304 (9) | 0.0258 (8) | 0.0198 (8) | −0.0097 (7) | 0.0160 (7) | −0.0023 (7) |
C23 | 0.0229 (8) | 0.0172 (7) | 0.0176 (7) | −0.0027 (6) | 0.0102 (6) | −0.0012 (6) |
C24 | 0.0164 (7) | 0.0139 (7) | 0.0149 (7) | −0.0037 (6) | 0.0090 (6) | −0.0045 (6) |
N1 | 0.0126 (6) | 0.0272 (7) | 0.0156 (6) | 0.0003 (5) | 0.0071 (5) | 0.0034 (5) |
N2 | 0.0113 (6) | 0.0122 (6) | 0.0172 (6) | 0.0008 (5) | 0.0069 (5) | 0.0003 (5) |
N3 | 0.0198 (6) | 0.0148 (6) | 0.0255 (7) | 0.0062 (5) | 0.0166 (6) | 0.0058 (5) |
Cl1 | 0.01497 (19) | 0.0289 (2) | 0.01610 (19) | −0.00583 (15) | 0.00722 (15) | −0.00646 (15) |
C1—N1 | 1.2981 (18) | C12—C19 | 1.475 (2) |
C1—C2 | 1.4151 (19) | C12—C13 | 1.487 (2) |
C1—Cl1 | 1.7580 (14) | C13—C14 | 1.392 (2) |
C2—C3 | 1.366 (2) | C13—C18 | 1.396 (2) |
C2—C11 | 1.5118 (18) | C14—C15 | 1.380 (2) |
C3—C4 | 1.4129 (19) | C14—H14 | 0.93 |
C3—H3 | 0.93 | C15—C16 | 1.386 (2) |
C4—C10 | 1.411 (2) | C15—H15 | 0.93 |
C4—C5 | 1.414 (2) | C16—C17 | 1.379 (2) |
C5—C6 | 1.363 (2) | C16—H16 | 0.93 |
C5—H5 | 0.93 | C17—C18 | 1.385 (2) |
C6—C7 | 1.402 (2) | C17—H17 | 0.93 |
C6—H6 | 0.93 | C18—H18 | 0.93 |
C7—C8 | 1.376 (2) | C19—C20 | 1.4017 (19) |
C7—H7 | 0.93 | C19—C24 | 1.402 (2) |
C8—C10 | 1.427 (2) | C20—C21 | 1.379 (2) |
C8—C9 | 1.500 (3) | C20—H20 | 0.93 |
C9—H9A | 0.96 | C21—C22 | 1.385 (2) |
C9—H9B | 0.96 | C21—H21 | 0.93 |
C9—H9C | 0.96 | C22—C23 | 1.379 (2) |
C10—N1 | 1.3704 (19) | C22—H22 | 0.93 |
C11—N3 | 1.4437 (18) | C23—C24 | 1.395 (2) |
C11—N2 | 1.4681 (18) | C23—H23 | 0.93 |
C11—H11 | 0.98 | C24—N3 | 1.3753 (17) |
C12—N2 | 1.2924 (17) | N3—H3N | 0.86 |
N1—C1—C2 | 126.42 (13) | C14—C13—C18 | 118.39 (13) |
N1—C1—Cl1 | 114.91 (11) | C14—C13—C12 | 120.11 (12) |
C2—C1—Cl1 | 118.67 (10) | C18—C13—C12 | 121.44 (13) |
C3—C2—C1 | 115.65 (12) | C15—C14—C13 | 121.05 (13) |
C3—C2—C11 | 120.34 (12) | C15—C14—H14 | 119.5 |
C1—C2—C11 | 123.96 (12) | C13—C14—H14 | 119.5 |
C2—C3—C4 | 121.16 (13) | C14—C15—C16 | 120.21 (14) |
C2—C3—H3 | 119.4 | C14—C15—H15 | 119.9 |
C4—C3—H3 | 119.4 | C16—C15—H15 | 119.9 |
C10—C4—C3 | 117.58 (13) | C17—C16—C15 | 119.22 (14) |
C10—C4—C5 | 119.81 (13) | C17—C16—H16 | 120.4 |
C3—C4—C5 | 122.59 (14) | C15—C16—H16 | 120.4 |
C6—C5—C4 | 120.01 (15) | C16—C17—C18 | 120.96 (14) |
C6—C5—H5 | 120 | C16—C17—H17 | 119.5 |
C4—C5—H5 | 120 | C18—C17—H17 | 119.5 |
C5—C6—C7 | 119.94 (14) | C17—C18—C13 | 120.16 (14) |
C5—C6—H6 | 120 | C17—C18—H18 | 119.9 |
C7—C6—H6 | 120 | C13—C18—H18 | 119.9 |
C8—C7—C6 | 122.67 (14) | C20—C19—C24 | 118.54 (13) |
C8—C7—H7 | 118.7 | C20—C19—C12 | 125.02 (13) |
C6—C7—H7 | 118.7 | C24—C19—C12 | 116.21 (12) |
C7—C8—C10 | 117.71 (15) | C21—C20—C19 | 120.35 (15) |
C7—C8—C9 | 122.46 (14) | C21—C20—H20 | 119.8 |
C10—C8—C9 | 119.83 (15) | C19—C20—H20 | 119.8 |
C8—C9—H9A | 109.5 | C20—C21—C22 | 120.36 (13) |
C8—C9—H9B | 109.5 | C20—C21—H21 | 119.8 |
H9A—C9—H9B | 109.5 | C22—C21—H21 | 119.8 |
C8—C9—H9C | 109.5 | C23—C22—C21 | 120.51 (14) |
H9A—C9—H9C | 109.5 | C23—C22—H22 | 119.7 |
H9B—C9—H9C | 109.5 | C21—C22—H22 | 119.7 |
N1—C10—C4 | 121.56 (12) | C22—C23—C24 | 119.53 (14) |
N1—C10—C8 | 118.58 (14) | C22—C23—H23 | 120.2 |
C4—C10—C8 | 119.85 (14) | C24—C23—H23 | 120.2 |
N3—C11—N2 | 110.52 (11) | N3—C24—C23 | 122.85 (13) |
N3—C11—C2 | 109.11 (11) | N3—C24—C19 | 116.63 (12) |
N2—C11—C2 | 110.92 (11) | C23—C24—C19 | 120.51 (13) |
N3—C11—H11 | 108.7 | C1—N1—C10 | 117.61 (12) |
N2—C11—H11 | 108.7 | C12—N2—C11 | 114.49 (11) |
C2—C11—H11 | 108.7 | C24—N3—C11 | 115.21 (11) |
N2—C12—C19 | 122.44 (13) | C24—N3—H3N | 122.4 |
N2—C12—C13 | 117.27 (12) | C11—N3—H3N | 122.4 |
C19—C12—C13 | 120.16 (12) | ||
N1—C1—C2—C3 | 0.8 (2) | C14—C15—C16—C17 | 0.4 (2) |
Cl1—C1—C2—C3 | −178.49 (10) | C15—C16—C17—C18 | −0.6 (2) |
N1—C1—C2—C11 | 178.55 (13) | C16—C17—C18—C13 | 0.7 (2) |
Cl1—C1—C2—C11 | −0.74 (19) | C14—C13—C18—C17 | −0.6 (2) |
C1—C2—C3—C4 | −0.7 (2) | C12—C13—C18—C17 | −177.81 (13) |
C11—C2—C3—C4 | −178.50 (12) | N2—C12—C19—C20 | 163.29 (14) |
C2—C3—C4—C10 | 0.1 (2) | C13—C12—C19—C20 | −21.0 (2) |
C2—C3—C4—C5 | −178.31 (13) | N2—C12—C19—C24 | −22.4 (2) |
C10—C4—C5—C6 | −0.1 (2) | C13—C12—C19—C24 | 153.26 (13) |
C3—C4—C5—C6 | 178.33 (14) | C24—C19—C20—C21 | −3.3 (2) |
C4—C5—C6—C7 | 0.9 (2) | C12—C19—C20—C21 | 170.81 (14) |
C5—C6—C7—C8 | −1.0 (3) | C19—C20—C21—C22 | −0.5 (2) |
C6—C7—C8—C10 | 0.3 (3) | C20—C21—C22—C23 | 2.9 (2) |
C6—C7—C8—C9 | −178.86 (18) | C21—C22—C23—C24 | −1.3 (2) |
C3—C4—C10—N1 | 0.4 (2) | C22—C23—C24—N3 | 178.18 (14) |
C5—C4—C10—N1 | 178.87 (13) | C22—C23—C24—C19 | −2.6 (2) |
C3—C4—C10—C8 | −179.12 (14) | C20—C19—C24—N3 | −175.84 (13) |
C5—C4—C10—C8 | −0.6 (2) | C12—C19—C24—N3 | 9.50 (19) |
C7—C8—C10—N1 | −179.01 (14) | C20—C19—C24—C23 | 4.9 (2) |
C9—C8—C10—N1 | 0.2 (2) | C12—C19—C24—C23 | −169.73 (13) |
C7—C8—C10—C4 | 0.5 (2) | C2—C1—N1—C10 | −0.3 (2) |
C9—C8—C10—C4 | 179.71 (17) | Cl1—C1—N1—C10 | 178.99 (10) |
C3—C2—C11—N3 | 71.53 (16) | C4—C10—N1—C1 | −0.3 (2) |
C1—C2—C11—N3 | −106.12 (15) | C8—C10—N1—C1 | 179.22 (14) |
C3—C2—C11—N2 | −50.45 (17) | C19—C12—N2—C11 | −5.44 (19) |
C1—C2—C11—N2 | 131.90 (14) | C13—C12—N2—C11 | 178.74 (12) |
N2—C12—C13—C14 | −34.96 (19) | N3—C11—N2—C12 | 42.97 (16) |
C19—C12—C13—C14 | 149.12 (13) | C2—C11—N2—C12 | 164.12 (12) |
N2—C12—C13—C18 | 142.19 (14) | C23—C24—N3—C11 | −151.84 (13) |
C19—C12—C13—C18 | −33.73 (19) | C19—C24—N3—C11 | 28.95 (18) |
C18—C13—C14—C15 | 0.4 (2) | N2—C11—N3—C24 | −56.16 (15) |
C12—C13—C14—C15 | 177.67 (13) | C2—C11—N3—C24 | −178.38 (12) |
C13—C14—C15—C16 | −0.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···N2i | 0.86 | 2.26 | 3.0998 (18) | 165 |
C11—H11···Cl1 | 0.98 | 2.58 | 3.1166 (16) | 115 |
Symmetry code: (i) −x+1, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···N2i | 0.8600 | 2.2600 | 3.0998 (18) | 165.00 |
Symmetry code: (i) −x+1, y−1/2, −z+3/2. |
Acknowledgements
We are grateful to all personnel of the Laboratoire de Synthèse des Molécules d'intérêts Biologiques and UR–CHEMS, Université Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, Algeria) for financial support.
References
Besson, T. & Chosson, E. (2007). Comb. Chem. High Throughput Screening, 10, 903–917. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377. Web of Science CrossRef PubMed CAS Google Scholar
Connolly, D. J., Cusack, D., O'Sullivan, T. P. & Guiry, P. J. (2005). Tetrahedron, 61, 10153–10202. Web of Science CrossRef CAS Google Scholar
Debache, A., Boulcina, R., Belfaitah, A., Rhouati, S. & Carboni, B. (2008). Synlett, pp. 509–512. Web of Science CrossRef Google Scholar
Debache, A., Ghalem, W., Boulcina, R., Belfaitah, A., Rhouati, S. & Carboni, B. (2009). Tetrahedron Lett. 50, 5248–5250. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hoemann, M. Z., Kumaravel, G., Xie, R. L., Rossi, R. F., Meyer, S., Sidhu, A., Cuny, G. D. & Hauske, J. R. (2000). Bioorg. Med. Chem. Lett. 10, 2675–2678. Web of Science CrossRef PubMed CAS Google Scholar
Jenekhe, S. A., Lu, L. & Alam, M. M. (2001). Macromolecules, 34, 7315–7324. Web of Science CrossRef CAS Google Scholar
Nemouchi, S., Boulcina, R., Carboni, B. & Debache, A. (2012). C. R. Chim. 15, 394–397. Web of Science CrossRef CAS Google Scholar
Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1035. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It is well known that the quinoline ring system is an important structural unit widely existing in alkaloids, therapeutics and synthetic analogues with interesting biological activities (Roma et al., 2000; Chen et al., 2001). In addition quinolines are valuable synthons for the preparation of nano- and meso-structures with enhanced electronic and photonic functions (Jenekhe et al., 2001). Due to their importance as substructures in a broad range of natural and designed products, significant efforts continue to be directed into the development of new quinoline-based structures (Hoemann et al., 2000). In the other hand, the quinazoline unit represents a useful natural product scaffold with demonstrated activities against numerous disorders. The transferable nature of its properties provides a strong rationale for the development of synthetic methods. Not surprisingly, considerable progress in synthetic methodology applicable to quinazoline alkaloids has been made during the past decade (Connolly et al., 2005; Besson et al., 2007). As part of our research in developing new efficient methods for heterocycles synthesis and also multicomponent reactions (Debache et al., 2008; Debache et al., 2009; Nemouchi et al., 2012), we decided to design some new molecules containing reactive fonctionnalities. As a result of this investigation we report herein a fast and efficient protocol for the synthesis of 2-(2-Chloro-8-methylquinolin-3-yl)-4-phenyl-1,2-dihydroquinazoline via a three-component reaction between 2-aminobenzophenone, 2-chloro-8-methylquinoline-3-carbaldehyde, and ammonium acetate, completed by the X-ray structure analysis.
The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The benzene ring of dihydroquinazoline and methyl-substituted benzene rings of quinoline form a dihedral angles of 45.91 (5) and 79.80 (4)° respectively with a phenyl ring group. The dihedral angle between the phenyl ring of dihydroquinazoline and methyl-substituted benzene rings of quinoline is 78.18 (4) °. The crystal packing can be described as crossed layers parallel to the (011) and (0–11) planes. (Fig. 2). It is stabilized by a N—H···N hydrogen bond (Table 1, Fig. 2) and π-π interactions. however the centroid to centroid small distance between the phenyl rings is 3.7301 (9) Å. These interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the structure.