organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1719-o1720

2-(2-Chloro-8-methyl­quinolin-3-yl)-4-phenyl-1,2-di­hydro­quinazoline

aLaboratoire de Synthèse des Molécules d'intérêts Biologiques, Département de Chimie, Faculté des Sciences Exactes, Université de Constantine 1, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000, Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi 04000, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 9 October 2013; accepted 24 October 2013; online 31 October 2013)

In the title compound, C24H18ClN3, the di­hydro­quinazoline and methyl-substituted quinoline benzene rings make a dihedral angle of 78.18 (4)° and form dihedral angles of 45.91 (5) and 79.80 (4)°, respectively, with the phenyl ring. The dihedral angle between the phenyl ring of di­hydro­quinazoline and the methyl-substituted benzene ring of quinoline is 78.18 (4)°. The crystal packing can be described as crossed layers parallel to the (011) and (0-11) planes. The structure features N—H⋯N hydrogen bonds and ππ inter­actions [centroid–centroid distance between phenyl rings = 3.7301 (9) Å].

Related literature

For the preparation and applications of quinazoline and quinoline derivatives, see: Jenekhe et al. (2001[Jenekhe, S. A., Lu, L. & Alam, M. M. (2001). Macromolecules, 34, 7315-7324.]); Hoemann et al. (2000[Hoemann, M. Z., Kumaravel, G., Xie, R. L., Rossi, R. F., Meyer, S., Sidhu, A., Cuny, G. D. & Hauske, J. R. (2000). Bioorg. Med. Chem. Lett. 10, 2675-2678.]); Connolly et al. (2005[Connolly, D. J., Cusack, D., O'Sullivan, T. P. & Guiry, P. J. (2005). Tetrahedron, 61, 10153-10202.]); Besson et al. (2007[Besson, T. & Chosson, E. (2007). Comb. Chem. High Throughput Screening, 10, 903-917.]); Roma et al. (2000[Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1035.]); Chen et al. (2001[Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2377.]); Debache et al. (2008[Debache, A., Boulcina, R., Belfaitah, A., Rhouati, S. & Carboni, B. (2008). Synlett, pp. 509-512.], 2009[Debache, A., Ghalem, W., Boulcina, R., Belfaitah, A., Rhouati, S. & Carboni, B. (2009). Tetrahedron Lett. 50, 5248-5250.]); Nemouchi et al. (2012[Nemouchi, S., Boulcina, R., Carboni, B. & Debache, A. (2012). C. R. Chim. 15, 394-397.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18ClN3

  • Mr = 383.86

  • Monoclinic, P 21 /c

  • a = 14.4553 (13) Å

  • b = 8.7501 (9) Å

  • c = 16.8630 (16) Å

  • β = 119.696 (6)°

  • V = 1852.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 150 K

  • 0.12 × 0.04 × 0.02 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 1.000

  • 10282 measured reflections

  • 3276 independent reflections

  • 2894 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.06

  • 3276 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N2i 0.86 2.26 3.0998 (18) 165
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

It is well known that the quinoline ring system is an important structural unit widely existing in alkaloids, therapeutics and synthetic analogues with interesting biological activities (Roma et al., 2000; Chen et al., 2001). In addition quinolines are valuable synthons for the preparation of nano- and meso-structures with enhanced electronic and photonic functions (Jenekhe et al., 2001). Due to their importance as substructures in a broad range of natural and designed products, significant efforts continue to be directed into the development of new quinoline-based structures (Hoemann et al., 2000). In the other hand, the quinazoline unit represents a useful natural product scaffold with demonstrated activities against numerous disorders. The transferable nature of its properties provides a strong rationale for the development of synthetic methods. Not surprisingly, considerable progress in synthetic methodology applicable to quinazoline alkaloids has been made during the past decade (Connolly et al., 2005; Besson et al., 2007). As part of our research in developing new efficient methods for heterocycles synthesis and also multicomponent reactions (Debache et al., 2008; Debache et al., 2009; Nemouchi et al., 2012), we decided to design some new molecules containing reactive fonctionnalities. As a result of this investigation we report herein a fast and efficient protocol for the synthesis of 2-(2-Chloro-8-methylquinolin-3-yl)-4-phenyl-1,2-dihydroquinazoline via a three-component reaction between 2-aminobenzophenone, 2-chloro-8-methylquinoline-3-carbaldehyde, and ammonium acetate, completed by the X-ray structure analysis.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The benzene ring of dihydroquinazoline and methyl-substituted benzene rings of quinoline form a dihedral angles of 45.91 (5) and 79.80 (4)° respectively with a phenyl ring group. The dihedral angle between the phenyl ring of dihydroquinazoline and methyl-substituted benzene rings of quinoline is 78.18 (4) °. The crystal packing can be described as crossed layers parallel to the (011) and (0–11) planes. (Fig. 2). It is stabilized by a N—H···N hydrogen bond (Table 1, Fig. 2) and π-π interactions. however the centroid to centroid small distance between the phenyl rings is 3.7301 (9) Å. These interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the structure.

Related literature top

For the preparation and applications of quinazoline and quinoline derivatives, see: Jenekhe et al. (2001); Hoemann et al. (2000); Connolly et al. (2005); Besson et al. (2007); Roma et al. (2000); Chen et al. (2001); Debache et al. (2008, 2009); Nemouchi et al. (2012).

Experimental top

A mixture of 2-chloro-8-methylquinoline-3-carbaldehyde (1.0 equiv), 2-aminobenzophenone (1.0 equiv), ammonium acetate (2.0 equiv), and 4-(N,N-dimethylamino)pyridine (0.2 equiv.) in 5 ml of absolute ethanol was stirred at 40°C. After completion of the reaction as monitored by TLC, the reaction mixture was poured into ice cold water; solid product was filtered, washed with water (3–5 ml) and dried. The crude product was recrystallized from ethyl acetate to give pure dihydroquinazoline as a yellow solid; m.p. 182–184 °C; IR (KBr) ν 3329, 1605, 1551, 1470, 1315, 1080, 756, 698 cm-1; 1H NMR (CDCl3, 250 MHz) δ 8.52 (s, 1H, arom.), 7.74–7.41 (m, 8H, arom.), 7.34–7.26 (m, 2H, arom.), 6.83–6.74 (m, 2H, arom.), 6.48 (s, 1H, CH), 4.79 (s, 1H, NH), 2.81 (s, 3H, CH3); 13 C NMR (CDCl3, 62.5 MHz) δ 167.4, 148.2, 146.8, 146.6, 139.3, 138.0, 136.4, 133.2, 132.6, 130.9, 129.9, 129.3, 123.0, 128.4, 127.5, 127.1, 126.1, 120.4, 118.9, 117.9, 114.8, 68.8, 18.0. Anal. calcd for C24H18N3Cl: C, 75.09; H, 4.73; N, 10.95; Found: C, 75.18; H, 4.94; N, 11.37. HRMS calcd f or C24H19N3Cl (MH+) 384.1189; found 384.1162.

Refinement top

Hydrogen atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and N) with C—H = 0.96 Å (methyl); C—H = 0.93 Å (aromatic) or C—H = 0.98 Å (methine); N—H = 0.86 Å and with Uiso(H) = 1.2 Ueq(Caryl; Cmethine or N) and Uiso(H) = 1.5 Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The title molecule (Farrugia, 2012) with the atomic labelling scheme. The displacement parameters are drawn at the 50% probability level.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) Part of the crystal structure viewed down the b axis showing the hydrogen bonds N—H···N as dashed red lines.
2-(2-Chloro-8-methylquinolin-3-yl)-4-phenyl-1,2-dihydroquinazoline top
Crystal data top
C24H18ClN3F(000) = 800
Mr = 383.86Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4868 reflections
a = 14.4553 (13) Åθ = 2.4–25.1°
b = 8.7501 (9) ŵ = 0.22 mm1
c = 16.8630 (16) ÅT = 150 K
β = 119.696 (6)°Stick, colourless
V = 1852.8 (3) Å30.12 × 0.04 × 0.02 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2894 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1717
Tmin = 0.959, Tmax = 1.000k = 1010
10282 measured reflectionsl = 2020
3276 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.8263P]
where P = (Fo2 + 2Fc2)/3
3276 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C24H18ClN3V = 1852.8 (3) Å3
Mr = 383.86Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4553 (13) ŵ = 0.22 mm1
b = 8.7501 (9) ÅT = 150 K
c = 16.8630 (16) Å0.12 × 0.04 × 0.02 mm
β = 119.696 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3276 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2894 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 1.000Rint = 0.027
10282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
3276 reflectionsΔρmin = 0.26 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.69552 (11)0.67980 (16)0.79870 (9)0.0147 (3)
C20.59188 (11)0.61713 (15)0.74927 (9)0.0127 (3)
C30.57150 (11)0.53348 (16)0.67390 (9)0.0146 (3)
H30.50490.48870.63910.018*
C40.64981 (11)0.51388 (16)0.64785 (9)0.0159 (3)
C50.63045 (12)0.43142 (17)0.56897 (10)0.0209 (3)
H50.56460.38530.53280.025*
C60.70818 (13)0.41953 (19)0.54594 (11)0.0254 (4)
H60.69510.36650.49360.031*
C70.80782 (13)0.4873 (2)0.60120 (11)0.0282 (4)
H70.86020.47650.58490.034*
C80.83123 (12)0.5691 (2)0.67858 (11)0.0269 (4)
C90.93732 (14)0.6438 (3)0.73654 (13)0.0489 (6)
H9A0.97940.63490.70710.073*
H9B0.97340.59440.7950.073*
H9C0.9270.74980.74460.073*
C100.74979 (11)0.58353 (17)0.70258 (10)0.0178 (3)
C110.50792 (11)0.63352 (16)0.77731 (9)0.0131 (3)
H110.53140.71110.82540.016*
C120.32475 (11)0.66315 (15)0.71152 (9)0.0138 (3)
C130.21909 (11)0.71284 (16)0.63629 (10)0.0146 (3)
C140.21119 (11)0.84104 (17)0.58439 (10)0.0167 (3)
H140.27210.89730.59860.02*
C150.11447 (11)0.88597 (18)0.51219 (10)0.0202 (3)
H150.11060.97220.47850.024*
C160.02306 (12)0.80291 (18)0.48979 (10)0.0217 (3)
H160.04210.83250.44090.026*
C170.02994 (12)0.67590 (18)0.54081 (11)0.0223 (3)
H170.03130.62040.52640.027*
C180.12673 (11)0.62970 (17)0.61323 (10)0.0193 (3)
H180.13020.54310.64660.023*
C190.33313 (11)0.58635 (16)0.79269 (10)0.0158 (3)
C200.25708 (12)0.59518 (18)0.82105 (10)0.0215 (3)
H200.20090.66410.79310.026*
C210.26503 (13)0.5023 (2)0.89021 (11)0.0261 (4)
H210.21460.50940.9090.031*
C220.34775 (13)0.39837 (19)0.93189 (10)0.0237 (4)
H220.35070.3330.97650.028*
C230.42583 (12)0.39113 (17)0.90769 (10)0.0192 (3)
H230.4820.32260.93670.023*
C240.41994 (11)0.48728 (16)0.83933 (9)0.0145 (3)
N10.77105 (9)0.66658 (15)0.77866 (8)0.0185 (3)
N20.40582 (9)0.68184 (13)0.69974 (8)0.0136 (3)
N30.49626 (9)0.48955 (14)0.81327 (8)0.0177 (3)
H3N0.53430.41080.8180.021*
Cl10.72959 (3)0.78522 (4)0.89821 (2)0.02018 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0142 (7)0.0167 (7)0.0124 (7)0.0004 (6)0.0059 (6)0.0021 (6)
C20.0125 (7)0.0110 (7)0.0142 (7)0.0021 (5)0.0064 (6)0.0036 (5)
C30.0134 (7)0.0122 (7)0.0170 (7)0.0001 (6)0.0064 (6)0.0020 (6)
C40.0191 (7)0.0134 (7)0.0168 (7)0.0053 (6)0.0100 (6)0.0053 (6)
C50.0259 (8)0.0171 (7)0.0212 (8)0.0033 (6)0.0129 (7)0.0001 (6)
C60.0348 (9)0.0253 (9)0.0221 (8)0.0093 (7)0.0186 (7)0.0019 (7)
C70.0273 (9)0.0406 (10)0.0267 (8)0.0135 (8)0.0209 (8)0.0093 (8)
C80.0184 (8)0.0441 (10)0.0214 (8)0.0068 (7)0.0122 (7)0.0075 (7)
C90.0188 (9)0.1013 (19)0.0341 (10)0.0071 (10)0.0188 (8)0.0086 (11)
C100.0157 (7)0.0236 (8)0.0155 (7)0.0050 (6)0.0089 (6)0.0058 (6)
C110.0124 (7)0.0129 (7)0.0138 (7)0.0008 (5)0.0064 (6)0.0002 (6)
C120.0146 (7)0.0101 (7)0.0176 (7)0.0012 (5)0.0088 (6)0.0041 (5)
C130.0124 (7)0.0160 (7)0.0173 (7)0.0009 (6)0.0087 (6)0.0039 (6)
C140.0129 (7)0.0180 (7)0.0215 (7)0.0008 (6)0.0102 (6)0.0027 (6)
C150.0188 (7)0.0232 (8)0.0211 (7)0.0056 (6)0.0118 (6)0.0041 (6)
C160.0125 (7)0.0302 (9)0.0201 (8)0.0047 (6)0.0064 (6)0.0008 (7)
C170.0122 (7)0.0241 (8)0.0299 (8)0.0023 (6)0.0098 (7)0.0041 (7)
C180.0162 (7)0.0179 (7)0.0251 (8)0.0001 (6)0.0112 (6)0.0003 (6)
C190.0166 (7)0.0146 (7)0.0179 (7)0.0029 (6)0.0099 (6)0.0041 (6)
C200.0195 (8)0.0251 (8)0.0243 (8)0.0009 (6)0.0142 (7)0.0052 (7)
C210.0265 (8)0.0354 (10)0.0268 (8)0.0073 (7)0.0210 (7)0.0067 (7)
C220.0304 (9)0.0258 (8)0.0198 (8)0.0097 (7)0.0160 (7)0.0023 (7)
C230.0229 (8)0.0172 (7)0.0176 (7)0.0027 (6)0.0102 (6)0.0012 (6)
C240.0164 (7)0.0139 (7)0.0149 (7)0.0037 (6)0.0090 (6)0.0045 (6)
N10.0126 (6)0.0272 (7)0.0156 (6)0.0003 (5)0.0071 (5)0.0034 (5)
N20.0113 (6)0.0122 (6)0.0172 (6)0.0008 (5)0.0069 (5)0.0003 (5)
N30.0198 (6)0.0148 (6)0.0255 (7)0.0062 (5)0.0166 (6)0.0058 (5)
Cl10.01497 (19)0.0289 (2)0.01610 (19)0.00583 (15)0.00722 (15)0.00646 (15)
Geometric parameters (Å, º) top
C1—N11.2981 (18)C12—C191.475 (2)
C1—C21.4151 (19)C12—C131.487 (2)
C1—Cl11.7580 (14)C13—C141.392 (2)
C2—C31.366 (2)C13—C181.396 (2)
C2—C111.5118 (18)C14—C151.380 (2)
C3—C41.4129 (19)C14—H140.93
C3—H30.93C15—C161.386 (2)
C4—C101.411 (2)C15—H150.93
C4—C51.414 (2)C16—C171.379 (2)
C5—C61.363 (2)C16—H160.93
C5—H50.93C17—C181.385 (2)
C6—C71.402 (2)C17—H170.93
C6—H60.93C18—H180.93
C7—C81.376 (2)C19—C201.4017 (19)
C7—H70.93C19—C241.402 (2)
C8—C101.427 (2)C20—C211.379 (2)
C8—C91.500 (3)C20—H200.93
C9—H9A0.96C21—C221.385 (2)
C9—H9B0.96C21—H210.93
C9—H9C0.96C22—C231.379 (2)
C10—N11.3704 (19)C22—H220.93
C11—N31.4437 (18)C23—C241.395 (2)
C11—N21.4681 (18)C23—H230.93
C11—H110.98C24—N31.3753 (17)
C12—N21.2924 (17)N3—H3N0.86
N1—C1—C2126.42 (13)C14—C13—C18118.39 (13)
N1—C1—Cl1114.91 (11)C14—C13—C12120.11 (12)
C2—C1—Cl1118.67 (10)C18—C13—C12121.44 (13)
C3—C2—C1115.65 (12)C15—C14—C13121.05 (13)
C3—C2—C11120.34 (12)C15—C14—H14119.5
C1—C2—C11123.96 (12)C13—C14—H14119.5
C2—C3—C4121.16 (13)C14—C15—C16120.21 (14)
C2—C3—H3119.4C14—C15—H15119.9
C4—C3—H3119.4C16—C15—H15119.9
C10—C4—C3117.58 (13)C17—C16—C15119.22 (14)
C10—C4—C5119.81 (13)C17—C16—H16120.4
C3—C4—C5122.59 (14)C15—C16—H16120.4
C6—C5—C4120.01 (15)C16—C17—C18120.96 (14)
C6—C5—H5120C16—C17—H17119.5
C4—C5—H5120C18—C17—H17119.5
C5—C6—C7119.94 (14)C17—C18—C13120.16 (14)
C5—C6—H6120C17—C18—H18119.9
C7—C6—H6120C13—C18—H18119.9
C8—C7—C6122.67 (14)C20—C19—C24118.54 (13)
C8—C7—H7118.7C20—C19—C12125.02 (13)
C6—C7—H7118.7C24—C19—C12116.21 (12)
C7—C8—C10117.71 (15)C21—C20—C19120.35 (15)
C7—C8—C9122.46 (14)C21—C20—H20119.8
C10—C8—C9119.83 (15)C19—C20—H20119.8
C8—C9—H9A109.5C20—C21—C22120.36 (13)
C8—C9—H9B109.5C20—C21—H21119.8
H9A—C9—H9B109.5C22—C21—H21119.8
C8—C9—H9C109.5C23—C22—C21120.51 (14)
H9A—C9—H9C109.5C23—C22—H22119.7
H9B—C9—H9C109.5C21—C22—H22119.7
N1—C10—C4121.56 (12)C22—C23—C24119.53 (14)
N1—C10—C8118.58 (14)C22—C23—H23120.2
C4—C10—C8119.85 (14)C24—C23—H23120.2
N3—C11—N2110.52 (11)N3—C24—C23122.85 (13)
N3—C11—C2109.11 (11)N3—C24—C19116.63 (12)
N2—C11—C2110.92 (11)C23—C24—C19120.51 (13)
N3—C11—H11108.7C1—N1—C10117.61 (12)
N2—C11—H11108.7C12—N2—C11114.49 (11)
C2—C11—H11108.7C24—N3—C11115.21 (11)
N2—C12—C19122.44 (13)C24—N3—H3N122.4
N2—C12—C13117.27 (12)C11—N3—H3N122.4
C19—C12—C13120.16 (12)
N1—C1—C2—C30.8 (2)C14—C15—C16—C170.4 (2)
Cl1—C1—C2—C3178.49 (10)C15—C16—C17—C180.6 (2)
N1—C1—C2—C11178.55 (13)C16—C17—C18—C130.7 (2)
Cl1—C1—C2—C110.74 (19)C14—C13—C18—C170.6 (2)
C1—C2—C3—C40.7 (2)C12—C13—C18—C17177.81 (13)
C11—C2—C3—C4178.50 (12)N2—C12—C19—C20163.29 (14)
C2—C3—C4—C100.1 (2)C13—C12—C19—C2021.0 (2)
C2—C3—C4—C5178.31 (13)N2—C12—C19—C2422.4 (2)
C10—C4—C5—C60.1 (2)C13—C12—C19—C24153.26 (13)
C3—C4—C5—C6178.33 (14)C24—C19—C20—C213.3 (2)
C4—C5—C6—C70.9 (2)C12—C19—C20—C21170.81 (14)
C5—C6—C7—C81.0 (3)C19—C20—C21—C220.5 (2)
C6—C7—C8—C100.3 (3)C20—C21—C22—C232.9 (2)
C6—C7—C8—C9178.86 (18)C21—C22—C23—C241.3 (2)
C3—C4—C10—N10.4 (2)C22—C23—C24—N3178.18 (14)
C5—C4—C10—N1178.87 (13)C22—C23—C24—C192.6 (2)
C3—C4—C10—C8179.12 (14)C20—C19—C24—N3175.84 (13)
C5—C4—C10—C80.6 (2)C12—C19—C24—N39.50 (19)
C7—C8—C10—N1179.01 (14)C20—C19—C24—C234.9 (2)
C9—C8—C10—N10.2 (2)C12—C19—C24—C23169.73 (13)
C7—C8—C10—C40.5 (2)C2—C1—N1—C100.3 (2)
C9—C8—C10—C4179.71 (17)Cl1—C1—N1—C10178.99 (10)
C3—C2—C11—N371.53 (16)C4—C10—N1—C10.3 (2)
C1—C2—C11—N3106.12 (15)C8—C10—N1—C1179.22 (14)
C3—C2—C11—N250.45 (17)C19—C12—N2—C115.44 (19)
C1—C2—C11—N2131.90 (14)C13—C12—N2—C11178.74 (12)
N2—C12—C13—C1434.96 (19)N3—C11—N2—C1242.97 (16)
C19—C12—C13—C14149.12 (13)C2—C11—N2—C12164.12 (12)
N2—C12—C13—C18142.19 (14)C23—C24—N3—C11151.84 (13)
C19—C12—C13—C1833.73 (19)C19—C24—N3—C1128.95 (18)
C18—C13—C14—C150.4 (2)N2—C11—N3—C2456.16 (15)
C12—C13—C14—C15177.67 (13)C2—C11—N3—C24178.38 (12)
C13—C14—C15—C160.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N2i0.862.263.0998 (18)165
C11—H11···Cl10.982.583.1166 (16)115
Symmetry code: (i) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N2i0.86002.26003.0998 (18)165.00
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

We are grateful to all personnel of the Laboratoire de Synthèse des Molécules d'intérêts Biologiques and UR–CHEMS, Université Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, Algeria) for financial support.

References

First citationBesson, T. & Chosson, E. (2007). Comb. Chem. High Throughput Screening, 10, 903–917.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationChen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationConnolly, D. J., Cusack, D., O'Sullivan, T. P. & Guiry, P. J. (2005). Tetrahedron, 61, 10153–10202.  Web of Science CrossRef CAS Google Scholar
First citationDebache, A., Boulcina, R., Belfaitah, A., Rhouati, S. & Carboni, B. (2008). Synlett, pp. 509–512.  Web of Science CrossRef Google Scholar
First citationDebache, A., Ghalem, W., Boulcina, R., Belfaitah, A., Rhouati, S. & Carboni, B. (2009). Tetrahedron Lett. 50, 5248–5250.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHoemann, M. Z., Kumaravel, G., Xie, R. L., Rossi, R. F., Meyer, S., Sidhu, A., Cuny, G. D. & Hauske, J. R. (2000). Bioorg. Med. Chem. Lett. 10, 2675–2678.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJenekhe, S. A., Lu, L. & Alam, M. M. (2001). Macromolecules, 34, 7315–7324.  Web of Science CrossRef CAS Google Scholar
First citationNemouchi, S., Boulcina, R., Carboni, B. & Debache, A. (2012). C. R. Chim. 15, 394–397.  Web of Science CrossRef CAS Google Scholar
First citationRoma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1035.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1719-o1720
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds