organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1H-Indol-3-yl­methyl­­idene)-4-methyl­piperazin-1-amine

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 16 October 2013; accepted 17 October 2013; online 26 October 2013)

In the title compound, C14H18N4, the piperazine ring is in a slightly distorted chair conformation. The indole ring system is twisted from the piperazine ring, making a dihedral angle of 7.27 (11)°. In the crystal, N—H⋯N hydrogen bonds link mol­ecules into chains along [10-1].

Related literature

For a review of the current pharmacological and toxicological information for piperazine, see: Elliott (2011[Elliott, S. (2011). Drug Test Anal. 3, 430-438.]). For the biological activity of Schiff base ligands, see: Kharb et al. (2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470-2488.]); Savaliya et al. (2010[Savaliya, M. D., Dobaria, J. G. & Purohit, D. M. (2010). An Indian J. 6, 267-271.]); Xu et al. (2012[Xu, R.-B., Zhang, N., Zhou, H.-Y., Yang, S.-P., Li, Y.-Y., Shi, D.-H., Ma, W.-X. & Xu, X.-Y. (2012). J. Chem. Crystallogr. 42, 928-932.]). For related structures, see: Guo (2007[Guo, M.-L. (2007). Acta Cryst. E63, o1788-o1789.]); Ming-Lin et al. (2007[Ming-Lin, G. & You-Nong, Q. (2007). Acta Cryst. E63, o4641.]); Xu et al. (2009[Xu, R.-B., Xu, X.-Y., Wang, D.-Q., Yang, X.-J. & Li, S. (2009). Acta Cryst. E65, o2997.]); Zhou et al. (2011[Zhou, L.-N., Yan, L., Zhou, H.-L., Yang, Q.-F. & Hu, Q.-L. (2011). Acta Cryst. E67, o100.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N4

  • Mr = 242.32

  • Monoclinic, P n

  • a = 7.5630 (5) Å

  • b = 6.5593 (4) Å

  • c = 13.2319 (9) Å

  • β = 100.072 (6)°

  • V = 646.29 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.48 × 0.33 × 0.18 mm

Data collection
  • Agilent Gemini Eos diffractometer

  • Absorption correction: multi-scan CrysAlis PRO and CrysAlis RED, Agilent (2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]). Tmin = 0.868, Tmax = 1.000

  • 7074 measured reflections

  • 3857 independent reflections

  • 3214 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.163

  • S = 1.06

  • 3857 reflections

  • 165 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N1i 0.88 2.29 2.947 (3) 131
Symmetry code: (i) [x-{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The Schiff base ligands derived from 1-amino-4-methylpiperazine have attracted the interest due to diverse biological applications found with piperazine moiety. Schiff base piperazine derivatives were found to be designed for the study of their antimicrobial activity (Savaliya et al., 2010) and antibacterial activity (Xu et al., 2012). A valuable insight into recent advances on antimicrobial activity of piperazine derivatives is reported (Kharb et al., 2012). A review on the current pharmacological and toxicological information for piperazine derivatives is described (Elliott, 2011). The crystal structures of some related compounds, viz., 2-[(4-methyl piperazin-1-yl)iminomethyl]phenol (Guo, 2007), 1,4-bis{3-[4-(dimethy lamino)benzylideneamino] propyl}piperazine (Xu et al., 2009), 2-methoxy-4-[(4-methylpiperazin-1-yl)-iminomethyl]phenol (Zhou et al., 2011) and 2,4-dibromo-6-[(4-methylpiperazin-1-yl) iminomethyl]phenol (Ming-Lin et al., 2007) have been reported. In view of the above importance of N-piperazinyl Schiff bases, the title compound, (I), C14H18N4, has been synthesized and the crystal structure is reported.

The title compound, (I), crystallizes with one independent molecule in the asymmetric unit (Fig .1). In the molecule, the piperazine ring is in a slightly disordered chair conformation (puckering parameters Q, θ, and ϕ = 0.568 (3)Å, 175.2 (3)° and 225 (3)°; Cremer & Pople, 1975). The indole ring is twisted from the piperazine ring with a N2/N3/C5/C6 torsion angle of -172.3 (2)°. Bond lengths are in normal ranges (Allen et al., 1987). N—H···N intermolecular hydrogen bonds (Table 1) are observed which link the molecules into chains along [1 0 -1] and influence crystal packing (Fig. 2).

Related literature top

For a review of the current pharmacological and toxicological information for piperazine, see: Elliott (2011). For the biological activity of Schiff base ligands, see: Kharb et al. (2012); Savaliya et al. (2010); Xu et al. (2012). For related structures, see: Guo (2007); Ming-Lin et al. (2007); Xu et al. (2009); Zhou et al. (2011). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a solution of indole-3-carboxaldehyde (0.75 g, 0.005 mol) in a mixture of 5 ml of methanol and 5 ml of dichloromethane, an equimolar amount of (1-amino-4-methyl)piperazine (0.57 g, 0.005 mol) is added dropwise with constant stirring. The mixture was refluxed for eight hours to obtain a solution. The solution was evaporated to a small volume at room temperature and allowed to stand. The crystals were formed in one day (m.p.: 459-463 K) and were used as such for x-ray diffraction studies.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2), 0.98Å (CH3) or 0.88Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as rotating groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C14H18N4) showing the labeling scheme with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the a axis. Dashed lines indicate N—H···N intermolecular hydrogen bonds linking the molecules into chains along [1 0 -1]. H atoms not involved in hydrogen bonding have been removed for clarity.
N-(1H-Indol-3-ylmethylidene)-4-methylpiperazin-1-amine top
Crystal data top
C14H18N4F(000) = 260
Mr = 242.32Dx = 1.245 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
a = 7.5630 (5) ÅCell parameters from 2079 reflections
b = 6.5593 (4) Åθ = 3.4–33.0°
c = 13.2319 (9) ŵ = 0.08 mm1
β = 100.072 (6)°T = 173 K
V = 646.29 (7) Å3Irregular, yellow
Z = 20.48 × 0.33 × 0.18 mm
Data collection top
Agilent Gemini Eos
diffractometer
3857 independent reflections
Radiation source: Enhance (Mo) X-ray Source3214 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.050
ω scansθmax = 33.1°, θmin = 3.4°
Absorption correction: multi-scan
CrysAlis PRO and CrysAlis RED, Agilent (2012).
h = 911
Tmin = 0.868, Tmax = 1.000k = 69
7074 measured reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0862P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.163(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.35 e Å3
3857 reflectionsΔρmin = 0.31 e Å3
165 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.027 (9)
Primary atom site location: iterative
Crystal data top
C14H18N4V = 646.29 (7) Å3
Mr = 242.32Z = 2
Monoclinic, PnMo Kα radiation
a = 7.5630 (5) ŵ = 0.08 mm1
b = 6.5593 (4) ÅT = 173 K
c = 13.2319 (9) Å0.48 × 0.33 × 0.18 mm
β = 100.072 (6)°
Data collection top
Agilent Gemini Eos
diffractometer
3857 independent reflections
Absorption correction: multi-scan
CrysAlis PRO and CrysAlis RED, Agilent (2012).
3214 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 1.000Rint = 0.050
7074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0582 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
3857 reflectionsΔρmin = 0.31 e Å3
165 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5403 (3)1.0302 (3)0.32552 (17)0.0256 (4)
N20.4353 (3)0.8708 (3)0.50758 (17)0.0256 (5)
N30.4539 (3)0.7746 (4)0.60330 (19)0.0283 (5)
N40.3483 (3)0.2381 (3)0.8128 (2)0.0289 (5)
H40.31680.11970.83550.035*
C10.5358 (4)1.1586 (4)0.4158 (2)0.0262 (5)
H1A0.41671.22480.40970.031*
H1B0.62791.26680.41960.031*
C20.5711 (3)1.0305 (4)0.5122 (2)0.0252 (5)
H2A0.69180.96780.51940.030*
H2B0.56861.11810.57280.030*
C30.4253 (4)0.7427 (4)0.4164 (2)0.0270 (5)
H3A0.32320.64700.41250.032*
H3B0.53690.66150.42140.032*
C40.4012 (3)0.8721 (4)0.3205 (2)0.0287 (5)
H4A0.40520.78340.26040.034*
H4B0.28160.93790.31080.034*
C50.4143 (4)0.5839 (4)0.6077 (2)0.0271 (5)
H50.38720.50750.54590.032*
C60.4101 (4)0.4842 (4)0.7047 (2)0.0268 (5)
C70.3487 (4)0.2858 (4)0.7119 (2)0.0276 (5)
H70.31250.19670.65550.033*
C80.4050 (3)0.4047 (4)0.8729 (2)0.0256 (5)
C90.4229 (4)0.4299 (5)0.9786 (2)0.0329 (6)
H90.39530.32241.02140.039*
C100.4827 (4)0.6176 (5)1.0192 (2)0.0368 (6)
H100.49460.63981.09100.044*
C110.5260 (4)0.7757 (5)0.9559 (2)0.0358 (7)
H110.56790.90230.98580.043*
C120.5083 (4)0.7494 (4)0.8510 (3)0.0302 (6)
H120.53770.85690.80880.036*
C130.4467 (3)0.5622 (4)0.8078 (2)0.0247 (5)
C140.5122 (4)1.1517 (5)0.2313 (2)0.0363 (7)
H14A0.39411.21730.22260.054*
H14B0.51791.06280.17240.054*
H14C0.60581.25630.23590.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0311 (10)0.0236 (10)0.0232 (10)0.0024 (9)0.0083 (8)0.0033 (8)
N20.0341 (11)0.0196 (9)0.0250 (11)0.0007 (9)0.0107 (8)0.0011 (8)
N30.0346 (11)0.0256 (11)0.0272 (11)0.0005 (9)0.0121 (9)0.0022 (9)
N40.0360 (12)0.0201 (10)0.0321 (12)0.0038 (9)0.0098 (9)0.0035 (9)
C10.0328 (12)0.0182 (10)0.0290 (13)0.0009 (10)0.0093 (10)0.0015 (10)
C20.0313 (12)0.0203 (11)0.0256 (13)0.0021 (9)0.0098 (9)0.0002 (9)
C30.0328 (13)0.0219 (11)0.0269 (13)0.0018 (10)0.0070 (10)0.0010 (10)
C40.0314 (12)0.0290 (13)0.0257 (13)0.0003 (10)0.0052 (10)0.0005 (10)
C50.0332 (12)0.0232 (12)0.0271 (13)0.0017 (10)0.0116 (10)0.0002 (10)
C60.0300 (12)0.0224 (11)0.0301 (13)0.0019 (9)0.0112 (9)0.0001 (10)
C70.0320 (12)0.0223 (11)0.0303 (14)0.0016 (10)0.0101 (10)0.0002 (10)
C80.0258 (11)0.0207 (11)0.0303 (13)0.0013 (10)0.0048 (9)0.0037 (10)
C90.0337 (13)0.0340 (14)0.0299 (14)0.0037 (12)0.0026 (10)0.0072 (12)
C100.0375 (15)0.0410 (16)0.0299 (15)0.0053 (13)0.0002 (11)0.0015 (12)
C110.0359 (15)0.0325 (14)0.0380 (17)0.0076 (12)0.0040 (12)0.0043 (12)
C120.0268 (11)0.0255 (12)0.0388 (15)0.0048 (10)0.0072 (10)0.0011 (11)
C130.0217 (10)0.0215 (11)0.0318 (13)0.0004 (9)0.0073 (9)0.0048 (10)
C140.0454 (16)0.0343 (15)0.0293 (14)0.0004 (13)0.0069 (12)0.0098 (12)
Geometric parameters (Å, º) top
N1—C11.467 (3)C4—H4B0.9900
N1—C41.470 (3)C5—H50.9500
N1—C141.463 (4)C5—C61.446 (4)
N2—N31.400 (3)C6—C71.390 (4)
N2—C21.461 (3)C6—C131.438 (4)
N2—C31.462 (3)C7—H70.9500
N3—C51.289 (4)C8—C91.392 (4)
N4—H40.8800C8—C131.416 (4)
N4—C71.371 (4)C9—H90.9500
N4—C81.375 (4)C9—C101.387 (4)
C1—H1A0.9900C10—H100.9500
C1—H1B0.9900C10—C111.407 (5)
C1—C21.511 (4)C11—H110.9500
C2—H2A0.9900C11—C121.382 (4)
C2—H2B0.9900C12—H120.9500
C3—H3A0.9900C12—C131.399 (4)
C3—H3B0.9900C14—H14A0.9800
C3—C41.510 (4)C14—H14B0.9800
C4—H4A0.9900C14—H14C0.9800
C1—N1—C4108.8 (2)N3—C5—H5119.3
C14—N1—C1111.1 (2)N3—C5—C6121.3 (3)
C14—N1—C4110.5 (2)C6—C5—H5119.3
N3—N2—C2109.1 (2)C7—C6—C5122.9 (3)
N3—N2—C3118.0 (2)C7—C6—C13106.2 (2)
C2—N2—C3112.4 (2)C13—C6—C5130.6 (2)
C5—N3—N2119.4 (2)N4—C7—C6109.8 (2)
C7—N4—H4125.4N4—C7—H7125.1
C7—N4—C8109.1 (2)C6—C7—H7125.1
C8—N4—H4125.4N4—C8—C9129.9 (3)
N1—C1—H1A109.7N4—C8—C13108.0 (2)
N1—C1—H1B109.7C9—C8—C13122.1 (3)
N1—C1—C2110.0 (2)C8—C9—H9121.2
H1A—C1—H1B108.2C10—C9—C8117.6 (3)
C2—C1—H1A109.7C10—C9—H9121.2
C2—C1—H1B109.7C9—C10—H10119.4
N2—C2—C1110.1 (2)C9—C10—C11121.2 (3)
N2—C2—H2A109.6C11—C10—H10119.4
N2—C2—H2B109.6C10—C11—H11119.5
C1—C2—H2A109.6C12—C11—C10120.9 (3)
C1—C2—H2B109.6C12—C11—H11119.5
H2A—C2—H2B108.2C11—C12—H12120.4
N2—C3—H3A109.5C11—C12—C13119.1 (3)
N2—C3—H3B109.5C13—C12—H12120.4
N2—C3—C4110.6 (2)C8—C13—C6106.9 (2)
H3A—C3—H3B108.1C12—C13—C6134.0 (3)
C4—C3—H3A109.5C12—C13—C8119.1 (3)
C4—C3—H3B109.5N1—C14—H14A109.5
N1—C4—C3112.2 (2)N1—C14—H14B109.5
N1—C4—H4A109.2N1—C14—H14C109.5
N1—C4—H4B109.2H14A—C14—H14B109.5
C3—C4—H4A109.2H14A—C14—H14C109.5
C3—C4—H4B109.2H14B—C14—H14C109.5
H4A—C4—H4B107.9
N1—C1—C2—N259.6 (3)C5—C6—C13—C125.0 (5)
N2—N3—C5—C6172.3 (2)C7—N4—C8—C9178.7 (3)
N2—C3—C4—N154.1 (3)C7—N4—C8—C131.3 (3)
N3—N2—C2—C1171.0 (2)C7—C6—C13—C80.0 (3)
N3—N2—C3—C4178.7 (2)C7—C6—C13—C12179.1 (3)
N3—C5—C6—C7172.6 (3)C8—N4—C7—C61.4 (3)
N3—C5—C6—C130.8 (4)C8—C9—C10—C110.9 (4)
N4—C8—C9—C10179.5 (3)C9—C8—C13—C6179.2 (2)
N4—C8—C13—C60.8 (3)C9—C8—C13—C120.1 (4)
N4—C8—C13—C12179.9 (2)C9—C10—C11—C120.7 (5)
C1—N1—C4—C357.8 (3)C10—C11—C12—C130.1 (4)
C2—N2—N3—C5148.2 (2)C11—C12—C13—C6178.8 (3)
C2—N2—C3—C453.0 (3)C11—C12—C13—C80.3 (4)
C3—N2—N3—C518.4 (3)C13—C6—C7—N40.9 (3)
C3—N2—C2—C156.1 (3)C13—C8—C9—C100.5 (4)
C4—N1—C1—C260.0 (3)C14—N1—C1—C2178.1 (2)
C5—C6—C7—N4175.6 (2)C14—N1—C4—C3179.9 (2)
C5—C6—C13—C8174.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N1i0.882.292.947 (3)131
Symmetry code: (i) x1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N1i0.882.292.947 (3)131.1
Symmetry code: (i) x1/2, y+1, z+1/2.
 

Acknowledgements

CNK thanks University of Mysore for research facilities and also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElliott, S. (2011). Drug Test Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGuo, M.-L. (2007). Acta Cryst. E63, o1788–o1789.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470-2488.  CAS Google Scholar
First citationMing-Lin, G. & You-Nong, Q. (2007). Acta Cryst. E63, o4641.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSavaliya, M. D., Dobaria, J. G. & Purohit, D. M. (2010). An Indian J. 6, 267–271.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, R.-B., Xu, X.-Y., Wang, D.-Q., Yang, X.-J. & Li, S. (2009). Acta Cryst. E65, o2997.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, R.-B., Zhang, N., Zhou, H.-Y., Yang, S.-P., Li, Y.-Y., Shi, D.-H., Ma, W.-X. & Xu, X.-Y. (2012). J. Chem. Crystallogr. 42, 928-932.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, L.-N., Yan, L., Zhou, H.-L., Yang, Q.-F. & Hu, Q.-L. (2011). Acta Cryst. E67, o100.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds