metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m570-m571

catena-Poly[2,2′,2′′-nitrilo­tris­­(ethan­aminium) [tri-μ-oxido-tris­­[dioxido­vanadate(V)]] monohydrate]

aDepartment of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA, and bDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555, USA
*Correspondence e-mail: anorquis@haverford.edu

(Received 31 July 2013; accepted 20 September 2013; online 2 October 2013)

The title compound, {(C6H21N4)[V3O9]·H2O}n, crystallizes as a salt with [trenH3]3+ cations [tren is tris­(2-amino­eth­yl)amine], and one-dimensional anionic {[VVO3]}n (metavanadate) chains along the c-axis direction. Three crystallographically distinct VV sites and one occluded water mol­ecule are present for every [trenH3]3+ cation in the unit cell. The {[VVO3]}n chains are composed of vertex-sharing [VO4] tetra­hedra and have a repeat unit of six tetra­hedra. Each tetra­hedron in the chain contains two terminal and two μ2-bridging oxide ligands. The [trenH3]3+ cations, {[VVO3]}n anions and occluded water mol­ecules participate in an extensive three-dimensonal hydrogen-bonding network. The three terminal ammonium sites of the [trenH3]3+ cations each form strong N—H⋯O hydrogen bonds to terminal oxide ligands on the {[VVO3]}n chain. Each occluded water mol­ecule also donates two O—H⋯O hydrogen bonds to the terminal oxide ligands.

Related literature

For properties of organically templated metal oxides, see: Cheetham et al. (1999[Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]). A host of amine-templated metavanadate chains with connectivities identical to the title compound have been reported previously, for examples, see: Riou & Ferey (1996[Riou, D. & Ferey, G. (1996). J. Solid State Chem. 124, 151-154.]); Roman et al. (1991[Roman, P., Aranzabe, A., Luque, A. & Gutierrez-Zorrilla, J. (1991). Mater. Res. Bull. 26, 19-27.]); Smith et al. (2012[Smith, M. D., Blau, S. M., Chang, K. B., Tran, T. T., Zeller, M., Halasyamani, P. S., Schrier, J. & Norquist, A. J. (2012). J. Solid State Chem. 195, 86-93.]). Metavanadate chains with repeat units of six tetra­hedra are known to exist, see: Lin et al. (2003[Lin, B. Z., Li, Z., Pei, X. K. & Liu, P. D. (2003). J. Mol. Struct. 660, 181-186.]); Tyrselová et al. (1995[Tyrselová, J., Kuchta, L. & Pavelcík, F. (1995). Acta Cryst. C51, 1752-1754.]). For details of the H-atom treatment in the refinement, see: Cooper et al. (2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H21N4)[V3O9]·H2O

  • Mr = 464.09

  • Monoclinic, P 21 /c

  • a = 9.6624 (14) Å

  • b = 10.9179 (15) Å

  • c = 15.768 (2) Å

  • β = 100.565 (2)°

  • V = 1635.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 100 K

  • 0.26 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.623, Tmax = 0.746

  • 14279 measured reflections

  • 4719 independent reflections

  • 3195 reflections with I > 2.0σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.094

  • S = 1.00

  • 2860 reflections

  • 208 parameters

  • H-atom parameters not refined

  • Δρmax = 1.44 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Selected bond lengths (Å)

V1—O1 1.613 (3)
V1—O2 1.651 (3)
V1—O3 1.773 (4)
V1—O4 1.793 (3)
V2—V3 3.2585 (11)
V2—O4 1.793 (3)
V2—O5 1.654 (3)
V2—O6 1.623 (4)
V2—O7 1.778 (3)
V3—O3i 1.769 (4)
V3—O7 1.793 (3)
V3—O8 1.651 (4)
V3—O9 1.632 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H1⋯O1i 0.95 2.06 2.997 (6) 170 (1)
O10—H2⋯O9ii 0.95 1.83 2.739 (6) 160 (1)
N2—H7⋯O8iii 0.95 1.97 2.864 (6) 155 (1)
N2—H8⋯O1iii 0.95 2.18 2.951 (6) 138 (1)
N2—H9⋯O5iv 0.95 1.98 2.850 (6) 152 (1)
C4—H13⋯O9iii 0.97 2.50 3.447 (6) 167 (1)
N3—H14⋯O5iv 0.95 2.00 2.912 (6) 162 (1)
N3—H15⋯O2iv 0.95 1.87 2.819 (6) 176 (1)
N3—H16⋯O6v 0.95 2.03 2.853 (6) 144 (1)
N3—H16⋯O10v 0.95 2.23 2.925 (6) 129 (1)
C6—H19⋯O6v 0.97 2.54 3.222 (6) 127 (1)
N4—H21⋯O4v 0.95 2.14 3.013 (6) 152 (1)
N4—H22⋯O2vi 0.95 1.94 2.796 (6) 150 (1)
N4—H23⋯O5iv 0.95 1.90 2.803 (6) 157 (1)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z; (v) -x+1, -y+2, -z+1; (vi) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Organically templated metal oxides have been the subject of sustained interest for many years, owing to their structural diversity and potential to exhibit technologically desirable physical properties (Cheetham et al., 1999). Amine-templated metavanadate chain compounds are no exception, with a number of different topologies for chains with identical connectivity having been reported. The synthesis and crystal structure of the title compound, [trenH3][VO3]3·H2O, is described here. The three-dimensional packing of the title compound is shown in Fig. 2. The {[VVO3]-}n chains are composed of vertex-sharing [VO4] tetrahedra and have a repeat unit of six tetrahedra. Each tetrahedron in the chain contains two terminal and two µ2-bridging oxide ligands. The V – Oterminal and V – Obridging bond lengths range from 1.613 (4) to 1.653 (3) Å and 1.770 (4) to 1.794 (4) Å, respectively. Several compounds containing amine templated metavanadate chains have been previously reported, see: Riou et al. (1996), Roman et al. (1991), Smith et al. (2012), Lin et al. (2003) and Tyrselová et al. (1995). However, the chain topology of the inorganic anion in the title compound is novel. The [trenH3]3+ cations, {[VVO3]-}n anions and occluded water molecules participate in an extensive three-dimensonal hydrogen-bonding network. The three terminal ammonium sites of the [trenH3]3+ cations each form strong N–H···O hydrogen bonds to terminal oxide atoms on the {[VVO3]-}n chain, with N···O distances ranging from 2.796 (5) to 3.013 (5) Å. Each occluded water molecule also donates two O–H···O hydrogen bonds to the terminal oxide atoms, with O···O distances ranging from 2.738 (4) to 2.996 (5) Å.

Related literature top

For properties of rganically templated metal oxides, see: Cheetham et al. (1999). A host of amine-templated metavanadate chains with connectivities identical to the title compound have been reported previously, for examples, see: Riou & Ferey (1996); Roman et al. (1991); Smith et al. (2012). Metavanadate chains with repeat units of six tetrahedra are known to exist, see: Lin et al. (2003); Tyrselová et al. (1995). However, the chain topology of the inorganic anion in the title compound is novel. For details of the H-atom treatment in the refinement, see: Cooper et al. (2010); .

Experimental top

All chemicals (reagent grade) were commercially available and were used as received. Deionized water was used in this synthesis. The title compound was prepared under mild hydrothermal conditions in a 23 mL Teflon-lined stainless-steel autoclave. V2O5 (0.1449 g, 0.7967 mmol), Na2TeO3 (0.0889 g, 0.4012 mmol), tren (0.0620 g, 0.4240 mmol), ethanol (4 ml, 0.069 mol), and H2O (4 ml, 0.22 mol) were mixed to give a reaction mixture with a molar composition ratio of 2:1:1:170:550. The role of Na2TeO3 in this reaction is not understood. Reactions were placed in a 110 °C oven for 5 d. The reactions were then cooled to room temperature at a rate of 6 °C h-1 to promote the growth of large single crystals. Reaction vessels were opened in air, and the title compound was recovered as clear colorless needles in the presence of an unidentified tan powder via vacuum filtration.

Refinement top

While the H atoms were all located in a difference map, they were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H to 0.95, and O—H = 0.95 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed down the c axis. Orange tetrahedra represent [VO4], while red, blue and white spheres represent oxygen, nitrogen, carbon and hydrogen atoms, respectively.
catena-Poly[2,2',2''-nitrilotris(ethanaminium) [tri-µ-oxido-tris[dioxidovanadate(V)]] monohydrate] top
Crystal data top
(C6H21N4)[V3O9]·H2OF(000) = 944
Mr = 464.09Dx = 1.885 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2067 reflections
a = 9.6624 (14) Åθ = 2.6–29.5°
b = 10.9179 (15) ŵ = 1.73 mm1
c = 15.768 (2) ÅT = 100 K
β = 100.565 (2)°Block, colorless
V = 1635.2 (4) Å30.26 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4719 independent reflections
Radiation source: fine focus sealed tube3195 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.623, Tmax = 0.746k = 1515
14279 measured reflectionsl = 2022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters not refined
wR(F2) = 0.094 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.03P)2 + 7.47P] ,
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.0003744
2860 reflectionsΔρmax = 1.44 e Å3
208 parametersΔρmin = 0.68 e Å3
0 restraints
Crystal data top
(C6H21N4)[V3O9]·H2OV = 1635.2 (4) Å3
Mr = 464.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6624 (14) ŵ = 1.73 mm1
b = 10.9179 (15) ÅT = 100 K
c = 15.768 (2) Å0.26 × 0.20 × 0.16 mm
β = 100.565 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4719 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3195 reflections with I > 2.0σ(I)
Tmin = 0.623, Tmax = 0.746Rint = 0.061
14279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.094H-atom parameters not refined
S = 1.00Δρmax = 1.44 e Å3
2860 reflectionsΔρmin = 0.68 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.92597 (7)0.75226 (7)0.71937 (5)0.0135
V20.87185 (7)0.80317 (7)0.49412 (4)0.0120
V30.75379 (8)0.58481 (7)0.35925 (5)0.0152
O10.8914 (4)0.6089 (3)0.7288 (2)0.0320
O21.0944 (3)0.7734 (3)0.7595 (2)0.0217
O30.8219 (5)0.8480 (4)0.7734 (2)0.0498
O40.8935 (3)0.8036 (3)0.6095 (2)0.0244
O51.0270 (3)0.7839 (3)0.4659 (2)0.0220
O60.8112 (4)0.9374 (3)0.4625 (2)0.0379
O70.7512 (4)0.6883 (4)0.4472 (2)0.0354
O80.8542 (4)0.4695 (4)0.4011 (3)0.0429
O90.5943 (3)0.5335 (3)0.3264 (2)0.0233
O100.6272 (4)0.9517 (3)0.2942 (2)0.0326
N10.3633 (3)0.7571 (3)0.4750 (2)0.0124
N20.1483 (4)0.5617 (3)0.4189 (2)0.0186
N30.2327 (4)0.8310 (4)0.6220 (2)0.0199
N40.1714 (4)0.9305 (3)0.3650 (2)0.0173
C10.3965 (4)0.6257 (4)0.4704 (3)0.0144
C20.2953 (4)0.5559 (4)0.4031 (3)0.0161
C30.4414 (4)0.8077 (4)0.5560 (3)0.0180
C40.3751 (4)0.7766 (4)0.6334 (3)0.0178
C50.4008 (5)0.8229 (4)0.4007 (3)0.0195
C60.3272 (4)0.9449 (4)0.3853 (3)0.0186
H10.71690.93340.28070.0389*
H20.56600.97940.24370.0389*
H30.49120.61780.45880.0191*
H40.39360.58940.52590.0187*
H50.29770.59040.34700.0191*
H60.32470.47130.40500.0189*
H70.14450.52680.47360.0240*
H80.08800.51720.37520.0240*
H90.11850.64470.41800.0240*
H100.53790.77650.56560.0209*
H110.44350.89630.55110.0211*
H120.43240.80920.68580.0219*
H130.36820.68860.63900.0222*
H140.17640.79940.57090.0245*
H150.19040.81160.67010.0245*
H160.23990.91740.61730.0245*
H170.37020.77230.34970.0240*
H180.50270.83420.40910.0241*
H190.35080.99580.43660.0226*
H200.35730.98450.33730.0229*
H210.12841.00880.35610.0223*
H220.14650.88280.31400.0223*
H230.14000.89050.41150.0223*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0147 (3)0.0181 (4)0.0087 (3)0.0034 (3)0.0046 (3)0.0010 (3)
V20.0124 (3)0.0158 (4)0.0081 (3)0.0005 (3)0.0028 (3)0.0025 (3)
V30.0125 (3)0.0188 (4)0.0157 (4)0.0053 (3)0.0062 (3)0.0037 (3)
O10.032 (2)0.025 (2)0.036 (2)0.0146 (15)0.0010 (17)0.0016 (16)
O20.0239 (17)0.0250 (18)0.0149 (16)0.0088 (13)0.0000 (13)0.0037 (13)
O30.058 (3)0.074 (3)0.019 (2)0.042 (2)0.0113 (19)0.001 (2)
O40.0225 (16)0.039 (2)0.0122 (15)0.0070 (15)0.0038 (13)0.0007 (15)
O50.0161 (15)0.034 (2)0.0177 (16)0.0063 (13)0.0081 (13)0.0052 (14)
O60.056 (3)0.031 (2)0.025 (2)0.0182 (19)0.0041 (18)0.0015 (16)
O70.032 (2)0.049 (2)0.031 (2)0.0281 (18)0.0210 (17)0.0238 (18)
O80.028 (2)0.032 (2)0.071 (3)0.0053 (17)0.014 (2)0.003 (2)
O90.0206 (16)0.0303 (19)0.0184 (17)0.0104 (14)0.0023 (13)0.0028 (14)
O100.0283 (19)0.047 (2)0.0227 (19)0.0063 (17)0.0044 (15)0.0061 (17)
N10.0124 (16)0.0120 (16)0.0136 (17)0.0000 (14)0.0043 (13)0.0019 (14)
N20.0161 (18)0.0198 (19)0.0188 (19)0.0023 (15)0.0007 (15)0.0005 (16)
N30.0159 (18)0.028 (2)0.0158 (19)0.0045 (16)0.0041 (15)0.0007 (16)
N40.0143 (17)0.0140 (18)0.022 (2)0.0004 (14)0.0004 (15)0.0020 (16)
C10.0109 (19)0.015 (2)0.018 (2)0.0030 (16)0.0043 (16)0.0040 (17)
C20.015 (2)0.015 (2)0.019 (2)0.0045 (16)0.0043 (17)0.0012 (17)
C30.0107 (19)0.019 (2)0.024 (2)0.0026 (17)0.0016 (17)0.0026 (19)
C40.016 (2)0.017 (2)0.018 (2)0.0043 (16)0.0014 (17)0.0005 (17)
C50.015 (2)0.024 (2)0.021 (2)0.0039 (18)0.0090 (18)0.0054 (19)
C60.015 (2)0.014 (2)0.027 (2)0.0009 (17)0.0046 (18)0.0065 (19)
Geometric parameters (Å, º) top
V1—O11.613 (3)N3—H140.950
V1—O21.651 (3)N3—H150.950
V1—O31.773 (4)N3—H160.950
V1—O41.793 (3)N4—C61.489 (5)
V2—V33.2585 (11)N4—H210.950
V2—O41.793 (3)N4—H220.950
V2—O51.654 (3)N4—H230.950
V2—O61.623 (4)C1—C21.510 (6)
V2—O71.778 (3)C1—H30.969
V3—O3i1.769 (4)C1—H40.966
V3—O71.793 (3)C2—H50.967
V3—O81.651 (4)C2—H60.966
V3—O91.632 (3)C3—C41.517 (6)
O10—H10.950C3—H100.978
O10—H20.950C3—H110.970
N1—C11.475 (5)C4—H120.975
N1—C31.468 (5)C4—H130.968
N1—C51.475 (5)C5—C61.508 (6)
N2—C21.488 (5)C5—H170.976
N2—H70.950C5—H180.977
N2—H80.950C6—H190.974
N2—H90.950C6—H200.962
N3—C41.479 (6)
O1—V1—O2107.86 (17)H15—N3—H16109.5
O1—V1—O3112.5 (2)C6—N4—H21109.5
O2—V1—O3109.83 (19)C6—N4—H22109.2
O1—V1—O4112.94 (18)H21—N4—H22109.5
O2—V1—O4108.21 (15)C6—N4—H23109.6
O3—V1—O4105.41 (17)H21—N4—H23109.5
V3—V2—O4128.76 (12)H22—N4—H23109.5
V3—V2—O587.55 (11)N1—C1—C2114.0 (3)
O4—V2—O5109.31 (15)N1—C1—H3108.5
V3—V2—O6113.39 (14)C2—C1—H3109.6
O4—V2—O6106.12 (17)N1—C1—H4108.2
O5—V2—O6109.05 (19)C2—C1—H4107.9
V3—V2—O724.27 (11)H3—C1—H4108.6
O4—V2—O7111.67 (17)C1—C2—N2112.1 (3)
O5—V2—O7110.85 (16)C1—C2—H5109.0
O6—V2—O7109.7 (2)N2—C2—H5108.7
V2—V3—O3i93.50 (13)C1—C2—H6108.2
V2—V3—O724.06 (10)N2—C2—H6108.7
O3i—V3—O7112.99 (19)H5—C2—H6110.2
V2—V3—O8100.80 (15)N1—C3—C4112.9 (3)
O3i—V3—O8110.4 (2)N1—C3—H10109.0
O7—V3—O8105.2 (2)C4—C3—H10109.2
V2—V3—O9130.93 (12)N1—C3—H11108.7
O3i—V3—O9111.19 (18)C4—C3—H11107.8
O7—V3—O9108.37 (16)H10—C3—H11109.1
O8—V3—O9108.46 (19)C3—C4—N3109.4 (4)
V1—O3—V3ii159.3 (2)C3—C4—H12110.0
V2—O4—V1161.2 (2)N3—C4—H12109.1
V3—O7—V2131.66 (19)C3—C4—H13110.0
H1—O10—H2109.5N3—C4—H13109.4
C1—N1—C3109.1 (3)H12—C4—H13108.8
C1—N1—C5110.3 (3)N1—C5—C6112.4 (3)
C3—N1—C5110.2 (3)N1—C5—H17107.3
C2—N2—H7109.4C6—C5—H17107.7
C2—N2—H8109.6N1—C5—H18110.0
H7—N2—H8109.5C6—C5—H18110.1
C2—N2—H9109.5H17—C5—H18109.2
H7—N2—H9109.5C5—C6—N4111.7 (3)
H8—N2—H9109.5C5—C6—H19109.8
C4—N3—H14109.4N4—C6—H19108.2
C4—N3—H15109.9C5—C6—H20108.8
H14—N3—H15109.5N4—C6—H20108.5
C4—N3—H16109.1H19—C6—H20109.8
H14—N3—H16109.5
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1···O1i0.952.062.997 (6)170 (1)
O10—H2···O9iii0.951.832.739 (6)160 (1)
N2—H7···O8iv0.951.972.864 (6)155 (1)
N2—H8···O1iv0.952.182.951 (6)138 (1)
N2—H9···O5v0.951.982.850 (6)152 (1)
C4—H13···O9iv0.972.503.447 (6)167 (1)
N3—H14···O5v0.952.002.912 (6)162 (1)
N3—H15···O2v0.951.872.819 (6)176 (1)
N3—H16···O6vi0.952.032.853 (6)144 (1)
N3—H16···O10vi0.952.232.925 (6)129 (1)
C6—H19···O6vi0.972.543.222 (6)127 (1)
N4—H21···O4vi0.952.143.013 (6)152 (1)
N4—H22···O2vii0.951.942.796 (6)150 (1)
N4—H23···O5v0.951.902.803 (6)157 (1)
Symmetry codes: (i) x, y+3/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x+1, y+2, z+1; (vii) x1, y+3/2, z1/2.
Selected bond lengths (Å) top
V1—O11.613 (3)V2—O61.623 (4)
V1—O21.651 (3)V2—O71.778 (3)
V1—O31.773 (4)V3—O3i1.769 (4)
V1—O41.793 (3)V3—O71.793 (3)
V2—V33.2585 (11)V3—O81.651 (4)
V2—O41.793 (3)V3—O91.632 (3)
V2—O51.654 (3)
Symmetry code: (i) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1···O1i0.9502.0582.997 (6)169.49 (14)
O10—H2···O9ii0.9501.8282.739 (6)159.72 (15)
N2—H7···O8iii0.9501.9742.864 (6)155.08 (16)
N2—H8···O1iii0.9502.1772.951 (6)137.77 (13)
N2—H9···O5iv0.9501.9762.850 (6)152.05 (14)
C4—H13···O9iii0.9682.4973.447 (6)166.90 (12)
N3—H14···O5iv0.9501.9952.912 (6)161.64 (15)
N3—H15···O2iv0.9501.8712.819 (6)175.82 (15)
N3—H16···O6v0.9502.0272.853 (6)144.28 (15)
N3—H16···O10v0.9502.2332.925 (6)128.97 (13)
C6—H19···O6v0.9742.5353.222 (6)127.44 (14)
N4—H21···O4v0.9502.1383.013 (6)152.40 (13)
N4—H22···O2vi0.9501.9352.796 (6)149.71 (14)
N4—H23···O5iv0.9501.9042.803 (6)156.83 (14)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y+2, z+1; (vi) x1, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge support from the NSF (Award No. CHE-0911121), the Henry Dreyfus Teacher–Scholar Awards Program, and grants to Haverford College from the HHMI Undergraduate Science Education Program. MZ acknowledges support for the purchase of a diffractometer from the NSF Grant 0087210, the Ohio Board of Regents Grant CAP-491, and Youngstown State University.

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLin, B. Z., Li, Z., Pei, X. K. & Liu, P. D. (2003). J. Mol. Struct. 660, 181–186.  Web of Science CSD CrossRef CAS Google Scholar
First citationRiou, D. & Ferey, G. (1996). J. Solid State Chem. 124, 151–154.  CSD CrossRef CAS Web of Science Google Scholar
First citationRoman, P., Aranzabe, A., Luque, A. & Gutierrez-Zorrilla, J. (1991). Mater. Res. Bull. 26, 19–27.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, M. D., Blau, S. M., Chang, K. B., Tran, T. T., Zeller, M., Halasyamani, P. S., Schrier, J. & Norquist, A. J. (2012). J. Solid State Chem. 195, 86–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationTyrselová, J., Kuchta, L. & Pavelcík, F. (1995). Acta Cryst. C51, 1752–1754.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m570-m571
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds