metal-organic compounds
Di-μ-acetato-κ4O:O′-bis[(1,10-phenanthroline-κ2N,N′)(trifluoromethanesulfonato-κO)copper(II)]
aMaterials Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand, and bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: sujittra@kku.ac.th
The complete molecule of the title compound, [Cu2(C2H3O2)2(CF3O3S)2(C12H8N2)2], is completed by the application of a twofold rotation and comprises two CuII ions, each of which is pentacoordinated by two N atoms from a bidentate 1,10-phenanthroline (phen) ligand, two O atoms from acetate ligands and an O atom from a trifluoromethanesulfonate anion, forming a (4 + 1) distorted square-pyramidal coordination geometry. The CuII ions are connected by two acetate bridges in a syn–syn configuration. The F atoms of the trifluoromethanesulfonate ligands are disordered, with site-occupation factors of 70 and 30. The molecular structure is stabilized by intramolecular face-to-face π–π interactions with centroid–centroid distances in the range 3.5654 (12)–3.8775(12) Å. The is stabilized by C—H⋯O interactions, leading to a three-dimensional lattice structure.
CCDC reference: 964934
Related literature
For general background to this work, see: Moreira et al. (2007); Calvo et al. (2011); Reinoso et al. (2005, 2007); Ritchie et al. (2006); Wang et al. (2006). For literature used in the synthetic procedures, see: Youngme et al. (2008). For a related see: Tokii et al. (1990). For potential applications, see: Hill & Brown (1986); Mansuy et al. (1991); Hill & Zhang (1995). For an explanation of the τ parameter, see: Addison et al. (1984). For spectroscopic properties, see: Castro et al. (1992); Sletten & Julve (1999).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2000); cell SMART; data reduction: SAINT (Bruker, 2000) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and pubCIF (Westrip, 2010).
Supporting information
CCDC reference: 964934
10.1107/S1600536813027323/im2439sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813027323/im2439Isup2.hkl
A warm ethanolic solution (25 ml) of phen (0.198 g, 1.0 mmol) was added to a warm aqueous solution (15 ml) of Cu(CF3SO3)2 (0.370 g, 1.0 mmol). Then NaO2CCH3 solid (0.124 g, 1.0 mmol) was added to the mixture, yielding a clear dark blue solution. After a week, the blue rectangle-shaped crystals of compound I were obtained. The crystals were filtered off, washed with mother liquor and air-dried. Yield: ca 45%. Anal. Calc. for Cu2C30H24N4O10F6S2: C, 39.78; H, 2.67; N, 6.19%. Found: C, 39.12; H, 2.51; N, 6.36%.
All H atoms were constrained to ideal positions, with C—H = 0.93 Å and Uiso(H) =1.2Ueq(C) for H atoms at phen and C—H = 0.96 Å and Uiso(H) =1.2Ueq(C) for H atoms of acetate groups. Fluorine atoms of the trifluoromethanesulfonato ligands are disordered with site occupation factors of 70:30%.
Data collection: SMART (Bruker, 2000); cell
SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and pubCIF (Westrip, 2010).[Cu2(C2H3O2)2(CF3O3S)2(C12H8N2)2] | F(000) = 1816 |
Mr = 903.72 | Dx = 1.741 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 8485 reflections |
a = 13.1198 (5) Å | θ = 2.3–26.4° |
b = 16.1282 (6) Å | µ = 1.45 mm−1 |
c = 16.3659 (6) Å | T = 293 K |
β = 95.507 (1)° | Block, blue |
V = 3447.0 (2) Å3 | 0.24 × 0.21 × 0.18 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 4178 independent reflections |
Radiation source: fine-focus sealed tube | 3491 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
phi and ω scans | θmax = 28.1°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −17→17 |
Tmin = 0.872, Tmax = 1.000 | k = −21→21 |
23313 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0624P)2 + 1.5014P] where P = (Fo2 + 2Fc2)/3 |
4178 reflections | (Δ/σ)max = 0.001 |
272 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
[Cu2(C2H3O2)2(CF3O3S)2(C12H8N2)2] | V = 3447.0 (2) Å3 |
Mr = 903.72 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 13.1198 (5) Å | µ = 1.45 mm−1 |
b = 16.1282 (6) Å | T = 293 K |
c = 16.3659 (6) Å | 0.24 × 0.21 × 0.18 mm |
β = 95.507 (1)° |
Bruker SMART APEX CCD diffractometer | 4178 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 3491 reflections with I > 2σ(I) |
Tmin = 0.872, Tmax = 1.000 | Rint = 0.022 |
23313 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.37 e Å−3 |
4178 reflections | Δρmin = −0.32 e Å−3 |
272 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.59608 (2) | 0.99743 (1) | 0.70547 (2) | 0.0458 (1) | |
S1 | 0.78035 (4) | 1.01647 (3) | 0.56674 (3) | 0.0539 (2) | |
F1 | 0.8335 (6) | 0.8733 (4) | 0.6161 (4) | 0.176 (4) | 0.700 |
F2 | 0.9340 (5) | 0.9174 (4) | 0.5429 (4) | 0.137 (2) | 0.700 |
F3 | 0.9359 (6) | 0.9687 (6) | 0.6618 (6) | 0.199 (4) | 0.700 |
O1 | 0.63242 (11) | 1.07473 (9) | 0.79413 (10) | 0.0626 (5) | |
O2 | 0.51246 (12) | 1.08054 (9) | 0.64547 (10) | 0.0608 (5) | |
O3 | 0.73435 (13) | 1.03226 (11) | 0.64052 (11) | 0.0712 (6) | |
O4 | 0.8331 (2) | 1.08491 (14) | 0.53822 (17) | 0.1123 (10) | |
O5 | 0.7149 (2) | 0.97542 (18) | 0.50650 (17) | 0.1224 (11) | |
N1 | 0.53445 (12) | 0.90229 (9) | 0.63975 (10) | 0.0449 (5) | |
N2 | 0.68014 (12) | 0.90588 (10) | 0.76211 (9) | 0.0472 (5) | |
C1 | 0.46043 (16) | 0.90316 (14) | 0.57797 (12) | 0.0556 (7) | |
C2 | 0.41990 (18) | 0.83081 (17) | 0.54255 (14) | 0.0640 (8) | |
C3 | 0.45639 (18) | 0.75590 (15) | 0.56951 (15) | 0.0633 (8) | |
C4 | 0.53672 (15) | 0.75244 (12) | 0.63350 (13) | 0.0509 (6) | |
C5 | 0.57234 (13) | 0.82808 (11) | 0.66659 (11) | 0.0423 (5) | |
C6 | 0.65295 (13) | 0.82997 (11) | 0.73215 (11) | 0.0430 (5) | |
C7 | 0.58190 (18) | 0.67773 (13) | 0.66651 (17) | 0.0649 (8) | |
C8 | 0.65946 (18) | 0.67936 (13) | 0.72685 (16) | 0.0642 (8) | |
C9 | 0.69878 (15) | 0.75606 (13) | 0.76071 (13) | 0.0526 (6) | |
C10 | 0.78116 (18) | 0.76280 (16) | 0.82166 (15) | 0.0664 (8) | |
C11 | 0.81020 (18) | 0.83952 (18) | 0.85040 (15) | 0.0701 (8) | |
C12 | 0.75733 (17) | 0.91011 (15) | 0.82085 (13) | 0.0605 (7) | |
C13 | 0.57629 (16) | 1.10508 (11) | 0.84421 (13) | 0.0514 (6) | |
C14 | 0.6188 (2) | 1.17618 (14) | 0.89565 (17) | 0.0706 (8) | |
C15 | 0.8783 (3) | 0.9414 (2) | 0.5977 (2) | 0.0953 (14) | |
F3A | 0.9596 (9) | 0.9817 (7) | 0.6337 (13) | 0.153 (7) | 0.300 |
F1A | 0.8515 (8) | 0.8809 (8) | 0.6463 (7) | 0.083 (3) | 0.300 |
F2A | 0.9048 (15) | 0.9173 (13) | 0.5189 (12) | 0.193 (8) | 0.300 |
H1 | 0.43520 | 0.95390 | 0.55800 | 0.0670* | |
H2 | 0.36750 | 0.83360 | 0.50010 | 0.0770* | |
H3 | 0.42880 | 0.70730 | 0.54610 | 0.0760* | |
H7 | 0.55740 | 0.62700 | 0.64600 | 0.0780* | |
H12 | 0.77660 | 0.96160 | 0.84290 | 0.0730* | |
H14A | 0.68970 | 1.18380 | 0.88760 | 0.1060* | |
H14B | 0.61240 | 1.16460 | 0.95250 | 0.1060* | |
H14C | 0.58140 | 1.22570 | 0.87990 | 0.1060* | |
H8 | 0.68800 | 0.62970 | 0.74680 | 0.0770* | |
H10 | 0.81550 | 0.71570 | 0.84220 | 0.0800* | |
H11 | 0.86560 | 0.84480 | 0.89000 | 0.0840* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0501 (2) | 0.0364 (1) | 0.0522 (2) | 0.0032 (1) | 0.0111 (1) | −0.0044 (1) |
S1 | 0.0583 (3) | 0.0503 (3) | 0.0537 (3) | 0.0031 (2) | 0.0083 (2) | 0.0036 (2) |
F1 | 0.280 (8) | 0.069 (3) | 0.194 (7) | 0.081 (4) | 0.099 (6) | 0.051 (4) |
F2 | 0.115 (3) | 0.157 (5) | 0.152 (4) | 0.072 (3) | 0.077 (4) | 0.039 (4) |
F3 | 0.128 (6) | 0.280 (9) | 0.172 (5) | 0.051 (5) | −0.073 (5) | 0.031 (5) |
O1 | 0.0620 (9) | 0.0553 (8) | 0.0732 (10) | −0.0075 (7) | 0.0200 (7) | −0.0240 (7) |
O2 | 0.0659 (9) | 0.0482 (7) | 0.0716 (9) | 0.0163 (7) | 0.0235 (7) | 0.0118 (7) |
O3 | 0.0704 (10) | 0.0658 (10) | 0.0820 (11) | 0.0007 (8) | 0.0305 (9) | −0.0070 (9) |
O4 | 0.135 (2) | 0.0787 (14) | 0.1311 (19) | −0.0137 (13) | 0.0530 (16) | 0.0345 (13) |
O5 | 0.127 (2) | 0.131 (2) | 0.0992 (18) | 0.0116 (17) | −0.0404 (16) | −0.0369 (16) |
N1 | 0.0464 (8) | 0.0425 (8) | 0.0464 (8) | 0.0047 (6) | 0.0076 (6) | −0.0021 (6) |
N2 | 0.0475 (8) | 0.0505 (9) | 0.0444 (8) | 0.0024 (7) | 0.0084 (6) | −0.0017 (6) |
C1 | 0.0570 (11) | 0.0594 (12) | 0.0500 (11) | 0.0093 (9) | 0.0027 (9) | −0.0019 (9) |
C2 | 0.0589 (12) | 0.0782 (16) | 0.0539 (12) | −0.0017 (10) | −0.0005 (9) | −0.0116 (10) |
C3 | 0.0647 (13) | 0.0629 (13) | 0.0634 (13) | −0.0117 (10) | 0.0125 (10) | −0.0195 (10) |
C4 | 0.0527 (10) | 0.0442 (9) | 0.0586 (11) | −0.0023 (8) | 0.0194 (9) | −0.0061 (8) |
C5 | 0.0433 (8) | 0.0400 (8) | 0.0458 (9) | 0.0023 (7) | 0.0154 (7) | −0.0022 (7) |
C6 | 0.0423 (8) | 0.0433 (9) | 0.0456 (9) | 0.0042 (7) | 0.0154 (7) | 0.0017 (7) |
C7 | 0.0725 (14) | 0.0384 (10) | 0.0869 (16) | −0.0017 (9) | 0.0240 (13) | −0.0038 (10) |
C8 | 0.0719 (14) | 0.0399 (10) | 0.0845 (16) | 0.0131 (9) | 0.0271 (12) | 0.0100 (10) |
C9 | 0.0505 (10) | 0.0547 (11) | 0.0554 (11) | 0.0112 (8) | 0.0189 (9) | 0.0101 (9) |
C10 | 0.0628 (13) | 0.0766 (15) | 0.0608 (13) | 0.0211 (11) | 0.0104 (10) | 0.0149 (11) |
C11 | 0.0553 (12) | 0.1009 (19) | 0.0528 (12) | 0.0110 (12) | −0.0016 (10) | 0.0062 (12) |
C12 | 0.0567 (11) | 0.0728 (14) | 0.0515 (11) | −0.0018 (10) | 0.0028 (9) | −0.0072 (10) |
C13 | 0.0623 (11) | 0.0364 (8) | 0.0575 (11) | −0.0067 (8) | 0.0154 (9) | −0.0053 (8) |
C14 | 0.0791 (15) | 0.0531 (12) | 0.0838 (16) | −0.0205 (11) | 0.0291 (13) | −0.0256 (11) |
C15 | 0.083 (2) | 0.098 (2) | 0.109 (3) | 0.0357 (18) | 0.0305 (19) | 0.0181 (19) |
F3A | 0.046 (3) | 0.082 (5) | 0.32 (2) | 0.000 (3) | −0.039 (7) | 0.004 (8) |
F1A | 0.093 (4) | 0.075 (5) | 0.087 (5) | 0.038 (3) | 0.042 (3) | 0.038 (4) |
F2A | 0.165 (14) | 0.234 (16) | 0.185 (14) | 0.086 (10) | 0.037 (10) | −0.120 (12) |
Cu1—O1 | 1.9376 (16) | C3—C4 | 1.414 (3) |
Cu1—O2 | 1.9385 (16) | C4—C5 | 1.397 (3) |
Cu1—O3 | 2.2597 (18) | C4—C7 | 1.426 (3) |
Cu1—N1 | 1.9995 (15) | C5—C6 | 1.433 (2) |
Cu1—N2 | 2.0148 (16) | C6—C9 | 1.395 (3) |
S1—O3 | 1.4237 (18) | C7—C8 | 1.349 (4) |
S1—O4 | 1.406 (2) | C8—C9 | 1.431 (3) |
S1—O5 | 1.409 (3) | C9—C10 | 1.403 (3) |
S1—C15 | 1.803 (4) | C10—C11 | 1.365 (4) |
F1—C15 | 1.295 (8) | C11—C12 | 1.395 (4) |
F1A—C15 | 1.327 (13) | C13—C14 | 1.498 (3) |
F2—C15 | 1.270 (7) | C1—H1 | 0.9302 |
F2A—C15 | 1.42 (2) | C2—H2 | 0.9304 |
F3—C15 | 1.309 (10) | C3—H3 | 0.9304 |
F3A—C15 | 1.337 (15) | C7—H7 | 0.9299 |
O1—C13 | 1.253 (3) | C8—H8 | 0.9300 |
O2—C13i | 1.256 (3) | C10—H10 | 0.9295 |
N1—C1 | 1.333 (3) | C11—H11 | 0.9301 |
N1—C5 | 1.353 (2) | C12—H12 | 0.9307 |
N2—C12 | 1.329 (3) | C14—H14A | 0.9598 |
N2—C6 | 1.354 (2) | C14—H14B | 0.9605 |
C1—C2 | 1.386 (3) | C14—H14C | 0.9596 |
C2—C3 | 1.358 (4) | ||
Cu1···O5 | 3.760 (3) | O4···H3iv | 2.3363 |
Cu1···O1i | 3.2474 (15) | O4···H11v | 2.7477 |
Cu1···O2i | 3.2315 (16) | O5···H14Bv | 2.7315 |
Cu1···N1i | 3.5407 (16) | O5···H1vi | 2.4275 |
Cu1···N2i | 3.9955 (16) | N1···Cu1i | 3.5407 (16) |
Cu1···C1i | 3.991 (2) | N2···F1A | 3.103 (11) |
Cu1···C5i | 4.1970 (18) | N2···Cu1i | 3.9955 (16) |
Cu1···H8ii | 3.5723 | N2···C1i | 3.344 (3) |
F1···O3 | 2.920 (7) | C1···C12i | 3.439 (3) |
F1···O5 | 2.796 (7) | C1···O5vi | 3.229 (3) |
F1···C6 | 3.251 (8) | C1···N2i | 3.344 (3) |
F1···C14iii | 3.249 (7) | C1···C13i | 3.546 (3) |
F1A···N2 | 3.103 (11) | C1···Cu1i | 3.991 (2) |
F1A···C6 | 3.184 (11) | C3···O4vii | 3.213 (3) |
F1A···C12 | 3.254 (11) | C3···C9i | 3.599 (3) |
F1A···O5 | 3.160 (12) | C5···C6i | 3.525 (2) |
F1A···O3 | 2.881 (12) | C5···Cu1i | 4.1970 (18) |
F2···O5 | 3.027 (7) | C5···C5i | 3.472 (2) |
F2···O4 | 3.006 (7) | C6···C5i | 3.525 (2) |
F2A···O4 | 2.89 (2) | C6···F1A | 3.184 (11) |
F2A···O5 | 2.65 (2) | C6···F1 | 3.251 (8) |
F3···O4 | 2.983 (10) | C8···O1iii | 3.256 (3) |
F3···O3 | 2.826 (8) | C9···C3i | 3.599 (3) |
F3A···O4 | 2.733 (16) | C11···O4viii | 3.293 (4) |
F3A···O3 | 3.078 (12) | C12···C1i | 3.439 (3) |
F1···H14Ciii | 2.6275 | C12···F1A | 3.254 (11) |
F1A···H14Ciii | 2.7013 | C13···C13i | 3.512 (3) |
F3A···H7iv | 2.6700 | C13···C1i | 3.546 (3) |
O1···C8ii | 3.256 (3) | C13···O5viii | 3.335 (3) |
O1···Cu1i | 3.2474 (15) | C14···O5viii | 3.228 (4) |
O2···Cu1i | 3.2315 (16) | C14···F1ii | 3.249 (7) |
O3···F3 | 2.826 (8) | C2···H14Bv | 3.0447 |
O3···F1 | 2.920 (7) | C8···H14Aiii | 2.8533 |
O3···F3A | 3.078 (12) | C13···H1i | 2.9284 |
O3···F1A | 2.881 (12) | H1···C13i | 2.9284 |
O4···F3 | 2.983 (10) | H1···O5vi | 2.4275 |
O4···C3iv | 3.213 (3) | H1···O2 | 2.6401 |
O4···F2 | 3.006 (7) | H3···H7 | 2.5822 |
O4···C11v | 3.293 (4) | H3···O4vii | 2.3363 |
O4···F2A | 2.89 (2) | H7···F3Avii | 2.6700 |
O4···F3A | 2.733 (16) | H7···H3 | 2.5822 |
O5···Cu1 | 3.760 (3) | H8···H10 | 2.5804 |
O5···F2A | 2.65 (2) | H8···Cu1iii | 3.5723 |
O5···C13v | 3.335 (3) | H8···O1iii | 2.6624 |
O5···C14v | 3.228 (4) | H8···O3iii | 2.5589 |
O5···F2 | 3.027 (7) | H10···H8 | 2.5804 |
O5···F1A | 3.160 (12) | H11···O4viii | 2.7477 |
O5···F1 | 2.796 (7) | H12···O1 | 2.6934 |
O5···C1vi | 3.229 (3) | H14A···C8ii | 2.8533 |
O1···H12 | 2.6934 | H14B···C2viii | 3.0447 |
O1···H8ii | 2.6624 | H14B···O5viii | 2.7315 |
O2···H1 | 2.6401 | H14C···F1ii | 2.6275 |
O3···H8ii | 2.5589 | H14C···F1Aii | 2.7013 |
O1—Cu1—O2 | 91.21 (6) | C8—C9—C10 | 124.5 (2) |
O1—Cu1—O3 | 92.37 (6) | C9—C10—C11 | 119.1 (2) |
O1—Cu1—N1 | 162.62 (7) | C10—C11—C12 | 120.5 (2) |
O1—Cu1—N2 | 92.44 (6) | N2—C12—C11 | 121.8 (2) |
O2—Cu1—O3 | 91.76 (7) | O1—C13—C14 | 117.14 (19) |
O2—Cu1—N1 | 94.48 (6) | O1—C13—O2i | 125.13 (18) |
O2—Cu1—N2 | 176.35 (6) | O2i—C13—C14 | 117.73 (19) |
O3—Cu1—N1 | 103.84 (7) | S1—C15—F1 | 107.9 (4) |
O3—Cu1—N2 | 88.28 (6) | S1—C15—F2 | 116.7 (4) |
N1—Cu1—N2 | 81.97 (6) | S1—C15—F3 | 109.9 (5) |
O3—S1—O4 | 113.79 (13) | S1—C15—F1A | 116.1 (5) |
O3—S1—O5 | 113.45 (13) | S1—C15—F2A | 99.1 (8) |
O3—S1—C15 | 103.33 (13) | S1—C15—F3A | 108.3 (5) |
O4—S1—O5 | 115.02 (16) | F1—C15—F2 | 102.1 (5) |
O4—S1—C15 | 105.09 (16) | F1—C15—F3 | 109.8 (6) |
O5—S1—C15 | 104.55 (16) | F2—C15—F3 | 110.0 (6) |
Cu1—O1—C13 | 128.57 (14) | F1A—C15—F2A | 116.4 (10) |
Cu1—O2—C13i | 129.53 (14) | F1A—C15—F3A | 109.8 (9) |
Cu1—O3—S1 | 141.19 (11) | F2A—C15—F3A | 106.2 (12) |
Cu1—N1—C1 | 128.86 (14) | N1—C1—H1 | 118.98 |
Cu1—N1—C5 | 112.78 (12) | C2—C1—H1 | 118.97 |
C1—N1—C5 | 118.28 (16) | C1—C2—H2 | 119.86 |
Cu1—N2—C6 | 112.49 (12) | C3—C2—H2 | 119.87 |
Cu1—N2—C12 | 129.82 (15) | C2—C3—H3 | 120.32 |
C6—N2—C12 | 117.66 (17) | C4—C3—H3 | 120.31 |
N1—C1—C2 | 122.0 (2) | C4—C7—H7 | 119.34 |
C1—C2—C3 | 120.3 (2) | C8—C7—H7 | 119.47 |
C2—C3—C4 | 119.4 (2) | C7—C8—H8 | 119.37 |
C3—C4—C5 | 116.78 (18) | C9—C8—H8 | 119.37 |
C3—C4—C7 | 124.6 (2) | C9—C10—H10 | 120.49 |
C5—C4—C7 | 118.66 (19) | C11—C10—H10 | 120.44 |
N1—C5—C4 | 123.22 (17) | C10—C11—H11 | 119.78 |
N1—C5—C6 | 116.49 (16) | C12—C11—H11 | 119.74 |
C4—C5—C6 | 120.29 (17) | N2—C12—H12 | 119.07 |
N2—C6—C5 | 116.13 (16) | C11—C12—H12 | 119.09 |
N2—C6—C9 | 124.13 (17) | C13—C14—H14A | 109.53 |
C5—C6—C9 | 119.74 (17) | C13—C14—H14B | 109.45 |
C4—C7—C8 | 121.2 (2) | C13—C14—H14C | 109.45 |
C7—C8—C9 | 121.3 (2) | H14A—C14—H14B | 109.50 |
C6—C9—C8 | 118.75 (19) | H14A—C14—H14C | 109.50 |
C6—C9—C10 | 116.73 (19) | H14B—C14—H14C | 109.39 |
O2—Cu1—O1—C13 | 68.10 (18) | Cu1—N1—C1—C2 | −174.67 (16) |
O3—Cu1—O1—C13 | 159.91 (17) | C5—N1—C1—C2 | 1.8 (3) |
N2—Cu1—O1—C13 | −111.71 (17) | Cu1—N1—C5—C4 | 176.12 (15) |
O1—Cu1—O2—C13i | −78.62 (18) | Cu1—N1—C5—C6 | −4.0 (2) |
O3—Cu1—O2—C13i | −171.03 (18) | C1—N1—C5—C4 | −0.9 (3) |
N1—Cu1—O2—C13i | 84.94 (18) | C1—N1—C5—C6 | 178.99 (17) |
O1—Cu1—O3—S1 | −175.37 (18) | Cu1—N2—C6—C5 | 0.7 (2) |
O2—Cu1—O3—S1 | −84.09 (18) | Cu1—N2—C6—C9 | −179.80 (15) |
N1—Cu1—O3—S1 | 10.96 (19) | C12—N2—C6—C5 | −177.49 (17) |
N2—Cu1—O3—S1 | 92.26 (18) | C12—N2—C6—C9 | 2.0 (3) |
O2—Cu1—N1—C1 | −0.85 (18) | Cu1—N2—C12—C11 | −176.94 (16) |
O2—Cu1—N1—C5 | −177.49 (13) | C6—N2—C12—C11 | 0.9 (3) |
O3—Cu1—N1—C1 | −93.78 (17) | N1—C1—C2—C3 | −1.1 (3) |
O3—Cu1—N1—C5 | 89.58 (13) | C1—C2—C3—C4 | −0.6 (3) |
N2—Cu1—N1—C1 | −180.00 (18) | C2—C3—C4—C5 | 1.4 (3) |
N2—Cu1—N1—C5 | 3.37 (13) | C2—C3—C4—C7 | −179.5 (2) |
O1—Cu1—N2—C6 | 161.25 (13) | C3—C4—C7—C8 | 179.0 (2) |
O1—Cu1—N2—C12 | −20.80 (18) | C5—C4—C7—C8 | −1.9 (3) |
O3—Cu1—N2—C6 | −106.45 (13) | C7—C4—C5—C6 | 0.2 (3) |
O3—Cu1—N2—C12 | 71.50 (18) | C3—C4—C5—N1 | −0.7 (3) |
N1—Cu1—N2—C6 | −2.21 (12) | C3—C4—C5—C6 | 179.43 (18) |
N1—Cu1—N2—C12 | 175.74 (18) | C7—C4—C5—N1 | −179.86 (19) |
O4—S1—O3—Cu1 | 146.81 (18) | C4—C5—C6—C9 | 2.6 (3) |
O5—S1—O3—Cu1 | 12.8 (2) | N1—C5—C6—N2 | 2.2 (2) |
C15—S1—O3—Cu1 | −99.8 (2) | N1—C5—C6—C9 | −177.30 (17) |
O3—S1—C15—F1 | 67.4 (4) | C4—C5—C6—N2 | −177.90 (17) |
O3—S1—C15—F2 | −178.4 (4) | N2—C6—C9—C10 | −3.1 (3) |
O3—S1—C15—F3 | −52.3 (5) | C5—C6—C9—C8 | −3.8 (3) |
O4—S1—C15—F1 | −173.0 (4) | C5—C6—C9—C10 | 176.37 (18) |
O4—S1—C15—F2 | −58.8 (4) | N2—C6—C9—C8 | 176.76 (19) |
O4—S1—C15—F3 | 67.2 (5) | C4—C7—C8—C9 | 0.6 (4) |
O5—S1—C15—F1 | −51.5 (4) | C7—C8—C9—C6 | 2.2 (3) |
O5—S1—C15—F2 | 62.7 (4) | C7—C8—C9—C10 | −178.0 (2) |
O5—S1—C15—F3 | −171.3 (5) | C8—C9—C10—C11 | −178.5 (2) |
Cu1—O1—C13—C14 | −167.96 (15) | C6—C9—C10—C11 | 1.3 (3) |
Cu1—O1—C13—O2i | 12.1 (3) | C9—C10—C11—C12 | 1.4 (4) |
Cu1—O2—C13i—O1i | −5.3 (3) | C10—C11—C12—N2 | −2.6 (4) |
Cu1—O2—C13i—C14i | 174.68 (15) |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+3/2, y−1/2, −z+3/2; (iv) x+1/2, y+1/2, z; (v) x, −y+2, z−1/2; (vi) −x+1, −y+2, −z+1; (vii) x−1/2, y−1/2, z; (viii) x, −y+2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O5vi | 0.93 | 2.43 | 3.229 (3) | 144 |
C3—H3···O4vii | 0.93 | 2.34 | 3.213 (3) | 157 |
C8—H8···O3iii | 0.93 | 2.56 | 3.421 (3) | 154 |
Symmetry codes: (iii) −x+3/2, y−1/2, −z+3/2; (vi) −x+1, −y+2, −z+1; (vii) x−1/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O5i | 0.9300 | 2.4300 | 3.229 (3) | 144.00 |
C3—H3···O4ii | 0.9300 | 2.3400 | 3.213 (3) | 157.00 |
C8—H8···O3iii | 0.9300 | 2.5600 | 3.421 (3) | 154.00 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1/2, y−1/2, z; (iii) −x+3/2, y−1/2, −z+3/2. |
Acknowledgements
The authors gratefully acknowledge financial support from the Thailand Research Fund, the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Advanced Functional Materials Cluster of Khon Kaen University and the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Commission on Higher Education, Ministry of Education, Thailand.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Calvo, R., Abud, J. E., Sartoris, R. P. & Santana, R. C. (2011). Phys. Rev. B, 84, 104433, 1–13. Google Scholar
Castro, I., Faus, J., Julve, M., Bois, C., Real, J. A. & Lloret, F. (1992). J. Chem. Soc. Dalton Trans. pp. 47–52. CSD CrossRef Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hill, C. L. & Brown, R. B. (1986). J. Am. Chem. Soc. 108, 536–538. CrossRef CAS PubMed Web of Science Google Scholar
Hill, C. L. & Zhang, X. (1995). Nature (London), 373, 324–326. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mansuy, D., Bartoli, J. F., Battioni, P., Lyon, D. K. & Finke, R. G. (1991). J. Am. Chem. Soc. 113, 7222–7226. CrossRef CAS Web of Science Google Scholar
Moreira, I. P. R., Costa, R., Filatov, M. & Illas, F. (2007). J. Chem. Theory Comput. 3, 764–774. Web of Science CrossRef Google Scholar
Reinoso, S., Vitoria, P., Felices, L. S., Lezama, L. & Gutiérrez-Zorrilla, J. M. (2005). Chem. Eur. J. 11, 1538–1548. Web of Science CSD CrossRef PubMed CAS Google Scholar
Reinoso, S., Vitoria, P., Gutiérrez-Zorrilla, J. M., Lezama, L., Madariaga, J. M., Felices, L. S. & Iturrospe, A. (2007). Inorg. Chem. 46, 4010–4021. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ritchie, C., Burkholder, E., Kögerler, P. & Cronin, L. (2006). Dalton Trans. pp. 1712–1714. Web of Science CSD CrossRef PubMed Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sletten, J. & Julve, M. (1999). Acta Chem. Scand. 53, 631–633. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tokii, T., Watanabe, N., Nakashima, M., Muto, Y., Morooka, M., Ohba, S. & Saito, I. (1990). Bull. Chem. Soc. Jpn, 63, 364–369. CrossRef CAS Web of Science Google Scholar
Wang, J.-P., Ren, Q., Zhao, J.-W. & Niu, J.-Y. (2006). Inorg. Chem. Commun. 9, 1281–1285. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Youngme, S., Cheansirisomboon, A., Danvirutai, C., Pakawatchai, C., Chaichit, N., Engkagul, C., van Albada, G. A., Costa, J. S. & Reedijk, J. (2008). Polyhedron, 27, 1875–1882. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis and characterization of polycarboxylato-bridged dinuclear copper(II) compounds namely dinuclear tetracarboxylato-bridged CuII compounds (paddlewheel-like structure) (e.g. Moreira et al., 2007; Youngme et al., 2008) and also dinuclear CuII compounds containing dicarboxylato-bridges (Tokii et al., 1990; Reinoso et al., 2005; Ritchie et al., 2006) have attacted much attention in several years. These compounds have been prepared with the aim of studying their intramolecular magnetic properties which are determined predominantly by strong antiferromagnetic interactions. In addition, the dicarboxylato-bridged dinuclear CuII compounds have been frequently used as the models for the basic understanding of their magneto-structural correlations in theoretical studies (Moreira et al., 2007; Calvo et al., 2011). Copper(II) compounds containing doubly acetato-bridged dinuclear units, [Cu(phen)(µ-OOCCH3)2Cu(phen)]2+ (where phen = 1,10-phenanthroline), have also been shown to exhibit antiferromagnetic behavior (Tokii et al., 1990). Furthermore, this type of dinuclear unit was used as the secondary building block in functionalized polyoxometalate (POMs) materials (Wang et al., 2006; Reinoso et al., 2007; Calvo et al., 2011) to extend the dimensionality of structures leading to new hybrid materials and more selective applications, for example catalytic properties in organic oxidations (Hill & Brown, 1986; Mansuy et al., 1991; Hill, & Zhang, 1995).
A new doubly acetato-bridged dinuclear CuII compound containing additional trifluoromethanesulfonate anions has been synthesized and its structural features are reported here. Compound I, bis((µ-acetato)(trifluoromethanesulfonato)(1,10-phenanthroline))dicopper(II) crystallized in the space group C2/c with an asymmetric unit containing one half of the dinuclear unit (Fig.1). This dinuclear unit has C2 symmetry around the b axis with Cu···Cu distance of 3.0309 (4) Å. Structurally, compound I consists of two [Cu(phen)(OSO2CF3)]+ cations connected together by two bridging acetato ligands in a syn-syn configuration. Both CuII atoms exhibit five coordination of CuN2O2O' chromophore, with the basal plane consisting of two phen N atoms [Cu—N = 2.0153 (18) and 1.9980 (18) Å] and two O atoms from acetate ligands [Cu—O = 1.9387 (17) and 1.9377 (18)]. Due to symmetry both square planes are parallel to one another. The apical position at CuII is occupied by an O atom from trifluoromethanesulfonate anion [Cu—O = 2.261 (2)], leading to the (4 + 1) square-pyramidal geometry. The square base of CuII chromophore is not perfectly planar, with the tetrahedral twist of 16.52 (7)° and CuII is situated above the basal plane by 0.14 (1) Å pointing towards the O atom of the trifluoromethanesulfonate anion. The distortion of a square pyramid can be best described by the structural parameter τ (τ = 0 for a square pyramid and τ =1 for a trigonal bipyramid (Addison et al., 1984)), with τ = 0.23 for the title compound. The molecular structure of I reveals intramolecular face-to-face π-π interaction between aromatic rings of phen ligands (Fig. 1). Phenanthroline molecules are parallel with an average contact and angle of phen planes of 3.63 (3) Å and 5.96 (3)°, respectively. In general, the ligands are featureless: neither of phen group departs significantly from planarity [maximum deviations: 0.082 Å for C11 and 0.099 Å for C10 of Cg3 ring(N2, C6, C9, C10, C11, C12)] and the C—O bonds in the acetato bridging ligands display an almost perfect resonance [C13≐ O1 = 1.257 (3) Å and C13≐O2 = 1.250 (3) Å]. The crystal structure of compound I is determined by intermolecular hydrogen bonding interactions between methyl groups of acetato ligands (H14A) or phen ligands (H7 as hydrogen bond donor sites and H10) and oxygen/fluoride accepetors at trifluoromethanesulfonate anions (O3, O5 and F3) (see Table 1), generating two-dimensional layers parallel to the ab plane (Fig. 2). Moreover, these two-dimensional sheets are interconnected by hydrogen bond interactions between C—H of phen ligands and oxygen atoms of trifluoromethanesulfonate anions [C1—H1···O5i; symetry code (i) = -x+1, -y+2, -z+1] (see Table 2) in direction of crystallographic c axis, leading to three-dimensional lattice structure (Fig. 3). Although containing the same [(phen)Cu(µ-OOCCH3)2Cu(phen)]2+ unit, the structural topology of I is distinct from that of the related compound [Cu(phen)(µ-O2CCH3)(H2O)]2(NO3)2.4H2O (Tokii et al., 1990) in which the apical position is occupied by water molecule. The dinuclear unit of this related compound also crystallized in C2/c space group and has C2 symmetry around the b axis with Cu···Cu distance of 3.063 Å, but its crystal lattice is mainly stabilized by intra- and intermolecular π-π interactions, generating a one-dimensional chain-like sructure. It is clear that the difference of the structural topology between compound I and the related compound caused by the effect of coordinated trifluoromethanesulfonate anions whereas nitrate anions are not coordinated to Cu in the other structure.
The diffuse reflectance spectrum of I displays a broad band at 15400 cm-1 and a lower energy shoulder at 14300 cm-1. This feature corresponds to a dominantly distorted square pyramidal geometry of CuII ions and is consistent with the observed structural parameters. The transitions may be assigned as dxy, dyz, dxz→ dx2-y2 and dz2→ dx2-y2. The IR spectrum of I, in addition to the phen vibrations shows the broad and intense bands of the stretching of the ionic CF3SO3- at 1276 νas(S–O), 1158 νas(C–F) and 1031 νs(S–O) cm-1 (Castro et al., 1992). The IR spectrum also shows two broad and intense bands at 1567 and 1385 cm-1, corresponding to the νas(COO-) and νs(COO-) vibrations of acetate bridging ligands. The latter spectral properties completely disappear for related mononuclear compounds as [Cu(phen)3](CF3SO3)2.H2O (Sletten & Julve, 1999).