organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro-1H-indazol-5-yl)-4-meth­­oxy­benzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: l_bouissane@yahoo.fr

(Received 1 October 2013; accepted 7 October 2013; online 12 October 2013)

In the title compound, C14H12ClN3O3S, the fused five- and six-membered rings are folded slightly along the common edge, forming a dihedral angle of 3.2 (1)°. The mean plane through the indazole system makes a dihedral angle of 30.75 (7)° with the distant benzene ring. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules, forming a two-dimensional network parallel to (001).

Related literature

For the pharmacological activity of sulfonamide derivatives, see: Bouissane et al. (2006[Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]); El-Sayed et al. (2011[El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.]); Mustafa et al. (2012[Mustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535-2539.]). For similar compounds, see: Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]); Chicha et al. (2013[Chicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClN3O3S

  • Mr = 337.78

  • Monoclinic, P 21 /c

  • a = 16.1229 (5) Å

  • b = 10.0562 (3) Å

  • c = 9.7955 (2) Å

  • β = 105.388 (1)°

  • V = 1531.26 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.42 × 0.35 × 0.28 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 0.747

  • 19939 measured reflections

  • 4666 independent reflections

  • 3973 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 1.03

  • 4666 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.82 2.26 3.046 (2) 161
N2—H2⋯O1ii 0.88 1.99 2.862 (2) 174
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamide derivatives are well known pharmaceutical agents since this group has been the main functional part in a vast number of drug structures due to stability and tolerance in human beings. These compounds exhibit a wide range of biological activities such as anticancer, anti-inflammatory, and antiviral functions (Abbassi et al., 2012; Bouissane et al., 2006; El-Sayed et al., 2011; Mustafa et al., 2012). The present work is a continuation of the investigation of sulfonamide derivatives published recently by our team (Abbassi et al., 2013; Chicha et al., 2013).

The molecule of N-(3-chloro-1H-indazol-5-yl)-4-methoxybenzenesulfonamide is built up from the 3-chloro-1H-indazol system (N2, N3, C1—C7, Cl) linked to the 4-methoxybenzenesulfonamide group as shown in Fig.1. The fused rings are slightly folded along the common edge and form a dihedral angle of 3.2 (1) °. Moreover, the dihedral angle between the mean plane through the indazole system and the plane through the atoms forming the benzene ring (C9—C14) is 30.75 (7)°.

In the crystal, molecules are interconnected by N1–H1···O2 and N2–H2···O1 hydrogen bonds forming a two-dimensional network parallel to (0 0 1) plane as shown in Fig.2 and Table 1.

Related literature top

For the pharmacological activity of sulfonamide derivatives, see: Bouissane et al. (2006); El-Sayed et al. (2011); Mustafa et al. (2012). For similar compounds, see: Abbassi et al. (2012, 2013); Chicha et al. (2013).

Experimental top

A mixture of 3-chloro-5-nitroindazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated at 333 K for 6 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuum, the resulting residue was purified by flash chromatography (eluted with ethyl acetate: hexane 1:9, yield: 67%, mp: 445 K). The title compound was recrystallized from ethanol.

Refinement top

H atoms were located in a difference map and treated as riding with C–H = 0.96 Å, C–H = 0.93 Å, and N–H = 0.89 Å for methyl, aromatic CH and NH, respectively. Thermal parameters were fixed at Uiso(H) = 1.2 Ueq (aromatic, NH) and Uiso(H) = 1.5 Ueq for methyl.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Partial crystal packing for the title compound showing N2—H2···O1 and N1—H1···O2 hydrogen bonds as dashed lines.
N-(3-Chloro-1H-indazol-5-yl)-4-methoxybenzenesulfonamide top
Crystal data top
C14H12ClN3O3SF(000) = 696
Mr = 337.78Dx = 1.465 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4666 reflections
a = 16.1229 (5) Åθ = 2.4–30.5°
b = 10.0562 (3) ŵ = 0.40 mm1
c = 9.7955 (2) ÅT = 296 K
β = 105.388 (1)°Block, colourless
V = 1531.26 (7) Å30.42 × 0.35 × 0.28 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
4666 independent reflections
Radiation source: fine-focus sealed tube3973 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 30.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2320
Tmin = 0.693, Tmax = 0.747k = 1414
19939 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.5266P]
where P = (Fo2 + 2Fc2)/3
4666 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C14H12ClN3O3SV = 1531.26 (7) Å3
Mr = 337.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.1229 (5) ŵ = 0.40 mm1
b = 10.0562 (3) ÅT = 296 K
c = 9.7955 (2) Å0.42 × 0.35 × 0.28 mm
β = 105.388 (1)°
Data collection top
Bruker X8 APEX
diffractometer
4666 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3973 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.747Rint = 0.022
19939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.03Δρmax = 0.63 e Å3
4666 reflectionsΔρmin = 0.49 e Å3
199 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.60822 (8)0.97963 (12)0.02865 (13)0.0268 (2)
C50.56209 (8)1.06572 (14)0.13562 (15)0.0336 (3)
H50.52311.03010.21470.040*
C60.57361 (10)1.20157 (14)0.12547 (17)0.0386 (3)
H60.54321.25850.19600.046*
C70.63294 (9)1.24992 (12)0.00465 (16)0.0347 (3)
C20.67936 (9)1.16423 (13)0.10154 (14)0.0306 (3)
C30.66674 (8)1.02644 (12)0.09022 (13)0.0286 (2)
H30.69680.96900.16040.034*
C10.73489 (11)1.25131 (14)0.19788 (17)0.0400 (3)
C80.76161 (9)0.78982 (13)0.03973 (14)0.0305 (2)
C90.80235 (10)0.71057 (16)0.07419 (17)0.0427 (3)
H90.77560.63400.09460.051*
C100.88322 (11)0.7460 (2)0.1577 (2)0.0533 (5)
H100.91120.69260.23340.064*
C110.92203 (10)0.8613 (2)0.12745 (18)0.0497 (4)
C120.88199 (10)0.93915 (17)0.01121 (17)0.0436 (3)
H120.90941.01460.01050.052*
C130.80182 (9)0.90444 (14)0.07167 (15)0.0348 (3)
H130.77450.95700.14860.042*
C141.03882 (16)0.8432 (4)0.3356 (3)0.1044 (12)
H14A1.09280.88530.37920.157*
H14B1.04840.75120.31850.157*
H14C1.00170.84980.39740.157*
N10.59374 (7)0.83818 (10)0.04781 (12)0.0298 (2)
H10.59320.79820.02530.036*
N20.66110 (10)1.37511 (12)0.03591 (17)0.0486 (3)
H20.64901.44940.01280.058*
N30.72483 (10)1.37633 (13)0.15800 (16)0.0497 (3)
O10.63534 (8)0.62011 (10)0.11826 (12)0.0436 (3)
O20.63874 (7)0.81515 (10)0.26973 (10)0.0378 (2)
O30.99969 (9)0.9074 (2)0.20519 (17)0.0789 (5)
S10.65443 (2)0.75832 (3)0.13090 (3)0.02874 (9)
Cl10.80966 (4)1.20719 (5)0.34939 (5)0.06387 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0299 (5)0.0219 (5)0.0284 (5)0.0007 (4)0.0075 (4)0.0003 (4)
C50.0305 (6)0.0314 (6)0.0339 (6)0.0016 (5)0.0001 (5)0.0017 (5)
C60.0366 (7)0.0296 (6)0.0441 (8)0.0063 (5)0.0011 (6)0.0087 (5)
C70.0370 (7)0.0217 (5)0.0443 (7)0.0024 (5)0.0087 (6)0.0009 (5)
C20.0354 (6)0.0242 (5)0.0311 (6)0.0014 (5)0.0067 (5)0.0032 (4)
C30.0358 (6)0.0228 (5)0.0259 (5)0.0005 (4)0.0058 (5)0.0017 (4)
C10.0471 (8)0.0322 (7)0.0372 (7)0.0059 (6)0.0049 (6)0.0085 (5)
C80.0352 (6)0.0283 (6)0.0269 (6)0.0033 (5)0.0065 (5)0.0024 (4)
C90.0423 (8)0.0406 (7)0.0428 (8)0.0026 (6)0.0068 (6)0.0160 (6)
C100.0381 (8)0.0683 (12)0.0478 (9)0.0044 (7)0.0011 (7)0.0286 (8)
C110.0311 (7)0.0727 (12)0.0421 (8)0.0022 (7)0.0040 (6)0.0134 (8)
C120.0372 (7)0.0485 (8)0.0436 (8)0.0060 (6)0.0080 (6)0.0109 (7)
C130.0381 (7)0.0336 (6)0.0313 (6)0.0015 (5)0.0066 (5)0.0073 (5)
C140.0523 (12)0.175 (3)0.0664 (15)0.0201 (16)0.0193 (11)0.0445 (18)
N10.0363 (5)0.0232 (5)0.0295 (5)0.0051 (4)0.0081 (4)0.0004 (4)
N20.0575 (8)0.0211 (5)0.0617 (9)0.0005 (5)0.0065 (7)0.0009 (5)
N30.0595 (9)0.0294 (6)0.0568 (9)0.0080 (6)0.0091 (7)0.0109 (6)
O10.0615 (7)0.0206 (4)0.0443 (6)0.0064 (4)0.0063 (5)0.0047 (4)
O20.0491 (6)0.0382 (5)0.0226 (4)0.0019 (4)0.0033 (4)0.0000 (4)
O30.0394 (6)0.1184 (14)0.0647 (9)0.0214 (8)0.0107 (6)0.0322 (9)
S10.03872 (17)0.02109 (14)0.02355 (15)0.00219 (11)0.00327 (12)0.00259 (10)
Cl10.0721 (3)0.0615 (3)0.0427 (2)0.0113 (2)0.0115 (2)0.00649 (19)
Geometric parameters (Å, º) top
C4—C31.3728 (17)C9—H90.9300
C4—C51.4096 (17)C10—C111.387 (3)
C4—N11.4456 (15)C10—H100.9300
C5—C61.3787 (19)C11—O31.362 (2)
C5—H50.9300C11—C121.391 (2)
C6—C71.397 (2)C12—C131.377 (2)
C6—H60.9300C12—H120.9300
C7—N21.3613 (17)C13—H130.9300
C7—C21.4041 (19)C14—O31.421 (3)
C2—C31.4006 (16)C14—H14A0.9600
C2—C11.4180 (18)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C1—N31.314 (2)N1—S11.6393 (12)
C1—Cl11.7038 (17)N1—H10.8235
C8—C91.3866 (19)N2—N31.354 (2)
C8—C131.3980 (19)N2—H20.8799
C8—S11.7507 (14)O1—S11.4359 (10)
C9—C101.389 (2)O2—S11.4344 (10)
C3—C4—C5121.88 (11)O3—C11—C10124.39 (15)
C3—C4—N1119.90 (11)O3—C11—C12115.10 (16)
C5—C4—N1118.21 (11)C10—C11—C12120.50 (15)
C6—C5—C4121.37 (12)C13—C12—C11119.94 (14)
C6—C5—H5119.3C13—C12—H12120.0
C4—C5—H5119.3C11—C12—H12120.0
C5—C6—C7117.05 (12)C12—C13—C8119.72 (13)
C5—C6—H6121.5C12—C13—H13120.1
C7—C6—H6121.5C8—C13—H13120.1
N2—C7—C6132.03 (13)O3—C14—H14A109.5
N2—C7—C2106.28 (13)O3—C14—H14B109.5
C6—C7—C2121.64 (12)H14A—C14—H14B109.5
C3—C2—C7120.72 (12)O3—C14—H14C109.5
C3—C2—C1135.76 (13)H14A—C14—H14C109.5
C7—C2—C1103.44 (12)H14B—C14—H14C109.5
C4—C3—C2117.33 (11)C4—N1—S1116.71 (9)
C4—C3—H3121.3C4—N1—H1113.9
C2—C3—H3121.3S1—N1—H1109.7
N3—C1—C2112.75 (14)N3—N2—C7112.47 (13)
N3—C1—Cl1120.74 (12)N3—N2—H2118.6
C2—C1—Cl1126.50 (12)C7—N2—H2128.2
C9—C8—C13120.34 (13)C1—N3—N2105.00 (12)
C9—C8—S1119.95 (11)C11—O3—C14118.12 (18)
C13—C8—S1119.25 (10)O2—S1—O1118.65 (6)
C8—C9—C10119.78 (15)O2—S1—N1107.29 (6)
C8—C9—H9120.1O1—S1—N1105.16 (6)
C10—C9—H9120.1O2—S1—C8108.27 (6)
C11—C10—C9119.68 (14)O1—S1—C8109.65 (7)
C11—C10—H10120.2N1—S1—C8107.25 (6)
C9—C10—H10120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.822.263.046 (2)161
N2—H2···O1ii0.881.992.862 (2)174
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.822.263.046 (2)160.9
N2—H2···O1ii0.881.992.862 (2)173.8
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535–2539.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds