organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­anilinium 3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate monohydrate

aDepartment of Physics, M. N. M. Jain Engineering College, Chennai 600 097, India, bDepartment of Physics, Presidency College, Chennai 600 005, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, srkanagadurai@yahoo.co.in

(Received 22 September 2013; accepted 29 September 2013; online 5 October 2013)

In the title hydrated salt, C6H7N2O2+·C7H5O6S·H2O, the benzene ring of the cation makes a dihedral angle of 1.32 (19)° with the attached nitro group. In the anion, an intra­molecular O—H⋯O hydrogen bond with an S(6) ring motif is formed between the carb­oxyl and hy­droxy groups; the dihedral angle between the carb­oxyl group and the benzene ring is 8.76 (8)°. The crystal structure exhibits inter­molecular N—H⋯O, O—H⋯O, C—H⋯O, and ππ [centroid–centroid distances = 3.6634 (9) and 3.7426 (9) Å] inter­actions to form a three-dimensional network.

Related literature

For mol­ecular compounds with nonlinear optical properties, see: Nalwa & Miyata (1997[Nalwa, H. S. & Miyata, S. (1997). In Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.]). For related structures, see: Asiri et al. (2010[Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1765.]); Krishnakumar et al. (2012[Krishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268.]); Sudhahar et al. (2013[Sudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N2O2+·C7H5O6S·H2O

  • Mr = 374.32

  • Orthorhombic, P b c a

  • a = 13.2676 (3) Å

  • b = 13.5572 (3) Å

  • c = 17.1246 (4) Å

  • V = 3080.23 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 295 K

  • 0.26 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 0.949

  • 15578 measured reflections

  • 3640 independent reflections

  • 3062 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.03

  • 3640 reflections

  • 236 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O9 0.89 1.99 2.841 (2) 160
N1—H1B⋯O1 0.89 1.95 2.8357 (18) 171
O4—H4A⋯O5 0.82 1.88 2.6028 (18) 146
C9—H9⋯O9 0.93 2.57 3.141 (3) 121
N1—H1A⋯O7i 0.89 2.40 2.836 (2) 111
N1—H1C⋯O2ii 0.89 1.93 2.8069 (18) 168
O4—H4A⋯O2iii 0.82 2.38 2.9494 (16) 128
O6—H6⋯O3iv 0.82 1.86 2.6595 (17) 164
O9—H9A⋯O2v 0.82 (1) 2.33 (3) 3.005 (2) 139 (4)
O9—H9A⋯O3v 0.82 (1) 2.48 (3) 3.151 (2) 140 (4)
O9—H9B⋯O4vi 0.82 (1) 2.56 (3) 3.283 (2) 149 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our studies of molecular compounds with non-linear optical properties which are used in optoelectronic and photonic devices (Nalwa & Miyata, 1997), we herewith report the crystal structure of the title compound (I), (Fig. 1). The title compound consists of one C6H7N2O2+ cation, one C7H5O6S- anion and a water molecule in the asymmetric unit. The geometric parameters of the title compound are comparable with the reported structures (Asiri et al., 2010; Krishnakumar et al., 2012; Sudhahar et al., 2013).

The dihedral angle between the two benzene rings (C1–C6) and (C8–C13) is 8.18 (7)°. The benzene ring (C1–C6) is planar [r.m.s. deviation = 0.0152 (17) Å] and makes a dihedral angle of 1.32 (19)° with the attached nitro group. The mean plane of carboxy group is inclined at an angle of 8.76 (8)° with the planar [r.m.s. deviation = 0.0137 (16) Å] benzene ring (C8–C13) of anion.

The crystal structure exhibits intermolecular N—H···O, O—H···O, C—H···O hydrogen bonds (Table 1 & Fig. 2) and ππ interactions [[Cg1···Cg2 = 3.7426 (9)Å, Cg1···Cg2i = 3.6634 (9) Å; (i) 1/2-x, 1/2+y, z; Cg1 and Cg2 are the centroids of the rings (C1–C6) and (C8–C13), respectively] to form a three-dimensional molecular arrangement.

Related literature top

For molecular compounds with nonlinear optical properties, see: Nalwa & Miyata (1997). For related structures, see: Asiri et al. (2010); Krishnakumar et al. (2012); Sudhahar et al. (2013).

Experimental top

The title compound was synthesized in ethanol by using 4-nitroaniline (6.90 g) and 5-sulfosalicylic acid dihydrate (12.711 g) in equimolar ratio. The saturated solution was allowed to evaporating slowly at room temperature. After the evaporation period of three weeks the crystals were collected and used for X-ray data collection.

Refinement top

H atoms of the water molecule were located in a difference Fourier map and were refined; the O9—H9A and O9—H9B distances were restrained to 0.82 (1) Å. All other H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.89 Å and O—H = 0.82 Å) and refined using riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N, O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the b axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
4-Nitrobenzeneaminium 3-carboxy-4-hydroxybenzenesulfonate monohydrate top
Crystal data top
C6H7N2O2+·C7H5O6S·H2OF(000) = 1552
Mr = 374.32Dx = 1.614 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3844 reflections
a = 13.2676 (3) Åθ = 2.4–28.4°
b = 13.5572 (3) ŵ = 0.27 mm1
c = 17.1246 (4) ÅT = 295 K
V = 3080.23 (12) Å3Block, colourless
Z = 80.26 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3640 independent reflections
Radiation source: fine-focus sealed tube3062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scanθmax = 28.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1511
Tmin = 0.934, Tmax = 0.949k = 1812
15578 measured reflectionsl = 2217
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0571P)2 + 1.2353P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3640 reflectionsΔρmax = 0.44 e Å3
236 parametersΔρmin = 0.34 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (4)
Crystal data top
C6H7N2O2+·C7H5O6S·H2OV = 3080.23 (12) Å3
Mr = 374.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.2676 (3) ŵ = 0.27 mm1
b = 13.5572 (3) ÅT = 295 K
c = 17.1246 (4) Å0.26 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3640 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3062 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.949Rint = 0.024
15578 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.44 e Å3
3640 reflectionsΔρmin = 0.34 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23376 (11)0.22732 (11)0.36435 (9)0.0324 (3)
H10.16760.23740.38050.039*
C20.31016 (11)0.22696 (11)0.41813 (9)0.0291 (3)
H20.29580.23640.47080.035*
C30.41012 (10)0.21236 (10)0.39384 (8)0.0249 (3)
C40.43237 (10)0.20070 (10)0.31573 (8)0.0267 (3)
H40.49890.19280.29980.032*
C50.35471 (11)0.20079 (11)0.26038 (8)0.0277 (3)
C60.25490 (11)0.21266 (11)0.28527 (9)0.0304 (3)
C70.37580 (12)0.18773 (12)0.17625 (9)0.0343 (3)
C80.10072 (13)0.02919 (13)0.38844 (10)0.0402 (4)
H80.03070.03200.38880.048*
C90.15443 (12)0.02301 (13)0.45736 (9)0.0371 (4)
H90.12100.02200.50510.045*
C100.25815 (12)0.01838 (11)0.45470 (9)0.0301 (3)
C110.31058 (12)0.02335 (11)0.38520 (10)0.0359 (4)
H110.38070.02280.38480.043*
C120.25710 (13)0.02920 (12)0.31634 (10)0.0391 (4)
H120.29050.03190.26860.047*
C130.15317 (13)0.03101 (12)0.31948 (9)0.0361 (4)
N10.31299 (10)0.00774 (10)0.52813 (8)0.0351 (3)
H1A0.27330.02080.56340.053*
H1B0.36740.02940.52050.053*
H1C0.33170.06700.54520.053*
N20.09540 (14)0.03548 (12)0.24631 (9)0.0513 (4)
O10.47752 (9)0.12506 (9)0.51725 (7)0.0434 (3)
O20.59937 (8)0.18656 (10)0.42481 (7)0.0403 (3)
O30.50743 (9)0.30034 (8)0.50523 (7)0.0391 (3)
O40.17634 (9)0.21175 (11)0.23553 (7)0.0485 (4)
H4A0.19690.20270.19090.073*
O50.30993 (9)0.17648 (13)0.12778 (7)0.0580 (4)
O60.47157 (9)0.18949 (11)0.15782 (7)0.0489 (3)
H60.47780.18180.11060.073*
O70.14092 (17)0.03731 (18)0.18586 (9)0.1005 (8)
O80.00426 (13)0.03699 (16)0.24947 (10)0.0834 (6)
O90.16700 (15)0.10629 (14)0.60925 (13)0.0740 (5)
S10.50511 (2)0.20521 (3)0.46557 (2)0.02593 (12)
H9A0.152 (3)0.149 (2)0.5775 (18)0.143 (16)*
H9B0.186 (3)0.136 (3)0.6481 (16)0.167 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0208 (7)0.0399 (8)0.0365 (8)0.0032 (6)0.0027 (6)0.0022 (6)
C20.0273 (7)0.0328 (7)0.0273 (7)0.0014 (6)0.0032 (6)0.0012 (6)
C30.0228 (7)0.0278 (7)0.0240 (7)0.0001 (5)0.0020 (5)0.0014 (5)
C40.0208 (6)0.0333 (7)0.0260 (7)0.0000 (5)0.0008 (5)0.0018 (6)
C50.0250 (7)0.0336 (7)0.0245 (7)0.0008 (6)0.0022 (5)0.0009 (6)
C60.0227 (7)0.0364 (8)0.0323 (8)0.0010 (6)0.0050 (6)0.0002 (6)
C70.0281 (8)0.0483 (9)0.0266 (7)0.0008 (6)0.0025 (6)0.0017 (7)
C80.0297 (8)0.0515 (10)0.0396 (9)0.0019 (7)0.0032 (7)0.0014 (7)
C90.0310 (8)0.0503 (10)0.0301 (8)0.0037 (7)0.0030 (6)0.0015 (7)
C100.0304 (8)0.0277 (7)0.0322 (7)0.0013 (6)0.0031 (6)0.0043 (6)
C110.0295 (8)0.0346 (8)0.0436 (9)0.0011 (6)0.0052 (7)0.0011 (7)
C120.0455 (9)0.0387 (8)0.0332 (8)0.0023 (7)0.0086 (7)0.0014 (7)
C130.0426 (9)0.0348 (8)0.0307 (8)0.0011 (7)0.0049 (7)0.0024 (6)
N10.0306 (7)0.0385 (7)0.0362 (7)0.0016 (5)0.0047 (5)0.0027 (6)
N20.0630 (11)0.0556 (10)0.0354 (8)0.0016 (8)0.0099 (7)0.0018 (7)
O10.0402 (6)0.0507 (7)0.0394 (6)0.0103 (5)0.0074 (5)0.0197 (6)
O20.0242 (5)0.0657 (8)0.0310 (6)0.0081 (5)0.0021 (4)0.0055 (5)
O30.0451 (7)0.0419 (7)0.0302 (6)0.0013 (5)0.0072 (5)0.0047 (5)
O40.0238 (6)0.0848 (10)0.0370 (7)0.0052 (6)0.0083 (5)0.0074 (6)
O50.0323 (7)0.1114 (12)0.0304 (6)0.0045 (7)0.0071 (5)0.0088 (7)
O60.0289 (6)0.0934 (10)0.0243 (6)0.0025 (6)0.0010 (5)0.0018 (6)
O70.0957 (14)0.176 (2)0.0304 (8)0.0207 (14)0.0011 (8)0.0029 (10)
O80.0567 (11)0.1344 (19)0.0590 (10)0.0062 (10)0.0251 (8)0.0088 (11)
O90.0787 (12)0.0606 (10)0.0827 (13)0.0281 (9)0.0161 (10)0.0100 (10)
S10.0221 (2)0.0348 (2)0.02094 (19)0.00090 (13)0.00073 (12)0.00349 (13)
Geometric parameters (Å, º) top
C1—C21.370 (2)C10—C111.380 (2)
C1—C61.397 (2)C10—N11.4599 (19)
C1—H10.9300C11—C121.378 (2)
C2—C31.4040 (19)C11—H110.9300
C2—H20.9300C12—C131.380 (2)
C3—C41.379 (2)C12—H120.9300
C3—S11.7625 (14)C13—N21.470 (2)
C4—C51.400 (2)N1—H1A0.8900
C4—H40.9300N1—H1B0.8900
C5—C61.400 (2)N1—H1C0.8900
C5—C71.478 (2)N2—O71.199 (2)
C6—O41.3462 (18)N2—O81.211 (2)
C7—O51.2150 (19)O1—S11.4484 (12)
C7—O61.309 (2)O2—S11.4544 (11)
C8—C131.371 (2)O3—S11.4579 (12)
C8—C91.381 (2)O4—H4A0.8200
C8—H80.9300O6—H60.8200
C9—C101.378 (2)O9—H9A0.821 (10)
C9—H90.9300O9—H9B0.815 (10)
C2—C1—C6120.18 (13)C11—C10—N1119.75 (14)
C2—C1—H1119.9C12—C11—C10118.75 (15)
C6—C1—H1119.9C12—C11—H11120.6
C1—C2—C3120.03 (13)C10—C11—H11120.6
C1—C2—H2120.0C11—C12—C13118.81 (15)
C3—C2—H2120.0C11—C12—H12120.6
C4—C3—C2120.39 (13)C13—C12—H12120.6
C4—C3—S1121.11 (11)C8—C13—C12122.71 (16)
C2—C3—S1118.47 (11)C8—C13—N2118.05 (16)
C3—C4—C5119.94 (13)C12—C13—N2119.24 (16)
C3—C4—H4120.0C10—N1—H1A109.5
C5—C4—H4120.0C10—N1—H1B109.5
C4—C5—C6119.34 (13)H1A—N1—H1B109.5
C4—C5—C7121.36 (13)C10—N1—H1C109.5
C6—C5—C7119.30 (13)H1A—N1—H1C109.5
O4—C6—C1117.34 (13)H1B—N1—H1C109.5
O4—C6—C5122.58 (14)O7—N2—O8122.79 (19)
C1—C6—C5120.08 (13)O7—N2—C13118.31 (19)
O5—C7—O6122.38 (15)O8—N2—C13118.91 (17)
O5—C7—C5123.01 (15)C6—O4—H4A109.5
O6—C7—C5114.61 (13)C7—O6—H6109.5
C13—C8—C9118.38 (16)H9A—O9—H9B106 (4)
C13—C8—H8120.8O1—S1—O2112.34 (7)
C9—C8—H8120.8O1—S1—O3112.60 (8)
C10—C9—C8119.32 (15)O2—S1—O3111.05 (7)
C10—C9—H9120.3O1—S1—C3106.64 (7)
C8—C9—H9120.3O2—S1—C3106.86 (7)
C9—C10—C11121.97 (15)O3—S1—C3106.93 (7)
C9—C10—N1118.28 (14)
C6—C1—C2—C30.3 (2)C8—C9—C10—N1177.48 (15)
C1—C2—C3—C41.6 (2)C9—C10—C11—C122.6 (2)
C1—C2—C3—S1176.32 (11)N1—C10—C11—C12177.29 (14)
C2—C3—C4—C51.7 (2)C10—C11—C12—C130.7 (2)
S1—C3—C4—C5176.15 (10)C9—C8—C13—C121.5 (3)
C3—C4—C5—C60.1 (2)C9—C8—C13—N2178.74 (15)
C3—C4—C5—C7179.54 (14)C11—C12—C13—C81.3 (3)
C2—C1—C6—O4178.63 (14)C11—C12—C13—N2178.93 (14)
C2—C1—C6—C52.1 (2)C8—C13—N2—O7179.8 (2)
C4—C5—C6—O4178.81 (14)C12—C13—N2—O70.1 (3)
C7—C5—C6—O40.7 (2)C8—C13—N2—O80.3 (3)
C4—C5—C6—C12.0 (2)C12—C13—N2—O8179.96 (18)
C7—C5—C6—C1178.55 (14)C4—C3—S1—O1120.21 (13)
C4—C5—C7—O5171.57 (17)C2—C3—S1—O157.67 (13)
C6—C5—C7—O57.9 (3)C4—C3—S1—O20.12 (14)
C4—C5—C7—O68.6 (2)C2—C3—S1—O2178.00 (11)
C6—C5—C7—O6171.95 (14)C4—C3—S1—O3119.10 (12)
C13—C8—C9—C100.3 (3)C2—C3—S1—O363.02 (13)
C8—C9—C10—C112.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O90.891.992.841 (2)160
N1—H1B···O10.891.952.8357 (18)171
O4—H4A···O50.821.882.6028 (18)146
C9—H9···O90.932.573.141 (3)121
N1—H1A···O7i0.892.402.836 (2)111
N1—H1C···O2ii0.891.932.8069 (18)168
O4—H4A···O2iii0.822.382.9494 (16)128
O6—H6···O3iv0.821.862.6595 (17)164
O9—H9A···O2v0.82 (1)2.33 (3)3.005 (2)139 (4)
O9—H9A···O3v0.82 (1)2.48 (3)3.151 (2)140 (4)
O9—H9B···O4vi0.82 (1)2.56 (3)3.283 (2)149 (4)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y, z+1; (iii) x1/2, y, z+1/2; (iv) x, y+1/2, z1/2; (v) x1/2, y+1/2, z+1; (vi) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O90.891.992.841 (2)160
N1—H1B···O10.891.952.8357 (18)171
O4—H4A···O50.821.882.6028 (18)146
C9—H9···O90.932.573.141 (3)121
N1—H1A···O7i0.892.402.836 (2)111
N1—H1C···O2ii0.891.932.8069 (18)168
O4—H4A···O2iii0.822.382.9494 (16)128
O6—H6···O3iv0.821.862.6595 (17)164
O9—H9A···O2v0.821 (10)2.33 (3)3.005 (2)139 (4)
O9—H9A···O3v0.821 (10)2.48 (3)3.151 (2)140 (4)
O9—H9B···O4vi0.815 (10)2.56 (3)3.283 (2)149 (4)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y, z+1; (iii) x1/2, y, z+1/2; (iv) x, y+1/2, z1/2; (v) x1/2, y+1/2, z+1; (vi) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank SAIF, IIT, Madras, for the data collection. MKK thanks the Council of Scientific and Industrial Research, New Delhi, India, for providing financial support [project No.03 (1200)/11/EMR-II].

References

First citationAsiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1765.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268.  CSD CrossRef IUCr Journals Google Scholar
First citationNalwa, H. S. & Miyata, S. (1997). In Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds