organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,15-Dioxa-7,18,19,20,23-penta­aza­hepta­cyclo­[21.6.1.117,20.01,8.03,7.09,14.024,29]hentriaconta-9,11,13,17(31),18,24,26,28-octaen-30-one

aDepartment of Physics, Dr. M.G.R. Educational and Research Institute University, Periyar E.V.R. High Road, Adayalampattu, Chennai 600 095, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and dDepartment of Biotechnology, Dr. M.G.R. Educational and Research Institute University, Periyar E.V.R. High Road, Maduravoyal, Chennai 600 095, India
*Correspondence e-mail: drdgayathri@gmail.com

(Received 1 October 2013; accepted 6 October 2013; online 12 October 2013)

In the title compound, C24H23N5O3, the oxindole ring system is nearly planar, with a dihedral angle between the two fused rings of 3.3 (1)°. In the fused pyrrolo–oxazole ring system, the oxazole and pyrrolidine rings adopt envelope conformations with the spiro C atom and one of the methyl­ene C atoms, respectively, as the flap atoms. In the crystal, mol­ecules are linked into a helical chain along the b axis via C—H⋯O inter­actions generating R21(7) and R22(8) ring motifs.

Related literature

For the biological activity of pyrrole, oxazole and indole derivatives, see: Fernandes et al. (2004[Fernandes, E., Costa, D., Toste, S. A., Lima, J. L. F. C. & Reis, S. (2004). Free Radical Biol. Med. 37, 1895-1905.]); Jiang et al. (2004[Jiang, S., Lu, H., Liu, S., Zhao, Q., He, Y. & Debnath, A. K. (2004). Antimicrob. Agents Chemother. 48, 4349-4359.]). For a related crystal structure, see: Narayanan et al. (2013[Narayanan, S., Srinivasan, T., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o23-o24.]).

[Scheme 1]

Experimental

Crystal data
  • C24H23N5O3

  • Mr = 429.47

  • Monoclinic, P 21 /c

  • a = 9.273 (5) Å

  • b = 10.983 (5) Å

  • c = 20.096 (5) Å

  • β = 90.038 (5)°

  • V = 2046.7 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.653, Tmax = 0.746

  • 18864 measured reflections

  • 5113 independent reflections

  • 3845 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.146

  • S = 1.01

  • 5113 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.45 3.311 (3) 154
C23—H23B⋯O2i 0.97 2.53 3.372 (3) 145
C24—H24B⋯O1i 0.97 2.31 3.209 (3) 153
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Macrocylces play a major role in drug development for their remarkable biological activities. Pyrrole, oxazole and indole derivatives possess various pharmaceutical properties (Fernandes et al., 2004; Jiang et al., 2004). In view of their potential bioactivity, we have synthesized series of macrocycles and report here the crystal structure of the title compound.

The bond lengths and bond angles are within the normal ranges and are comparable with the similar crystal structure (Narayanan et al., 2013). Traizole ring is planar and the oxindole moiety is nearly planar with a dihedral angle between the five- and six-membered rings being 3.3 (1)°. Atom O1 deviates by -0.080 (1) Å from the plane of the five-membered ring in oxindole moiety. In the pyrrolo-oxazole ring system, both pyrrolidine and oxazole rings adopt envelope conformations with C8 and C11 atoms deviating by -0.649 (2) and 0.565 (3) Å, respectively, from the mean plane of rest of the atoms in the corresponding rings. The crystal packing is stabilized by C—H···O intermolecular interactions, C3—H3···O1, C23—H23B···O2 and C24—H24B···O1 (Table 1), generating C(6), C(7) & C(5) chains, respectively, running along [010]. The intermolecular interaction network also generates R21(7), R22(8) and R22(11) ring motifs.

Related literature top

For the biological activity of pyrrole, oxazole and indole derivatives, see: Fernandes et al. (2004); Jiang et al. (2004). For a related crystal structure, see: Narayanan et al. (2013).

Experimental top

Solution of (2-((1-(2-(2,3-dioxoindolin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl) methoxy)benzaldehyde (300 mg, 0.79 mmol) and L-proline (90 mg, 0.79 mmol) was refluxed in dry toluene (50 ml) under N2 atmosphere for 4 h under Dean–Stark apparatus. After the completion of reaction as indicated by TLC, toluene was evaporated under reduced pressure. The crude product was washed with water and extracted with dichloromethane (4×20 ml). The combined organic layers were dried (MgSO4), filtered and concentrated in vacuum. The crude product was purified by column chromatography using hexane: EtOAc (6:4) as eluent.

Refinement top

All H-atoms were refined using a riding model with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene groups, respectively, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of the title compound. For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted.
2,15-Dioxa-7,18,19,20,23-pentaazaheptacyclo[21.6.1.117,20.01,8.03,7.09,14.024,29]hentriaconta-9,11,13,17 (31),18,24,26,28-octaen-30-one top
Crystal data top
C24H23N5O3F(000) = 904
Mr = 429.47Dx = 1.394 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5113 reflections
a = 9.273 (5) Åθ = 2.0–28.4°
b = 10.983 (5) ŵ = 0.10 mm1
c = 20.096 (5) ÅT = 293 K
β = 90.038 (5)°Block, colourless
V = 2046.7 (15) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5113 independent reflections
Radiation source: fine-focus sealed tube3845 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.653, Tmax = 0.746k = 1214
18864 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.8032P]
where P = (Fo2 + 2Fc2)/3
5113 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C24H23N5O3V = 2046.7 (15) Å3
Mr = 429.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.273 (5) ŵ = 0.10 mm1
b = 10.983 (5) ÅT = 293 K
c = 20.096 (5) Å0.30 × 0.25 × 0.20 mm
β = 90.038 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5113 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3845 reflections with I > 2σ(I)
Tmin = 0.653, Tmax = 0.746Rint = 0.027
18864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.01Δρmax = 0.56 e Å3
5113 reflectionsΔρmin = 0.25 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14019 (16)0.05291 (14)0.29426 (8)0.0343 (3)
C20.12581 (16)0.13095 (15)0.34750 (8)0.0345 (3)
C30.09293 (19)0.25119 (17)0.36051 (10)0.0439 (4)
H30.05630.30210.32760.053*
C40.1166 (2)0.29295 (19)0.42455 (11)0.0523 (5)
H40.09610.37370.43480.063*
C50.1700 (2)0.2177 (2)0.47336 (10)0.0551 (5)
H50.18580.24830.51590.066*
C60.2005 (2)0.09606 (19)0.45972 (9)0.0481 (4)
H60.23420.04470.49310.058*
C70.17987 (16)0.05276 (15)0.39565 (8)0.0358 (3)
C80.19783 (16)0.07191 (14)0.36545 (8)0.0339 (3)
C90.18801 (18)0.20933 (17)0.45133 (9)0.0414 (4)
H90.15640.16900.49230.050*
C100.1736 (2)0.34643 (19)0.45780 (11)0.0542 (5)
H10A0.08880.37540.43440.065*
H10B0.16670.37020.50420.065*
C110.3081 (3)0.3960 (2)0.42698 (13)0.0631 (6)
H11A0.33400.47410.44620.076*
H11B0.29760.40490.37920.076*
C120.4193 (2)0.29847 (19)0.44428 (10)0.0508 (5)
H12A0.50020.30150.41380.061*
H12B0.45490.30950.48930.061*
C130.34670 (17)0.13335 (15)0.36914 (8)0.0353 (3)
H130.34730.20220.33810.042*
C140.48023 (16)0.05760 (15)0.35651 (8)0.0346 (3)
C150.52497 (18)0.02832 (17)0.40269 (9)0.0420 (4)
H150.47380.03650.44220.050*
C160.64310 (19)0.10212 (19)0.39183 (10)0.0480 (4)
H160.66930.16040.42320.058*
C170.7216 (2)0.0889 (2)0.33447 (11)0.0544 (5)
H170.80000.13960.32640.065*
C180.6847 (2)0.0009 (2)0.28880 (10)0.0512 (5)
H180.74050.00990.25080.061*
C190.56425 (17)0.07204 (15)0.29935 (8)0.0371 (4)
C200.5354 (2)0.13510 (18)0.18557 (9)0.0469 (4)
H20A0.62910.10040.17560.056*
H20B0.52490.20930.15980.056*
C210.4204 (2)0.04717 (17)0.16601 (9)0.0425 (4)
C220.37870 (18)0.05874 (16)0.19571 (8)0.0382 (4)
H220.42180.09760.23170.046*
C230.15348 (19)0.18146 (16)0.18336 (9)0.0405 (4)
H23A0.19930.24650.20830.049*
H23B0.10600.21700.14500.049*
C240.04305 (17)0.11776 (16)0.22683 (8)0.0384 (4)
H24A0.00170.05270.20150.046*
H24B0.03180.17540.23880.046*
N10.10500 (14)0.06718 (12)0.28709 (7)0.0343 (3)
N20.34184 (15)0.18234 (14)0.43800 (7)0.0392 (3)
N30.3288 (2)0.07077 (18)0.11524 (9)0.0630 (5)
N40.2310 (2)0.01524 (18)0.11278 (9)0.0621 (5)
N50.26167 (16)0.09446 (14)0.16155 (7)0.0408 (3)
O10.12691 (15)0.13061 (11)0.25218 (6)0.0473 (3)
O20.10994 (12)0.16351 (11)0.39546 (6)0.0419 (3)
O30.52789 (14)0.16379 (11)0.25560 (6)0.0445 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0311 (7)0.0327 (8)0.0390 (8)0.0058 (6)0.0041 (6)0.0042 (6)
C20.0289 (7)0.0377 (8)0.0369 (8)0.0034 (6)0.0002 (6)0.0002 (6)
C30.0418 (9)0.0390 (9)0.0510 (10)0.0013 (7)0.0015 (7)0.0013 (8)
C40.0520 (10)0.0443 (10)0.0607 (12)0.0003 (8)0.0091 (9)0.0121 (9)
C50.0568 (11)0.0630 (13)0.0456 (11)0.0005 (10)0.0025 (9)0.0183 (9)
C60.0483 (10)0.0574 (11)0.0385 (9)0.0030 (8)0.0035 (8)0.0037 (8)
C70.0308 (7)0.0399 (9)0.0366 (8)0.0009 (6)0.0002 (6)0.0002 (7)
C80.0319 (7)0.0343 (8)0.0356 (8)0.0041 (6)0.0028 (6)0.0055 (6)
C90.0382 (8)0.0478 (10)0.0382 (9)0.0004 (7)0.0018 (7)0.0065 (7)
C100.0558 (11)0.0492 (11)0.0576 (12)0.0085 (9)0.0027 (9)0.0204 (9)
C110.0768 (15)0.0423 (11)0.0701 (14)0.0039 (10)0.0060 (11)0.0097 (10)
C120.0473 (10)0.0571 (12)0.0481 (10)0.0134 (9)0.0030 (8)0.0109 (9)
C130.0351 (8)0.0342 (8)0.0364 (8)0.0017 (6)0.0016 (6)0.0018 (6)
C140.0293 (7)0.0356 (8)0.0390 (8)0.0007 (6)0.0051 (6)0.0050 (6)
C150.0394 (8)0.0490 (10)0.0377 (9)0.0038 (7)0.0033 (7)0.0000 (7)
C160.0417 (9)0.0525 (11)0.0497 (11)0.0107 (8)0.0111 (8)0.0049 (8)
C170.0377 (9)0.0632 (13)0.0624 (12)0.0178 (9)0.0008 (8)0.0031 (10)
C180.0396 (9)0.0613 (12)0.0527 (11)0.0057 (8)0.0088 (8)0.0031 (9)
C190.0344 (8)0.0353 (8)0.0416 (9)0.0025 (6)0.0060 (6)0.0004 (7)
C200.0514 (10)0.0455 (10)0.0437 (10)0.0083 (8)0.0048 (8)0.0087 (8)
C210.0461 (9)0.0436 (9)0.0379 (9)0.0018 (7)0.0018 (7)0.0051 (7)
C220.0375 (8)0.0390 (9)0.0382 (9)0.0014 (7)0.0012 (7)0.0005 (7)
C230.0431 (9)0.0373 (9)0.0411 (9)0.0044 (7)0.0049 (7)0.0062 (7)
C240.0351 (8)0.0410 (9)0.0390 (9)0.0038 (7)0.0076 (7)0.0040 (7)
N10.0353 (6)0.0328 (7)0.0346 (7)0.0012 (5)0.0045 (5)0.0035 (5)
N20.0377 (7)0.0445 (8)0.0355 (7)0.0011 (6)0.0009 (6)0.0070 (6)
N30.0723 (12)0.0685 (12)0.0481 (10)0.0187 (10)0.0146 (8)0.0199 (9)
N40.0712 (11)0.0696 (12)0.0454 (9)0.0163 (10)0.0184 (8)0.0174 (9)
N50.0442 (8)0.0435 (8)0.0348 (7)0.0030 (6)0.0020 (6)0.0017 (6)
O10.0613 (8)0.0359 (6)0.0447 (7)0.0082 (6)0.0128 (6)0.0028 (5)
O20.0372 (6)0.0436 (7)0.0448 (7)0.0082 (5)0.0033 (5)0.0134 (5)
O30.0525 (7)0.0382 (6)0.0429 (7)0.0017 (5)0.0005 (5)0.0035 (5)
Geometric parameters (Å, º) top
C1—O11.208 (2)C13—C141.513 (2)
C1—N11.366 (2)C13—H130.9800
C1—C81.541 (2)C14—C151.387 (2)
C2—C31.380 (3)C14—C191.397 (2)
C2—C71.387 (2)C15—C161.380 (3)
C2—N11.415 (2)C15—H150.9300
C3—C41.384 (3)C16—C171.371 (3)
C3—H30.9300C16—H160.9300
C4—C51.375 (3)C17—C181.376 (3)
C4—H40.9300C17—H170.9300
C5—C61.393 (3)C18—C191.391 (3)
C5—H50.9300C18—H180.9300
C6—C71.386 (2)C19—O31.379 (2)
C6—H60.9300C20—O31.444 (2)
C7—C81.507 (2)C20—C211.491 (3)
C8—O21.4285 (19)C20—H20A0.9700
C8—C131.538 (2)C20—H20B0.9700
C9—O21.427 (2)C21—N31.352 (2)
C9—N21.482 (2)C21—C221.363 (2)
C9—C101.517 (3)C22—N51.342 (2)
C9—H90.9800C22—H220.9300
C10—C111.496 (3)C23—N51.453 (2)
C10—H10A0.9700C23—C241.517 (2)
C10—H10B0.9700C23—H23A0.9700
C11—C121.527 (3)C23—H23B0.9700
C11—H11A0.9700C24—N11.451 (2)
C11—H11B0.9700C24—H24A0.9700
C12—N21.469 (2)C24—H24B0.9700
C12—H12A0.9700N3—N41.310 (3)
C12—H12B0.9700N4—N51.341 (2)
C13—N21.485 (2)
O1—C1—N1125.74 (15)C8—C13—H13108.2
O1—C1—C8126.13 (15)C15—C14—C19117.42 (15)
N1—C1—C8108.13 (13)C15—C14—C13120.41 (15)
C3—C2—C7122.67 (16)C19—C14—C13122.16 (15)
C3—C2—N1127.32 (16)C16—C15—C14122.07 (17)
C7—C2—N1109.94 (14)C16—C15—H15119.0
C2—C3—C4117.28 (18)C14—C15—H15119.0
C2—C3—H3121.4C17—C16—C15119.49 (18)
C4—C3—H3121.4C17—C16—H16120.3
C5—C4—C3121.42 (19)C15—C16—H16120.3
C5—C4—H4119.3C16—C17—C18120.24 (17)
C3—C4—H4119.3C16—C17—H17119.9
C4—C5—C6120.62 (18)C18—C17—H17119.9
C4—C5—H5119.7C17—C18—C19120.12 (17)
C6—C5—H5119.7C17—C18—H18119.9
C7—C6—C5118.95 (18)C19—C18—H18119.9
C7—C6—H6120.5O3—C19—C18121.30 (16)
C5—C6—H6120.5O3—C19—C14118.09 (15)
C2—C7—C6119.03 (16)C18—C19—C14120.55 (16)
C2—C7—C8108.75 (14)O3—C20—C21111.30 (14)
C6—C7—C8132.13 (16)O3—C20—H20A109.4
O2—C8—C7113.99 (13)C21—C20—H20A109.4
O2—C8—C13100.54 (12)O3—C20—H20B109.4
C7—C8—C13118.59 (13)C21—C20—H20B109.4
O2—C8—C1106.84 (12)H20A—C20—H20B108.0
C7—C8—C1102.27 (13)N3—C21—C22108.41 (17)
C13—C8—C1114.51 (13)N3—C21—C20121.57 (17)
O2—C9—N2105.97 (13)C22—C21—C20129.78 (17)
O2—C9—C10111.89 (16)N5—C22—C21104.75 (15)
N2—C9—C10107.38 (15)N5—C22—H22127.6
O2—C9—H9110.5C21—C22—H22127.6
N2—C9—H9110.5N5—C23—C24109.67 (14)
C10—C9—H9110.5N5—C23—H23A109.7
C11—C10—C9104.64 (16)C24—C23—H23A109.7
C11—C10—H10A110.8N5—C23—H23B109.7
C9—C10—H10A110.8C24—C23—H23B109.7
C11—C10—H10B110.8H23A—C23—H23B108.2
C9—C10—H10B110.8N1—C24—C23112.96 (13)
H10A—C10—H10B108.9N1—C24—H24A109.0
C10—C11—C12102.31 (18)C23—C24—H24A109.0
C10—C11—H11A111.3N1—C24—H24B109.0
C12—C11—H11A111.3C23—C24—H24B109.0
C10—C11—H11B111.3H24A—C24—H24B107.8
C12—C11—H11B111.3C1—N1—C2110.80 (13)
H11A—C11—H11B109.2C1—N1—C24123.51 (14)
N2—C12—C11105.04 (16)C2—N1—C24125.49 (14)
N2—C12—H12A110.7C12—N2—C9106.36 (14)
C11—C12—H12A110.7C12—N2—C13112.30 (14)
N2—C12—H12B110.7C9—N2—C13105.71 (12)
C11—C12—H12B110.7N4—N3—C21108.94 (16)
H12A—C12—H12B108.8N3—N4—N5107.09 (15)
N2—C13—C14112.38 (13)N4—N5—C22110.80 (15)
N2—C13—C8100.14 (12)N4—N5—C23120.06 (15)
C14—C13—C8119.02 (14)C22—N5—C23126.58 (15)
N2—C13—H13108.2C9—O2—C8106.93 (12)
C14—C13—H13108.2C19—O3—C20116.75 (14)
C7—C2—C3—C40.3 (2)C13—C14—C19—O34.1 (2)
N1—C2—C3—C4177.07 (16)C15—C14—C19—C182.3 (2)
C2—C3—C4—C50.4 (3)C13—C14—C19—C18178.74 (16)
C3—C4—C5—C60.6 (3)O3—C20—C21—N3126.6 (2)
C4—C5—C6—C71.7 (3)O3—C20—C21—C2247.2 (3)
C3—C2—C7—C60.7 (2)N3—C21—C22—N50.5 (2)
N1—C2—C7—C6176.53 (15)C20—C21—C22—N5173.87 (18)
C3—C2—C7—C8177.75 (15)N5—C23—C24—N162.19 (19)
N1—C2—C7—C80.49 (17)O1—C1—N1—C2176.26 (15)
C5—C6—C7—C21.7 (3)C8—C1—N1—C23.07 (17)
C5—C6—C7—C8177.89 (17)O1—C1—N1—C241.2 (3)
C2—C7—C8—O2117.07 (14)C8—C1—N1—C24178.13 (13)
C6—C7—C8—O259.4 (2)C3—C2—N1—C1175.41 (16)
C2—C7—C8—C13124.86 (15)C7—C2—N1—C11.69 (18)
C6—C7—C8—C1358.7 (2)C3—C2—N1—C240.5 (3)
C2—C7—C8—C12.16 (16)C7—C2—N1—C24176.63 (14)
C6—C7—C8—C1174.33 (17)C23—C24—N1—C199.69 (18)
O1—C1—C8—O256.1 (2)C23—C24—N1—C285.98 (19)
N1—C1—C8—O2123.19 (14)C11—C12—N2—C927.44 (19)
O1—C1—C8—C7176.18 (16)C11—C12—N2—C1387.73 (18)
N1—C1—C8—C73.15 (16)O2—C9—N2—C12126.13 (15)
O1—C1—C8—C1354.2 (2)C10—C9—N2—C126.41 (19)
N1—C1—C8—C13126.45 (14)O2—C9—N2—C136.58 (18)
O2—C9—C10—C1198.40 (19)C10—C9—N2—C13113.15 (16)
N2—C9—C10—C1117.5 (2)C14—C13—N2—C1286.45 (18)
C9—C10—C11—C1233.3 (2)C8—C13—N2—C12146.21 (14)
C10—C11—C12—N238.0 (2)C14—C13—N2—C9157.99 (14)
O2—C8—C13—N243.82 (14)C8—C13—N2—C930.64 (16)
C7—C8—C13—N281.10 (16)C22—C21—N3—N40.8 (2)
C1—C8—C13—N2157.94 (13)C20—C21—N3—N4174.12 (19)
O2—C8—C13—C14166.61 (14)C21—N3—N4—N50.8 (3)
C7—C8—C13—C1441.7 (2)N3—N4—N5—C220.5 (2)
C1—C8—C13—C1479.27 (18)N3—N4—N5—C23163.50 (17)
N2—C13—C14—C1545.4 (2)C21—C22—N5—N40.0 (2)
C8—C13—C14—C1571.2 (2)C21—C22—N5—C23161.64 (16)
N2—C13—C14—C19133.54 (16)C24—C23—N5—N476.5 (2)
C8—C13—C14—C19109.96 (18)C24—C23—N5—C2283.6 (2)
C19—C14—C15—C163.4 (3)N2—C9—O2—C822.94 (18)
C13—C14—C15—C16177.61 (16)C10—C9—O2—C8139.67 (15)
C14—C15—C16—C171.6 (3)C7—C8—O2—C986.14 (16)
C15—C16—C17—C181.5 (3)C13—C8—O2—C941.85 (16)
C16—C17—C18—C192.5 (3)C1—C8—O2—C9161.66 (13)
C17—C18—C19—O3177.63 (18)C18—C19—O3—C2044.2 (2)
C17—C18—C19—C140.6 (3)C14—C19—O3—C20138.69 (16)
C15—C14—C19—O3174.82 (14)C21—C20—O3—C1969.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.453.311 (3)154
C23—H23B···O2i0.972.533.372 (3)145
C24—H24B···O1i0.972.313.209 (3)153
Symmetry code: (i) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.453.311 (3)154
C23—H23B···O2i0.972.533.372 (3)145
C24—H24B···O1i0.972.313.209 (3)153
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India for the data collection. DV thanks the UGC (SAP–CAS) for the departmental facilities.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFernandes, E., Costa, D., Toste, S. A., Lima, J. L. F. C. & Reis, S. (2004). Free Radical Biol. Med. 37, 1895–1905.  Web of Science CrossRef CAS Google Scholar
First citationJiang, S., Lu, H., Liu, S., Zhao, Q., He, Y. & Debnath, A. K. (2004). Antimicrob. Agents Chemother. 48, 4349–4359.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNarayanan, S., Srinivasan, T., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o23–o24.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds