organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iso­propyl-4-meth­­oxy-5-methyl­phenyl acetate

aLaboratoire de Synthése Organique et Physico-Chimie Moléculaire, Faculté des Sciences-Semlalia, Université Cadi Ayyad, BP 2390, 40001, Marrakech, Morocco, bLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 ElManar II, Tunis, Tunisia, and cEquipe de Chimie des Matériaux et de l'Environnement, FSTG-Marrakech, Université Cadi Ayyad, Bd Abdelkrim Khattabi, BP 549, Marrakech, Morocco
*Correspondence e-mail: eh_soumhi@yahoo.fr

(Received 9 October 2013; accepted 23 October 2013; online 26 October 2013)

In the title compound, C13H18O3, the benzene ring is almost perpendicular to the acet­oxy plane, making a dihedral angle of 89.33 (11)°. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming a zigzag chain along the c-axis direction.

Related literature

For background to natural monoterpenic phenols and their derivatives, see: Yuan-Lang & Erdtman (1962[Yuan-Lang, C. & Erdtman, H. (1962). Acta Chem. Scand. 16, 1291-1295.]); Ündeğer et al. (2009[Ündeğer, Ü., Başaran, A., Degen, G. H. & Başaran, N. (2009). Food Chem. Toxicol. 47, 2037-2043.]); Osorio et al. (2006[Osorio, E., Arango, G., Robledo, S., Muñoz, D., Jaramillo, L. & Vélez, I. (2006). Acta Farm. Bonaer. 25, 405-413.]). For a related structure, see: Rajouani et al. (2008[Rajouani, N., Ait Itto, My. Y., Benharref, A., Auhmani, A. & Daran, J.-C. (2008). Acta Cryst. E64, o762.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18O3

  • Mr = 222.27

  • Monoclinic, P 21 /c

  • a = 10.829 (2) Å

  • b = 9.600 (2) Å

  • c = 12.530 (3) Å

  • β = 100.34 (2)°

  • V = 1281.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 300 K

  • 0.3 × 0.15 × 0.1 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.521, Tmax = 0.992

  • 3366 measured reflections

  • 2780 independent reflections

  • 1594 reflections with I > 2σ(I)

  • Rint = 0.018

  • 2 standard reflections every 60 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.132

  • S = 1.02

  • 2780 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H1⋯O2i 0.93 2.60 3.523 (3) 171
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Deft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The p-methoxythymol is a natural phenol extracted from heartwood of tetraclinis articulate (Yuan-Lang et al., 1962). In several recent studies, natural monoterpenic phenols and their derivatives have revealed extensive biological activities, ranging from antimicrobial (Ündeğer et al., 2009) to Antileishmanial and Cytotoxic activities (Osorio et al., 2006). In the aim of preparing monoterpenic phenol derivatives, we report here, the hemisynthesis of 2-isopropyl-4-methoxy-5-methylphenyl acetate from naturally occurred p-methoxythymol. Thus, treatment of p-methoxythymol with acetic anhydride in pyridine, and provides the title compound as colorless crystals in 72.4% yield. Its structure was fully characterized by its mass and NMR spectroscopic data. Furthermore, the crystallographic study made it possible to determine the stereochemistry. The main geometric features of this group are in good agreement with those observed in a similar compound (Rajouani et al., 2008).

Related literature top

For background to natural monoterpenic phenols and their derivatives, see: Yuan-Lang & Erdtman (1962); Ündeğer et al. (2009); Osorio et al. (2006). For a related structure, see: Rajouani et al. (2008).

Experimental top

A solution of p-methoxythymol (111 mg, 0.617 mmol) in acetic anhydride (20 ml) and pyridine (20 ml) was heated under reflux for 24 h. After cooling, the mixture was acidified with 1 N HCl solution then extracted with ether (3 × 20 ml). The organic layer was washed with water, dried on anhydrous Na2SO4 and then evaporated under reduced pressure. The obtained residue was chromatographied on silica gel column using hexane and ethyl acetate (97/3) as eluent, to give 2-isopropyl-4-methoxy-5-methylphenyl acetate (100 mg) in 72.4% yield.

Refinement top

All H-atoms were located in a difference map and refined using a riding model with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound with 50% probability ellipsoids.
2-Isopropyl-4-methoxy-5-methylphenyl acetate top
Crystal data top
C13H18O3F(000) = 480
Mr = 222.27Dx = 1.152 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.829 (2) Åθ = 10–15°
b = 9.600 (2) ŵ = 0.08 mm1
c = 12.530 (3) ÅT = 300 K
β = 100.34 (2)°Prism, colourless
V = 1281.4 (5) Å30.3 × 0.15 × 0.1 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1594 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 27.0°, θmin = 2.7°
ω/2θ scansh = 131
Absorption correction: ψ scan
(North et al., 1968)
k = 112
Tmin = 0.521, Tmax = 0.992l = 1515
3366 measured reflections2 standard reflections every 60 min
2780 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.2201P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2780 reflectionsΔρmax = 0.16 e Å3
151 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (3)
Crystal data top
C13H18O3V = 1281.4 (5) Å3
Mr = 222.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.829 (2) ŵ = 0.08 mm1
b = 9.600 (2) ÅT = 300 K
c = 12.530 (3) Å0.3 × 0.15 × 0.1 mm
β = 100.34 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1594 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.521, Tmax = 0.9922 standard reflections every 60 min
3366 measured reflections intensity decay: 1%
2780 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
2780 reflectionsΔρmin = 0.13 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76460 (12)0.08305 (13)0.33870 (9)0.0587 (4)
O20.76646 (18)0.07552 (19)0.46746 (13)0.1062 (7)
O30.43208 (12)0.20942 (15)0.03401 (10)0.0673 (4)
C10.68418 (16)0.00154 (18)0.26312 (13)0.0496 (4)
C20.73387 (16)0.09160 (17)0.19660 (13)0.0476 (4)
C30.64806 (16)0.16266 (18)0.11839 (14)0.0522 (4)
H10.67770.22420.07150.063*
C40.52031 (16)0.14316 (18)0.10945 (13)0.0514 (4)
C50.47183 (17)0.0533 (2)0.17877 (14)0.0562 (5)
C60.55666 (17)0.0175 (2)0.25510 (14)0.0570 (5)
H20.52720.07920.30200.068*
C70.79534 (17)0.0364 (2)0.44091 (15)0.0612 (5)
C80.8695 (2)0.1412 (3)0.51249 (17)0.0803 (7)
H30.88410.10810.58600.096*
H40.82390.22740.50820.096*
H50.94850.15590.48960.096*
C90.4748 (2)0.2910 (2)0.04666 (16)0.0742 (6)
H60.52830.23550.08300.089*
H70.40410.32290.09830.089*
H80.52100.36970.01320.089*
C100.33271 (18)0.0334 (3)0.16960 (19)0.0812 (7)
H90.31680.03230.22330.097*
H100.29430.12100.18100.097*
H110.29820.00110.09860.097*
C110.87402 (16)0.11360 (19)0.20594 (15)0.0546 (5)
H120.91620.05290.26410.066*
C120.9114 (2)0.2629 (2)0.23722 (18)0.0747 (6)
H130.87180.32500.18130.090*
H140.88500.28570.30430.090*
H151.00090.27230.24580.090*
C130.9195 (2)0.0725 (3)0.10231 (18)0.0785 (6)
H161.00930.07970.11330.094*
H170.89490.02180.08370.094*
H190.88300.13350.04450.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0685 (8)0.0536 (7)0.0512 (7)0.0086 (6)0.0036 (6)0.0056 (6)
O20.1266 (15)0.1007 (13)0.0758 (10)0.0443 (11)0.0236 (10)0.0304 (10)
O30.0564 (7)0.0792 (9)0.0621 (8)0.0073 (7)0.0007 (6)0.0123 (7)
C10.0553 (10)0.0460 (10)0.0448 (9)0.0017 (8)0.0022 (8)0.0014 (8)
C20.0509 (9)0.0444 (9)0.0464 (9)0.0011 (8)0.0054 (7)0.0033 (8)
C30.0574 (11)0.0510 (10)0.0475 (9)0.0004 (8)0.0079 (8)0.0034 (8)
C40.0508 (10)0.0521 (10)0.0481 (9)0.0037 (8)0.0006 (8)0.0019 (8)
C50.0516 (10)0.0583 (11)0.0562 (10)0.0076 (9)0.0030 (8)0.0052 (9)
C60.0624 (11)0.0543 (11)0.0543 (11)0.0077 (9)0.0108 (9)0.0040 (9)
C70.0533 (11)0.0727 (13)0.0545 (11)0.0043 (10)0.0013 (9)0.0009 (10)
C80.0706 (13)0.0957 (17)0.0675 (13)0.0095 (12)0.0071 (11)0.0155 (12)
C90.0796 (14)0.0819 (15)0.0586 (11)0.0200 (12)0.0054 (10)0.0148 (11)
C100.0567 (12)0.0940 (17)0.0900 (16)0.0120 (12)0.0052 (11)0.0100 (13)
C110.0504 (10)0.0560 (11)0.0559 (10)0.0048 (9)0.0053 (8)0.0048 (9)
C120.0615 (12)0.0719 (14)0.0860 (15)0.0071 (11)0.0006 (11)0.0076 (12)
C130.0652 (13)0.0903 (16)0.0839 (15)0.0030 (12)0.0236 (11)0.0106 (13)
Geometric parameters (Å, º) top
O1—C71.341 (2)C11—C121.522 (3)
O1—C11.421 (2)C8—H30.9600
O2—C71.183 (2)C8—H40.9600
O3—C41.374 (2)C8—H50.9600
O3—C91.420 (2)C9—H60.9600
C1—C21.376 (2)C9—H70.9600
C1—C61.379 (2)C9—H80.9600
C2—C31.401 (2)C10—H90.9600
C2—C111.516 (2)C10—H100.9600
C3—C41.380 (2)C10—H110.9600
C3—H10.9300C11—H120.9800
C4—C51.392 (3)C12—H130.9600
C5—C61.380 (2)C12—H140.9600
C5—C101.502 (3)C12—H150.9600
C6—H20.9300C13—H160.9600
C7—C81.484 (3)C13—H170.9600
C11—C131.521 (3)C13—H190.9600
C7—O1—C1117.57 (14)O3—C9—H7109.5
C4—O3—C9118.02 (15)H6—C9—H7109.5
C2—C1—C6122.33 (16)O3—C9—H8109.5
C2—C1—O1120.23 (15)H6—C9—H8109.5
C6—C1—O1117.31 (16)H7—C9—H8109.5
C1—C2—C3116.58 (16)C5—C10—H9109.5
C1—C2—C11122.40 (15)C5—C10—H10109.5
C3—C2—C11121.02 (16)H9—C10—H10109.5
C4—C3—C2121.33 (17)C5—C10—H11109.5
C4—C3—H1119.3H9—C10—H11109.5
C2—C3—H1119.3H10—C10—H11109.5
O3—C4—C3123.79 (16)C2—C11—C13111.77 (15)
O3—C4—C5115.01 (16)C2—C11—C12111.54 (15)
C3—C4—C5121.20 (16)C13—C11—C12110.65 (17)
C6—C5—C4117.32 (16)C2—C11—H12107.5
C6—C5—C10121.61 (18)C13—C11—H12107.5
C4—C5—C10121.07 (17)C12—C11—H12107.5
C1—C6—C5121.23 (17)C11—C12—H13109.5
C1—C6—H2119.4C11—C12—H14109.5
C5—C6—H2119.4H13—C12—H14109.5
O2—C7—O1122.63 (18)C11—C12—H15109.5
O2—C7—C8125.96 (19)H13—C12—H15109.5
O1—C7—C8111.41 (18)H14—C12—H15109.5
C7—C8—H3109.5C11—C13—H16109.5
C7—C8—H4109.5C11—C13—H17109.5
H3—C8—H4109.5H16—C13—H17109.5
C7—C8—H5109.5C11—C13—H19109.5
H3—C8—H5109.5H16—C13—H19109.5
H4—C8—H5109.5H17—C13—H19109.5
O3—C9—H6109.5
C7—O1—C1—C295.9 (2)C3—C4—C5—C61.3 (3)
C7—O1—C1—C688.2 (2)O3—C4—C5—C100.3 (3)
C6—C1—C2—C30.8 (3)C3—C4—C5—C10179.34 (18)
O1—C1—C2—C3174.89 (14)C2—C1—C6—C50.3 (3)
C6—C1—C2—C11179.47 (17)O1—C1—C6—C5175.57 (16)
O1—C1—C2—C114.8 (2)C4—C5—C6—C10.8 (3)
C1—C2—C3—C40.3 (2)C10—C5—C6—C1179.85 (19)
C11—C2—C3—C4179.98 (16)C1—O1—C7—O26.1 (3)
C9—O3—C4—C37.0 (3)C1—O1—C7—C8174.65 (16)
C9—O3—C4—C5173.38 (16)C1—C2—C11—C13118.73 (19)
C2—C3—C4—O3179.64 (15)C3—C2—C11—C1361.0 (2)
C2—C3—C4—C50.8 (3)C1—C2—C11—C12116.80 (19)
O3—C4—C5—C6179.06 (15)C3—C2—C11—C1263.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H1···O2i0.932.603.523 (3)171
Symmetry code: (i) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H1···O2i0.932.603.523 (3)171
Symmetry code: (i) x, y1/2, z1/2.
 

References

First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Deft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOsorio, E., Arango, G., Robledo, S., Muñoz, D., Jaramillo, L. & Vélez, I. (2006). Acta Farm. Bonaer. 25, 405–413.  CAS Google Scholar
First citationRajouani, N., Ait Itto, My. Y., Benharref, A., Auhmani, A. & Daran, J.-C. (2008). Acta Cryst. E64, o762.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÜndeğer, Ü., Başaran, A., Degen, G. H. & Başaran, N. (2009). Food Chem. Toxicol. 47, 2037–2043.  Web of Science PubMed Google Scholar
First citationYuan-Lang, C. & Erdtman, H. (1962). Acta Chem. Scand. 16, 1291–1295.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds