organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1690-o1691

6-Hy­dr­oxy-5-[(2-hy­dr­oxy-4,4-di­methyl-6-oxo­cyclo­hex-1-en­yl)(4-nitro­phen­yl)meth­yl]-1,3-di­methyl­pyrimidine-2,4(1H,3H)-dione

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
*Correspondence e-mail: saisukanyashri@gmail.com

(Received 15 October 2013; accepted 17 October 2013; online 23 October 2013)

In the title compound, C21H23N3O7, the pyrimidine­dione ring adopts a screw-boat conformation, whereas the cyclo­hexenone ring adopts an envelope conformation, with the C atom bearing the methyl groups as the flap atom. The dihedral angle between the mean planes of the pyrimidine­dione and cyclo­hexenone rings is 58.78 (2)°. The pyrimidine­dione and cyclo­hexenone rings form dihedral angles of 59.94 (3) and 54.73 (2)°, respectively, with the 4-nitro­phenyl ring. Relatively strong intra­molecular O—H⋯O hydrogen bonds are observed. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a chain along the c-axis direction.

Related literature

For related syntheses, see: Horning & Horning (1946[Horning, E. C. & Horning, M. G. (1946). J. Org. Chem. 11, 95-99.]); Kaupp et al. (2003[Kaupp, G., Naimi-Jamal, M. R. & Schmeyers, J. (2003). Tetrahedron, 59, 3753-3760.]). For biological and pharmaceutical properties of pyrimidine derivatives, see: Ibrahim & El-Metwally (2010[Ibrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem. 45, 1158-1166.]); Kappe (1993[Kappe, C. O. (1993). Tetrahedron, 49, 6937-6963.]); Campbell et al. (1988[Campbell, K. P., Leung, A. T. & Sharp, A. H. (1988). Trends Neurosci. 11, 425-430.]); Elinson et al. (2006[Elinson, M. N., Dorofeev, A. S., Feducovich, S. K., Gorbunov, S. V., Nasybullin, R. F., Stepanov, N. O. & Nikishin, G. I. (2006). Tetrahedron Lett. 47, 7629-7633.]); Sun et al. (2006[Sun, W., Cama, L. D., Birzin, E. T., Warrier, S., Locco, L., Mosley, R., Hammond, M. L. & Rohrer, S. P. (2006). Bioorg. Med. Chem. Lett. 16, 1468-1472.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the crystal structure of a related bis­dimedone derivative, see: Sughanya & Sureshbabu (2012[Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2875-o2876.]). For the assignment of ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23N3O7

  • Mr = 429.42

  • Monoclinic, P 21 /c

  • a = 12.7470 (2) Å

  • b = 14.0577 (3) Å

  • c = 11.7639 (2) Å

  • β = 99.752 (1)°

  • V = 2077.55 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.996

  • 19038 measured reflections

  • 3655 independent reflections

  • 2930 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.03

  • 3655 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O3i 0.97 2.57 3.328 (2) 135
C20—H20⋯O7i 0.93 2.53 3.153 (2) 125
O2—H2⋯O4 0.82 1.78 2.5932 (18) 172
O5—H5⋯O3 0.82 1.78 2.5863 (18) 167
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organic compounds containing pyrimidine scaffold as a core unit are important targets and are known to exhibit various biological and pharmaceutical activities (Kappe, 1993; Ibrahim & El-Metwally, 2010). Dihydropyridine derivatives are particularly well known in pharmacology as L-type calcium channel blockers (Campbell et al., 1988; Elinson et al., 2006; Sun et al., 2006).

In the title compound, the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. The pyrimidinedione ring P(N2/C1/N3/C3/C4/C5) and the cyclohexenone ring Q(C10–C15) are not planar with total puckering amplitude Q(T) of 0.0868 (18) Å (for P) and 0.4810 (2) Å (for Q). The pyrimidinedione ring (P) adopts a screw-boat conformation, whereas the cyclohexenone ring (Q) adopts an envelope conformation and atom C13 is described as the flap atom being away from the plane of the ring with deviation 0.334 (2) Å. These conformations can be rationalized by the respective puckering parameters (Cremer & Pople, 1975) ϕ = 248.7 (12)°, θ = 76.6 (12)° (for P) and ϕ = -4.90 (3)°, θ = 115.1 (2)° (for Q). The dihedral angle between the mean palnes of the pyrimidinedione ring P and the cyclohexenone plane Q is 58.78 (2)°. The ring P and the plane Q form dihedral angles of 59.94 (3) and 54.73 (2)°, respectively, with the 4-nitrophenyl ring. The hydroxy and carbonyl oxygen atoms face each other and are oriented to allow for the formation of two intramolecular O—H···O hydrogen bonds (Table 1 and Fig. 2) typical for bisdimedone derivatives (Sughanya & Sureshbabu, 2012).

Related literature top

For related syntheses, see: Horning & Horning (1946); Kaupp et al. (2003). For biological and pharmaceutical properties of pyrimidine derivatives, see: Ibrahim & El-Metwally (2010); Kappe (1993); Campbell et al. (1988) ; Elinson et al. (2006); Sun et al. (2006). For bond-length data, see: Allen et al. (1987). For the crystal structure of a related bisdimedone derivative, see: Sughanya & Sureshbabu (2012). For the assignment of ring conformations, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared in a single stage (Horning & Horning, 1946; Kaupp et al., 2003). A mixture of 4-nitrobenzaldehyde (1.51 g, 10 mmol), 5,5-dimethylcyclohexane-1,3-dione (1.40 g, 8 mmol), 1,3-dimethyl-2,4,6(1H,3H,5H)pyrimidinetrione (1.56 g, 10 mmol) and 20 ml of ethanol was heated to 70 °C for about 10 minutes. The reaction mixture was allowed to cool to room temperature and the resulting title compound was filtered and dried. The yellow crystal used for data collection was obtained by crystallization from ethanol at room temperature,(m.p. 446 K; yield 3.69 g, 86%).

Refinement top

All hydrogen atoms were identified from difference in electron density peaks and subsequently treated as riding atoms with d(Csp2—H) = 0.93 Å, d(Cmethyl—H) = 0.96 Å, d(Cmethylene—H) = 0.97 Å, d(Cmethine—H) = 0.98 Å, d(O—H) = 0.82 Å, and Uiso(H) = xUeq(C,O), where x = 1.5 for methyl H and 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the packing in the crystal structure, showing intramolecular O—H···O hydrogen bonds as dotted lines.
6-Hydroxy-5-[(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-enyl)(4-nitrophenyl)methyl]-1,3-dimethylpyrimidine-2,4(1H,3H)-dione top
Crystal data top
C21H23N3O7F(000) = 904
Mr = 429.42Dx = 1.373 Mg m3
Monoclinic, P21/cMelting point: 446 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.7470 (2) ÅCell parameters from 6971 reflections
b = 14.0577 (3) Åθ = 2.3–31.1°
c = 11.7639 (2) ŵ = 0.10 mm1
β = 99.752 (1)°T = 296 K
V = 2077.55 (7) Å3Block, yellow
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3655 independent reflections
Radiation source: fine-focus sealed tube2930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scanθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1515
Tmin = 0.953, Tmax = 0.996k = 1616
19038 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.7319P]
where P = (Fo2 + 2Fc2)/3
3655 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C21H23N3O7V = 2077.55 (7) Å3
Mr = 429.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7470 (2) ŵ = 0.10 mm1
b = 14.0577 (3) ÅT = 296 K
c = 11.7639 (2) Å0.30 × 0.20 × 0.20 mm
β = 99.752 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3655 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2930 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.996Rint = 0.026
19038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
3655 reflectionsΔρmin = 0.17 e Å3
284 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43994 (13)0.52617 (14)0.32945 (15)0.0463 (4)
C30.31661 (13)0.58663 (12)0.44572 (15)0.0405 (4)
C40.28899 (12)0.49692 (12)0.47480 (14)0.0379 (4)
C50.34740 (13)0.41934 (12)0.44258 (14)0.0393 (4)
C70.47199 (16)0.35565 (15)0.32496 (18)0.0574 (5)
H7A0.42110.31980.27250.086*
H7B0.50240.31580.38830.086*
H7C0.52730.37810.28550.086*
C80.41348 (18)0.69691 (15)0.3370 (2)0.0674 (6)
H8A0.48190.69710.31320.101*
H8B0.41420.74050.40000.101*
H8C0.36000.71610.27360.101*
C90.19863 (12)0.48072 (12)0.54145 (14)0.0367 (4)
H90.15860.54060.53360.044*
C100.23508 (12)0.46936 (12)0.67044 (14)0.0372 (4)
C110.25023 (13)0.55493 (12)0.73689 (15)0.0400 (4)
C120.28119 (16)0.55040 (13)0.86545 (16)0.0503 (5)
H12A0.24770.60300.89900.060*
H12B0.35760.55890.88530.060*
C130.25105 (16)0.45824 (14)0.91944 (16)0.0518 (5)
C140.29180 (17)0.37709 (14)0.85299 (16)0.0541 (5)
H14A0.36850.37300.87560.065*
H14B0.26170.31800.87530.065*
C150.26648 (13)0.38623 (12)0.72543 (15)0.0419 (4)
C160.3044 (2)0.45346 (18)1.04585 (18)0.0775 (7)
H16A0.38020.45641.05070.116*
H16B0.28540.39491.07910.116*
H16C0.28090.50611.08710.116*
C170.13041 (19)0.45314 (18)0.9135 (2)0.0700 (6)
H17A0.10710.50660.95330.105*
H17B0.11230.39530.94900.105*
H17C0.09610.45430.83430.105*
C180.11860 (12)0.40589 (12)0.48585 (14)0.0368 (4)
C190.05242 (13)0.35990 (13)0.54975 (14)0.0419 (4)
H190.05750.37440.62760.050*
C200.02105 (13)0.29298 (13)0.50096 (14)0.0410 (4)
H200.06480.26240.54520.049*
C210.02800 (12)0.27259 (12)0.38590 (14)0.0391 (4)
C220.03304 (15)0.31929 (15)0.31838 (15)0.0527 (5)
H220.02580.30610.24000.063*
C230.10532 (15)0.38612 (15)0.36873 (15)0.0514 (5)
H230.14620.41880.32310.062*
N10.10298 (12)0.19886 (11)0.33551 (13)0.0476 (4)
N20.41894 (11)0.43692 (11)0.36855 (13)0.0441 (4)
N30.38954 (11)0.60059 (11)0.37410 (13)0.0464 (4)
O10.50086 (11)0.53864 (11)0.26191 (12)0.0635 (4)
O20.27934 (10)0.66554 (8)0.48297 (11)0.0500 (3)
H20.26210.65610.54610.075*
O30.33804 (10)0.33569 (9)0.47517 (11)0.0483 (3)
O40.24328 (10)0.63529 (9)0.69037 (11)0.0494 (3)
O50.27781 (11)0.30563 (9)0.67125 (11)0.0527 (3)
H50.28680.31710.60520.079*
O60.16084 (13)0.16313 (11)0.39533 (12)0.0695 (4)
O70.10407 (13)0.17628 (13)0.23596 (13)0.0773 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0342 (9)0.0604 (12)0.0431 (10)0.0059 (8)0.0029 (8)0.0007 (9)
C30.0339 (8)0.0411 (10)0.0448 (9)0.0020 (7)0.0013 (7)0.0043 (8)
C40.0329 (8)0.0388 (9)0.0410 (9)0.0012 (7)0.0038 (7)0.0008 (7)
C50.0344 (8)0.0411 (10)0.0408 (9)0.0026 (7)0.0022 (7)0.0040 (8)
C70.0478 (11)0.0640 (13)0.0630 (12)0.0038 (9)0.0168 (9)0.0149 (10)
C80.0674 (14)0.0561 (13)0.0821 (15)0.0027 (11)0.0222 (12)0.0254 (11)
C90.0333 (8)0.0342 (8)0.0422 (9)0.0034 (7)0.0047 (7)0.0004 (7)
C100.0318 (8)0.0374 (9)0.0418 (9)0.0005 (7)0.0044 (7)0.0016 (7)
C110.0331 (8)0.0383 (10)0.0477 (10)0.0015 (7)0.0044 (7)0.0010 (8)
C120.0535 (11)0.0468 (11)0.0480 (10)0.0034 (9)0.0015 (9)0.0074 (8)
C130.0624 (12)0.0499 (11)0.0417 (10)0.0017 (9)0.0050 (9)0.0013 (8)
C140.0667 (12)0.0450 (11)0.0481 (11)0.0050 (9)0.0024 (9)0.0051 (9)
C150.0404 (9)0.0384 (10)0.0460 (10)0.0021 (7)0.0044 (7)0.0012 (8)
C160.109 (2)0.0723 (16)0.0466 (12)0.0021 (14)0.0003 (12)0.0014 (11)
C170.0708 (14)0.0786 (16)0.0646 (14)0.0145 (12)0.0228 (11)0.0096 (12)
C180.0305 (8)0.0409 (9)0.0383 (9)0.0023 (7)0.0036 (7)0.0014 (7)
C190.0383 (9)0.0539 (11)0.0343 (8)0.0025 (8)0.0085 (7)0.0039 (8)
C200.0361 (9)0.0491 (10)0.0391 (9)0.0044 (7)0.0097 (7)0.0024 (8)
C210.0322 (8)0.0447 (10)0.0398 (9)0.0003 (7)0.0045 (7)0.0011 (7)
C220.0469 (10)0.0786 (14)0.0331 (9)0.0154 (10)0.0080 (8)0.0053 (9)
C230.0448 (10)0.0719 (13)0.0382 (10)0.0171 (9)0.0090 (8)0.0042 (9)
N10.0424 (8)0.0535 (9)0.0461 (9)0.0038 (7)0.0055 (7)0.0050 (7)
N20.0367 (8)0.0493 (9)0.0472 (8)0.0011 (6)0.0099 (6)0.0063 (7)
N30.0399 (8)0.0475 (9)0.0522 (9)0.0033 (7)0.0092 (7)0.0095 (7)
O10.0520 (8)0.0836 (11)0.0597 (8)0.0101 (7)0.0235 (7)0.0018 (7)
O20.0524 (7)0.0388 (7)0.0599 (8)0.0050 (6)0.0123 (6)0.0063 (6)
O30.0532 (7)0.0369 (7)0.0564 (8)0.0026 (6)0.0136 (6)0.0042 (6)
O40.0564 (8)0.0358 (7)0.0542 (8)0.0024 (6)0.0040 (6)0.0025 (6)
O50.0673 (9)0.0386 (7)0.0513 (7)0.0102 (6)0.0072 (6)0.0010 (6)
O60.0794 (10)0.0691 (10)0.0623 (9)0.0344 (8)0.0185 (8)0.0005 (7)
O70.0736 (10)0.1064 (13)0.0537 (9)0.0336 (9)0.0157 (7)0.0312 (9)
Geometric parameters (Å, º) top
C1—O11.214 (2)C13—C141.523 (3)
C1—N31.377 (2)C13—C161.528 (3)
C1—N21.378 (2)C13—C171.529 (3)
C3—O21.311 (2)C14—C151.486 (2)
C3—C41.368 (2)C14—H14A0.9700
C3—N31.370 (2)C14—H14B0.9700
C4—C51.408 (2)C15—O51.320 (2)
C4—C91.516 (2)C16—H16A0.9600
C5—O31.249 (2)C16—H16B0.9600
C5—N21.386 (2)C16—H16C0.9600
C7—N21.464 (2)C17—H17A0.9600
C7—H7A0.9600C17—H17B0.9600
C7—H7B0.9600C17—H17C0.9600
C7—H7C0.9600C18—C191.382 (2)
C8—N31.470 (2)C18—C231.387 (2)
C8—H8A0.9600C19—C201.382 (2)
C8—H8B0.9600C19—H190.9300
C8—H8C0.9600C20—C211.372 (2)
C9—C101.518 (2)C20—H200.9300
C9—C181.533 (2)C21—C221.370 (2)
C9—H90.9800C21—N11.465 (2)
C10—C151.363 (2)C22—C231.378 (3)
C10—C111.430 (2)C22—H220.9300
C11—O41.252 (2)C23—H230.9300
C11—C121.498 (2)N1—O71.2112 (19)
C12—C131.520 (3)N1—O61.211 (2)
C12—H12A0.9700O2—H20.8200
C12—H12B0.9700O5—H50.8200
O1—C1—N3122.09 (18)C15—C14—H14A108.6
O1—C1—N2122.13 (18)C13—C14—H14A108.6
N3—C1—N2115.77 (15)C15—C14—H14B108.6
O2—C3—C4124.97 (16)C13—C14—H14B108.6
O2—C3—N3113.98 (15)H14A—C14—H14B107.6
C4—C3—N3121.04 (16)O5—C15—C10123.67 (16)
C3—C4—C5118.45 (15)O5—C15—C14112.99 (15)
C3—C4—C9121.19 (15)C10—C15—C14123.34 (16)
C5—C4—C9120.36 (15)C13—C16—H16A109.5
O3—C5—N2117.92 (15)C13—C16—H16B109.5
O3—C5—C4124.36 (16)H16A—C16—H16B109.5
N2—C5—C4117.72 (15)C13—C16—H16C109.5
N2—C7—H7A109.5H16A—C16—H16C109.5
N2—C7—H7B109.5H16B—C16—H16C109.5
H7A—C7—H7B109.5C13—C17—H17A109.5
N2—C7—H7C109.5C13—C17—H17B109.5
H7A—C7—H7C109.5H17A—C17—H17B109.5
H7B—C7—H7C109.5C13—C17—H17C109.5
N3—C8—H8A109.5H17A—C17—H17C109.5
N3—C8—H8B109.5H17B—C17—H17C109.5
H8A—C8—H8B109.5C19—C18—C23117.61 (15)
N3—C8—H8C109.5C19—C18—C9120.83 (14)
H8A—C8—H8C109.5C23—C18—C9121.44 (15)
H8B—C8—H8C109.5C18—C19—C20121.72 (15)
C4—C9—C10113.70 (13)C18—C19—H19119.1
C4—C9—C18113.04 (13)C20—C19—H19119.1
C10—C9—C18115.04 (13)C21—C20—C19118.56 (15)
C4—C9—H9104.5C21—C20—H20120.7
C10—C9—H9104.5C19—C20—H20120.7
C18—C9—H9104.5C22—C21—C20121.60 (16)
C15—C10—C11117.41 (15)C22—C21—N1120.00 (15)
C15—C10—C9125.47 (15)C20—C21—N1118.40 (15)
C11—C10—C9116.62 (14)C21—C22—C23118.80 (16)
O4—C11—C10121.82 (16)C21—C22—H22120.6
O4—C11—C12117.81 (15)C23—C22—H22120.6
C10—C11—C12120.28 (15)C22—C23—C18121.59 (16)
C11—C12—C13114.57 (15)C22—C23—H23119.2
C11—C12—H12A108.6C18—C23—H23119.2
C13—C12—H12A108.6O7—N1—O6123.01 (16)
C11—C12—H12B108.6O7—N1—C21118.45 (15)
C13—C12—H12B108.6O6—N1—C21118.55 (15)
H12A—C12—H12B107.6C1—N2—C5123.91 (15)
C12—C13—C14106.95 (16)C1—N2—C7117.79 (15)
C12—C13—C16109.98 (17)C5—N2—C7118.24 (15)
C14—C13—C16109.41 (17)C3—N3—C1122.31 (15)
C12—C13—C17110.12 (17)C3—N3—C8120.72 (16)
C14—C13—C17111.65 (17)C1—N3—C8116.91 (16)
C16—C13—C17108.70 (18)C3—O2—H2109.5
C15—C14—C13114.76 (15)C15—O5—H5109.5
O2—C3—C4—C5170.34 (15)C4—C9—C18—C19159.10 (15)
N3—C3—C4—C58.5 (2)C10—C9—C18—C1926.2 (2)
O2—C3—C4—C98.9 (3)C4—C9—C18—C2324.9 (2)
N3—C3—C4—C9172.22 (15)C10—C9—C18—C23157.83 (16)
C3—C4—C5—O3171.47 (16)C23—C18—C19—C203.2 (3)
C9—C4—C5—O37.8 (2)C9—C18—C19—C20179.29 (15)
C3—C4—C5—N29.4 (2)C18—C19—C20—C210.3 (3)
C9—C4—C5—N2171.30 (14)C19—C20—C21—C222.4 (3)
C3—C4—C9—C1096.64 (18)C19—C20—C21—N1177.59 (15)
C5—C4—C9—C1082.59 (19)C20—C21—C22—C232.1 (3)
C3—C4—C9—C18129.82 (16)N1—C21—C22—C23177.94 (17)
C5—C4—C9—C1851.0 (2)C21—C22—C23—C181.0 (3)
C4—C9—C10—C1586.4 (2)C19—C18—C23—C223.5 (3)
C18—C9—C10—C1546.2 (2)C9—C18—C23—C22179.63 (18)
C4—C9—C10—C1185.25 (17)C22—C21—N1—O74.9 (3)
C18—C9—C10—C11142.16 (15)C20—C21—N1—O7175.09 (18)
C15—C10—C11—O4166.07 (16)C22—C21—N1—O6175.25 (18)
C9—C10—C11—O46.3 (2)C20—C21—N1—O64.7 (2)
C15—C10—C11—C1210.5 (2)O1—C1—N2—C5177.80 (16)
C9—C10—C11—C12177.14 (14)N3—C1—N2—C53.8 (2)
O4—C11—C12—C13159.47 (16)O1—C1—N2—C70.6 (3)
C10—C11—C12—C1323.8 (2)N3—C1—N2—C7179.05 (15)
C11—C12—C13—C1450.5 (2)O3—C5—N2—C1177.50 (15)
C11—C12—C13—C16169.25 (18)C4—C5—N2—C13.4 (2)
C11—C12—C13—C1771.0 (2)O3—C5—N2—C75.4 (2)
C12—C13—C14—C1547.2 (2)C4—C5—N2—C7173.79 (15)
C16—C13—C14—C15166.26 (18)O2—C3—N3—C1177.86 (15)
C17—C13—C14—C1573.4 (2)C4—C3—N3—C11.1 (2)
C11—C10—C15—O5165.52 (16)O2—C3—N3—C85.1 (2)
C9—C10—C15—O56.1 (3)C4—C3—N3—C8175.86 (17)
C11—C10—C15—C1414.3 (3)O1—C1—N3—C3176.59 (16)
C9—C10—C15—C14174.07 (16)N2—C1—N3—C35.0 (2)
C13—C14—C15—O5163.61 (17)O1—C1—N3—C80.5 (3)
C13—C14—C15—C1016.5 (3)N2—C1—N3—C8177.89 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O3i0.972.573.328 (2)135
C20—H20···O7i0.932.533.153 (2)125
O2—H2···O40.821.782.5932 (18)172
O5—H5···O30.821.782.5863 (18)167
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O3i0.972.573.328 (2)135
C20—H20···O7i0.932.533.153 (2)125
O2—H2···O40.821.782.5932 (18)172
O5—H5···O30.821.782.5863 (18)167
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Babu Varghese and the SAIF, IIT Madras, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, K. P., Leung, A. T. & Sharp, A. H. (1988). Trends Neurosci. 11, 425–430.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationElinson, M. N., Dorofeev, A. S., Feducovich, S. K., Gorbunov, S. V., Nasybullin, R. F., Stepanov, N. O. & Nikishin, G. I. (2006). Tetrahedron Lett. 47, 7629–7633.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHorning, E. C. & Horning, M. G. (1946). J. Org. Chem. 11, 95–99.  CrossRef CAS PubMed Web of Science Google Scholar
First citationIbrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem. 45, 1158–1166.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKappe, C. O. (1993). Tetrahedron, 49, 6937–6963.  CrossRef CAS Google Scholar
First citationKaupp, G., Naimi-Jamal, M. R. & Schmeyers, J. (2003). Tetrahedron, 59, 3753–3760.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2875–o2876.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSun, W., Cama, L. D., Birzin, E. T., Warrier, S., Locco, L., Mosley, R., Hammond, M. L. & Rohrer, S. P. (2006). Bioorg. Med. Chem. Lett. 16, 1468–1472.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1690-o1691
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds