organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-4-(thio­phen-2-yl)-2,3-di­hydro-1,5-benzo­thia­zepine

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore, 570 006, India, and bPost Graduate Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore, 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

(Received 16 September 2013; accepted 19 September 2013; online 5 October 2013)

In the title compound, C19H14FNS2, the seven-membered thia­zepine ring adopts a slightly distorted twist boat conformation. The dihedral angle between the benzene rings is 53.6 (1)°. The mean plane of the thia­zepine ring is twisted by 34.3 (7)° and 36.6 (7)° from the benezene rings. A C—H⋯F interaction generates stacking of molecules along the ab plane.

Related literature

For heterocycles containing the 1,4-thia­zepine ring used as pharmaceutical agents as well as for biologically active compounds, see: Shi et al. (2012[Shi, F., Zeng, X.-N., Cao, X.-D., Zhang, S., Jiang, B., Zheng, W.-F. & Tu, S.-J. (2012). Bioorg. Med. Chem. Lett. 22, 743-746.]). For the pharmacological activity of benzo­thia­zepine and its derivatives, see: Sanjeeva et al. (2008[Sanjeeva, R. C., Purnachandra, R. G., Nagaraj, A. & Srinivas, A. (2008). Org. Commun. 1, 84-94.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Bramer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14FNS2

  • Mr = 339.43

  • Monoclinic, C 2/c

  • a = 26.1463 (17) Å

  • b = 12.3091 (8) Å

  • c = 10.1776 (7) Å

  • β = 101.383 (4)°

  • V = 3211.1 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.07 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.16 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). SMART, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.502, Tmax = 0.612

  • 11355 measured reflections

  • 2647 independent reflections

  • 2037 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.134

  • S = 1.05

  • 2647 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯F1i 0.93 2.72 3.322 (4) 123
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). SMART, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). SMART, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

Heterocycles containing the 1,4-thiazepine ring is one of important moieties in nitrogen and sulfur containing heterocycles and has been widely used as a key building block for pharmaceutical agents as well as for biologically active compounds (Shi et al., 2012). The title compound C19H14FNS2, (I), is a tetracyclic structure with one aromatic ring fused to a seven membered ring, on which two heteroatoms are present. Benzothiazepine and its derivatives show a wide spectrum of pharmacological activities such as antifeedent, coronary vasodilatory, tranquilizer, antidepressant, CNS stimulant, antihypertensive, calcium channel blocker, antiulcer, calcium antagonist and antimicrobial agents (Sanjeeva et al., 2008). The atoms C9, C8, C11 and C12 present in the central thiazepine ring forms a basal plane with S10 atom as the bow, representing the boat conformation of thiazepine ring.

In (I),The dihedral angle between the mean plans of the benzene rings is 53.6 (1)°. The mean plane of the thiazepine ring is twisted by 34.3 (7)° and 36.6 (7)° from the mean planes of two benezene rings. Bond lengths are in normal ranges (Allen et al.,, 1987).

Related literature top

For heterocycles containing the 1,4-thiazepine ring used as pharmaceutical agents as well as for biologically active compounds, see: Shi et al. (2012). For the pharmacological activity of benzothiazepine and its derivatives, see: Sanjeeva et al. (2008). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of 2-aminothiophenol (4 mmol, 0.50 g) with 3-(4-fluorophenyl)-1- (thiophen-2-yl)prop-2-en-1-one (4 mmol, 0.93 g) and 3 to 4 drops of conc. HCl in methanol (10 ml) was heated with stirring at 473 K for 4 h. The reaction was monitored by thin-layer chromatography (hexane or chloroform). After completion of the reaction, the mixture was extracted into ether (30 ml), washed successively with cold and dilute hydrochloric acid and water. The solvent was evaporated to dryness, and crystallized from 95° ethyl alcohol to get pale yellow needles of 2-(4-fluorophenyl)-4-(thiophen-2-yl)-2,3-dihydro-1,5-benzothiazepine in 85° yield. m.p. 422 K. Anal. Calcd. for C19H14FNS2: C 67.23, H 4.16, N 4.13°; found C 67.20, H 4.11, N4.08°.

Refinement top

All hydrogen atoms were located geometrically with C—H = 0.93–0.97) Å and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(aromatic C).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule, C19H14FNS2, with 50% probability ellipsoids.
[Figure 2] Fig. 2. Hydrogen-bond (supramolecular architecure) interactions in the title compound.
2-(4-Fluorophenyl)-4-(thiophen-2-yl)-2,3-dihydro-1,5-benzothiazepine top
Crystal data top
C19H14FNS2F(000) = 1408
Mr = 339.43Dx = 1.404 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 26.1463 (17) ÅCell parameters from 11356 reflections
b = 12.3091 (8) Åθ = 64.7–4.0°
c = 10.1776 (7) ŵ = 3.07 mm1
β = 101.383 (4)°T = 293 K
V = 3211.1 (4) Å3Needle, light yellow
Z = 80.24 × 0.22 × 0.16 mm
Data collection top
Bruker X8 Proteum
diffractometer
2647 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2037 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.054
Detector resolution: 10.7 pixels mm-1θmax = 64.7°, θmin = 4.0°
ϕ and ω scansh = 3030
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1314
Tmin = 0.502, Tmax = 0.612l = 911
11355 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.071P)2 + 1.8964P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.24 e Å3
2647 reflectionsΔρmin = 0.29 e Å3
209 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00022 (8)
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H14FNS2V = 3211.1 (4) Å3
Mr = 339.43Z = 8
Monoclinic, C2/cCu Kα radiation
a = 26.1463 (17) ŵ = 3.07 mm1
b = 12.3091 (8) ÅT = 293 K
c = 10.1776 (7) Å0.24 × 0.22 × 0.16 mm
β = 101.383 (4)°
Data collection top
Bruker X8 Proteum
diffractometer
2647 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2037 reflections with I > 2σ(I)
Tmin = 0.502, Tmax = 0.612Rint = 0.054
11355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
2647 reflectionsΔρmin = 0.29 e Å3
209 parameters
Special details top

Experimental. 1H NMR (CDCl3): δ1.82 (d, 1H, C3—H), 2.12 (d, 1H, C3—H), 3.80 (d, 1H, C2—H), 7.20 (dd, 2H, Ar—H), 7.28 (dd, 2H, Ar—H), 7.18 (t, 1H, C4—H 5 m ring), 7.46 (d, 1H, C3—H 5 m ring), 7.72 (d, 1H, C5—H 5 m ring), 7.32–7.46 (m, 4H, Ar—H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42843 (3)0.03004 (6)0.65079 (8)0.0534 (3)
S20.22949 (3)0.03765 (7)0.72781 (9)0.0592 (3)
F10.45335 (9)0.47959 (17)0.3082 (2)0.0811 (6)
N10.31778 (8)0.09171 (18)0.5962 (2)0.0434 (5)
C10.30635 (10)0.0103 (2)0.5851 (3)0.0421 (6)
C20.33154 (10)0.0903 (2)0.5056 (3)0.0446 (7)
H2A0.30720.14850.47430.054*
H2B0.33980.05410.42780.054*
C30.38127 (10)0.1381 (2)0.5894 (3)0.0434 (6)
H30.37160.17170.66830.052*
C40.40778 (10)0.0855 (2)0.5505 (3)0.0423 (6)
C50.35838 (10)0.1337 (2)0.5390 (3)0.0409 (6)
C60.34956 (11)0.2345 (2)0.4772 (3)0.0471 (7)
H60.31700.26710.46920.056*
C70.38840 (12)0.2870 (3)0.4272 (3)0.0543 (8)
H70.38180.35450.38620.065*
C80.43681 (13)0.2397 (3)0.4380 (3)0.0588 (8)
H80.46300.27550.40530.071*
C90.44617 (11)0.1395 (3)0.4974 (3)0.0515 (8)
H90.47860.10700.50240.062*
C100.26577 (10)0.0500 (2)0.6544 (3)0.0448 (7)
C110.25218 (11)0.1577 (2)0.6726 (3)0.0499 (7)
H110.26700.21750.63840.060*
C120.21274 (13)0.1639 (3)0.7503 (4)0.0642 (9)
H120.19920.22900.77480.077*
C130.19709 (12)0.0656 (3)0.7849 (4)0.0641 (9)
H130.17130.05550.83480.077*
C140.40372 (10)0.2271 (2)0.5150 (3)0.0406 (6)
C150.41640 (11)0.2101 (2)0.3910 (3)0.0473 (7)
H150.41360.14060.35440.057*
C160.43319 (11)0.2941 (3)0.3206 (3)0.0515 (7)
H160.44100.28230.23650.062*
C170.43805 (12)0.3947 (3)0.3772 (3)0.0526 (7)
C180.42809 (14)0.4155 (3)0.5015 (3)0.0601 (8)
H180.43290.48450.53910.072*
C190.41050 (13)0.3301 (2)0.5697 (3)0.0533 (8)
H190.40310.34240.65420.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0529 (4)0.0427 (5)0.0573 (5)0.0034 (3)0.0069 (3)0.0079 (3)
S20.0529 (4)0.0507 (5)0.0772 (6)0.0008 (3)0.0207 (4)0.0009 (4)
F10.1102 (16)0.0648 (13)0.0754 (14)0.0166 (12)0.0354 (12)0.0212 (11)
N10.0461 (11)0.0348 (12)0.0509 (14)0.0007 (10)0.0135 (10)0.0027 (11)
C10.0417 (13)0.0372 (15)0.0453 (16)0.0003 (11)0.0037 (12)0.0011 (12)
C20.0483 (14)0.0363 (15)0.0489 (17)0.0018 (12)0.0088 (12)0.0056 (13)
C30.0528 (14)0.0342 (14)0.0423 (16)0.0060 (12)0.0079 (12)0.0003 (12)
C40.0449 (13)0.0376 (15)0.0438 (16)0.0026 (11)0.0070 (12)0.0097 (12)
C50.0471 (14)0.0360 (14)0.0404 (15)0.0039 (11)0.0105 (12)0.0024 (12)
C60.0557 (15)0.0402 (16)0.0463 (17)0.0018 (12)0.0126 (13)0.0008 (13)
C70.0741 (19)0.0447 (17)0.0452 (18)0.0089 (15)0.0144 (15)0.0012 (14)
C80.0629 (18)0.063 (2)0.054 (2)0.0211 (16)0.0197 (15)0.0065 (16)
C90.0466 (14)0.0549 (19)0.0554 (19)0.0096 (13)0.0159 (13)0.0145 (15)
C100.0413 (13)0.0436 (16)0.0481 (17)0.0001 (11)0.0049 (12)0.0010 (13)
C110.0539 (15)0.0378 (16)0.0606 (19)0.0079 (12)0.0174 (14)0.0045 (14)
C120.0676 (19)0.054 (2)0.073 (2)0.0165 (16)0.0189 (17)0.0071 (18)
C130.0509 (16)0.073 (2)0.072 (2)0.0084 (16)0.0213 (16)0.0012 (18)
C140.0483 (14)0.0358 (14)0.0369 (15)0.0002 (11)0.0067 (11)0.0007 (12)
C150.0564 (15)0.0418 (16)0.0452 (17)0.0005 (13)0.0139 (13)0.0077 (13)
C160.0557 (16)0.057 (2)0.0441 (17)0.0006 (14)0.0145 (13)0.0015 (15)
C170.0604 (16)0.0483 (17)0.0502 (18)0.0065 (14)0.0138 (14)0.0156 (15)
C180.089 (2)0.0377 (17)0.055 (2)0.0076 (16)0.0177 (17)0.0019 (14)
C190.082 (2)0.0397 (17)0.0418 (16)0.0034 (14)0.0202 (15)0.0008 (13)
Geometric parameters (Å, º) top
S1—C31.837 (3)C7—C81.378 (5)
S1—C41.772 (3)C8—H80.9300
S2—C101.704 (3)C8—C91.374 (5)
S2—C131.693 (3)C9—H90.9300
F1—C171.362 (3)C10—C111.394 (4)
N1—C11.290 (3)C11—H110.9300
N1—C51.406 (3)C11—C121.420 (4)
C1—C21.506 (4)C12—H120.9300
C1—C101.469 (4)C12—C131.346 (5)
C2—H2A0.9700C13—H130.9300
C2—H2B0.9700C14—C151.382 (4)
C2—C31.525 (4)C14—C191.382 (4)
C3—H30.9800C15—H150.9300
C3—C141.515 (4)C15—C161.378 (4)
C4—C51.405 (4)C16—H160.9300
C4—C91.398 (4)C16—C171.362 (4)
C5—C61.389 (4)C17—C181.365 (5)
C6—H60.9300C18—H180.9300
C6—C71.383 (4)C18—C191.388 (4)
C7—H70.9300C19—H190.9300
C4—S1—C3106.11 (12)C4—C9—H9119.4
C13—S2—C1091.98 (16)C8—C9—C4121.2 (3)
C1—N1—C5120.2 (2)C8—C9—H9119.4
N1—C1—C2124.4 (2)C1—C10—S2121.1 (2)
N1—C1—C10117.3 (2)C11—C10—S2111.4 (2)
C10—C1—C2118.3 (2)C11—C10—C1127.4 (3)
C1—C2—H2A109.3C10—C11—H11124.5
C1—C2—H2B109.3C10—C11—C12110.9 (3)
C1—C2—C3111.5 (2)C12—C11—H11124.5
H2A—C2—H2B108.0C11—C12—H12123.6
C3—C2—H2A109.3C13—C12—C11112.9 (3)
C3—C2—H2B109.3C13—C12—H12123.6
S1—C3—H3107.0S2—C13—H13123.6
C2—C3—S1110.59 (18)C12—C13—S2112.7 (2)
C2—C3—H3107.0C12—C13—H13123.6
C14—C3—S1113.15 (18)C15—C14—C3122.3 (2)
C14—C3—C2111.8 (2)C15—C14—C19118.1 (3)
C14—C3—H3107.0C19—C14—C3119.6 (2)
C5—C4—S1123.9 (2)C14—C15—H15119.3
C9—C4—S1116.3 (2)C16—C15—C14121.3 (3)
C9—C4—C5119.0 (3)C16—C15—H15119.3
C4—C5—N1124.6 (2)C15—C16—H16120.8
C6—C5—N1116.4 (2)C17—C16—C15118.3 (3)
C6—C5—C4118.8 (2)C17—C16—H16120.8
C5—C6—H6119.5F1—C17—C18117.6 (3)
C7—C6—C5121.1 (3)C16—C17—F1119.5 (3)
C7—C6—H6119.5C16—C17—C18123.0 (3)
C6—C7—H7119.9C17—C18—H18121.2
C8—C7—C6120.2 (3)C17—C18—C19117.6 (3)
C8—C7—H7119.9C19—C18—H18121.2
C7—C8—H8120.1C14—C19—C18121.5 (3)
C9—C8—C7119.7 (3)C14—C19—H19119.3
C9—C8—H8120.1C18—C19—H19119.3
S1—C3—C14—C1569.3 (3)C4—S1—C3—C217.3 (2)
S1—C3—C14—C19112.7 (3)C4—S1—C3—C14109.0 (2)
S1—C4—C5—N15.5 (4)C4—C5—C6—C70.1 (4)
S1—C4—C5—C6168.7 (2)C5—N1—C1—C24.2 (4)
S1—C4—C9—C8168.7 (2)C5—N1—C1—C10176.2 (2)
S2—C10—C11—C121.5 (3)C5—C4—C9—C81.8 (4)
F1—C17—C18—C19177.5 (3)C5—C6—C7—C80.1 (5)
N1—C1—C2—C387.2 (3)C6—C7—C8—C90.7 (5)
N1—C1—C10—S28.3 (4)C7—C8—C9—C41.7 (5)
N1—C1—C10—C11170.2 (3)C9—C4—C5—N1175.3 (3)
N1—C5—C6—C7174.8 (3)C9—C4—C5—C61.0 (4)
C1—N1—C5—C445.9 (4)C10—S2—C13—C120.0 (3)
C1—N1—C5—C6139.7 (3)C10—C1—C2—C393.2 (3)
C1—C2—C3—S158.9 (3)C10—C11—C12—C131.5 (4)
C1—C2—C3—C14174.0 (2)C11—C12—C13—S20.8 (4)
C1—C10—C11—C12177.2 (3)C13—S2—C10—C1177.9 (2)
C2—C1—C10—S2171.3 (2)C13—S2—C10—C110.9 (2)
C2—C1—C10—C1110.1 (4)C14—C15—C16—C171.3 (4)
C2—C3—C14—C1556.3 (3)C15—C14—C19—C181.8 (5)
C2—C3—C14—C19121.6 (3)C15—C16—C17—F1178.4 (3)
C3—S1—C4—C558.1 (3)C15—C16—C17—C181.4 (5)
C3—S1—C4—C9131.9 (2)C16—C17—C18—C192.3 (5)
C3—C14—C15—C16175.2 (3)C17—C18—C19—C140.7 (5)
C3—C14—C19—C18176.2 (3)C19—C14—C15—C162.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···F1i0.932.723.322 (4)123
Symmetry code: (i) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···F1i0.932.723.322 (4)123.1
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

The authors thank the IOE and the University of Mysore for providing the single crystal X-ray diffractometer facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Bramer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (2013). SMART, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSanjeeva, R. C., Purnachandra, R. G., Nagaraj, A. & Srinivas, A. (2008). Org. Commun. 1, 84–94.  Google Scholar
First citationShi, F., Zeng, X.-N., Cao, X.-D., Zhang, S., Jiang, B., Zheng, W.-F. & Tu, S.-J. (2012). Bioorg. Med. Chem. Lett. 22, 743–746.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds