metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m593-m594

catena-Poly[[di­aqua­bis­­(μ3-5-carboxyl­ato-1H-pyrazole-3-carb­­oxy­lic acid-κ3O3:O3;O5)dilithium(I)] monohydrate]

aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 10 September 2013; accepted 24 September 2013; online 12 October 2013)

The basic structural unit of the title polymeric ribbon, {[Li2(C5H3N2O2)2(H2O)2]·H2O}n, is a centrosymmetric dinuclear complex in which the two LiI ions are bridged by two carboxyl­ato O atoms, to generate a centrosymmetric Li2O2 core. These are connected into a chain along [01-1] by carboxylic acid–carbonyl-O bonds. The tetra­hedral coordination of the LiI cation is completed by an aqua ligand. The carboxylic acid is involved in an intra-ribbon hydrogen bond. A solvate water molecule showing positional (50:50) disorder is observed. Polymeric ribbons along [01-1] are connected by O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds into a three-dimensional architecture.

Related literature

For the structure of the pyrazole-3,5-di­carb­oxy­lic acid hydrate, see: Ching et al. (2000[Ching, N., Pan, L., Huang, X. & Li, J. (2000). Acta Cryst. C56, 1124-1125.]).

[Scheme 1]

Experimental

Crystal data
  • [Li2(C5H3N2O2)2(H2O)2]·H2O

  • Mr = 378.12

  • Triclinic, [P \overline 1]

  • a = 7.2610 (15) Å

  • b = 7.5835 (15) Å

  • c = 8.5751 (17) Å

  • α = 68.38 (3)°

  • β = 89.07 (3)°

  • γ = 63.66 (3)°

  • V = 387.19 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.32 × 0.19 × 0.15 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.963, Tmax = 0.983

  • 2319 measured reflections

  • 2139 independent reflections

  • 1631 reflections with I > 2σ(I)

  • Rint = 0.051

  • 3 standard reflections every 200 reflections intensity decay: 3.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.139

  • S = 1.04

  • 2139 reflections

  • 148 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Li1—O1 1.948 (3)
Li1—O4i 1.910 (3)
Li1—O1ii 1.930 (3)
Li1—O5 1.981 (3)
Symmetry codes: (i) x, y-1, z+1; (ii) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2iii 0.82 1.73 2.5159 (16) 160
N1—H1⋯O5iv 0.84 (2) 2.02 (2) 2.8233 (17) 161 (2)
O5—H52⋯O6 0.89 (3) 1.94 (3) 2.749 (3) 150 (3)
O5—H52⋯O6v 0.89 (3) 2.01 (3) 2.851 (3) 157 (3)
O5—H51⋯N2vi 0.93 (3) 1.89 (3) 2.810 (2) 169 (3)
O5—H51⋯O3vi 0.93 (3) 2.60 (3) 3.1235 (16) 116 (2)
O6—H62⋯O2iv 0.87 (2) 2.03 (3) 2.886 (3) 167 (7)
Symmetry codes: (iii) x, y+1, z-1; (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z+1; (vi) x+1, y-1, z+1.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structural unit of the title complex is a centrosymmetric dinuclear moiety composed of two LiI ions bridged by two bidentate carboxylato O atoms, each donated by a symmetry related ligand (Fig. 1). The ligand acts in µ3 bridging mode since apart from the bidentate O1 atom, the O4 atom of its second carboxylate group is chelated to a Li(vi) ion in the adjacent dimer. In this way a LiI ion is coordinated by the bridging O1 and O1(ii) atoms, the O4(i) from the adjacent dimer and an aqua O5 atom resulting in a distorted tetrahedral geometry. The Li—O bond distances (Table 1) which fall in the range between 1.930 (2) Å and 1.980 (3) Å are typical of LiI complexes with carboxylate and water ligands. The pyrazole ring is planar with r.m.s. of 0.0009 (1) Å; the carboxylate group C6/O1/O2 and C7/O3/O4 make with it dihedral angles of 2.4 (1)° and 5.5 (1)°, respectively. The carboxylate O2 atom is chelating inactive, the O3 remains protonated and participates as a donor in the short hydrogen bond of 2.516 (2) Å to O2vi in an adjacent dimer. Bond distances and bond angles within the pyrazole ring do not differ from those reported in the structure of the parent acid (Ching et al., 2000). The plane of the Li1,O1,Li(ii),O1(ii) dimer core makes a dihedral angle of 36.1° with the ligand plane. The dimeric units linked by carboxylate O4 atoms form molecular ribbons . A solvate water molecule O6 with 50% site occupancy is present in the asymmetric cell resulting in one molecule per a dimer. Moreover, this water molecule shows 0.5/0.5 positional disorder. The ribbons are held together by a system of hydrogen bonds involving coordinated and crystal water molecules the carboxylate/carboxylato groups and pyrazole N ring atoms (Fig. 2, Table 2).

Related literature top

For the structure of the pyrazole-3,5-dicarboxylic acid hydrate, see: Ching et al. (2000).

Experimental top

1 mmol of pyrazole-3,5-dicarboxylic acid hydrate and ca2 mmol s of lithium hydroxide dissolved in 50 mL of hot, doubly distilled water were boiled under reflux with stirring for six hours and then left to crystallize at room temperature. Colourless single-crystal blocks with two differet shapes deposited after a week. One of the crystals was selected, washed with cold ethanol and dried in the air.

Refinement top

Hydrogen atoms belonging to water molecules, the carboxylate group and hetero-ring N atom were located in a difference map and refined isotropically.

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A fragment of a molecular ribbon showing a dinuclear structural building unit of the title complex with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: (i) x, y - 1,z + 1; (ii) -x + 1, -y, -z + 1; (iii): -x + 1, -y + 1, -z.
[Figure 2] Fig. 2. The packing of molecular ribbons via hydrogen bonds viewed along their propagation direction.
catena-Poly[[diaquabis(µ3-5-carboxylato-1H-pyrazole-3-carboxylic acid-κ3O3:O3;O5)dilithium(I)] monohydrate] top
Crystal data top
[Li2(C5H3N2O2)2(H2O)2]·H2OZ = 1
Mr = 378.12F(000) = 194
Triclinic, P1Dx = 1.622 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2610 (15) ÅCell parameters from 25 reflections
b = 7.5835 (15) Åθ = 6–15°
c = 8.5751 (17) ŵ = 0.15 mm1
α = 68.38 (3)°T = 293 K
β = 89.07 (3)°Blocks, colourless
γ = 63.66 (3)°0.32 × 0.19 × 0.15 mm
V = 387.19 (13) Å3
Data collection top
Kuma KM-4 four-circle
diffractometer
1631 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 30.1°, θmin = 2.6°
profile data from ω/2θ scanh = 99
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 09
Tmin = 0.963, Tmax = 0.983l = 1111
2319 measured reflections3 standard reflections every 200 reflections
2139 independent reflections intensity decay: 3.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0979P)2 + 0.0513P]
where P = (Fo2 + 2Fc2)/3
2139 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.36 e Å3
4 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Li2(C5H3N2O2)2(H2O)2]·H2Oγ = 63.66 (3)°
Mr = 378.12V = 387.19 (13) Å3
Triclinic, P1Z = 1
a = 7.2610 (15) ÅMo Kα radiation
b = 7.5835 (15) ŵ = 0.15 mm1
c = 8.5751 (17) ÅT = 293 K
α = 68.38 (3)°0.32 × 0.19 × 0.15 mm
β = 89.07 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
1631 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.051
Tmin = 0.963, Tmax = 0.9833 standard reflections every 200 reflections
2319 measured reflections intensity decay: 3.2%
2139 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0484 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.36 e Å3
2139 reflectionsΔρmin = 0.43 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.31476 (15)0.19235 (16)0.41828 (13)0.0317 (3)
O30.04302 (15)1.06450 (16)0.29666 (13)0.0330 (3)
H30.00661.13260.37790.050*
N20.12574 (16)0.83399 (17)0.01238 (13)0.0229 (2)
O40.30113 (16)0.84618 (17)0.21398 (14)0.0352 (3)
O20.02499 (16)0.33302 (17)0.43139 (13)0.0361 (3)
N10.11472 (16)0.68180 (16)0.13403 (13)0.0219 (2)
C50.08191 (17)0.51952 (18)0.19965 (15)0.0208 (3)
C40.20777 (18)0.56837 (19)0.08850 (15)0.0236 (3)
H40.35120.48840.09770.028*
C30.07157 (18)0.76495 (18)0.04109 (14)0.0209 (3)
C70.12037 (19)0.8962 (2)0.19328 (15)0.0230 (3)
C60.12709 (19)0.33371 (19)0.36231 (15)0.0218 (3)
Li10.4462 (4)0.0115 (4)0.6522 (3)0.0310 (5)
O50.50246 (15)0.15574 (18)0.75835 (14)0.0331 (3)
O60.4576 (4)0.5520 (4)0.5472 (4)0.0493 (6)0.50
H10.225 (4)0.700 (4)0.173 (3)0.046 (6)*
H520.531 (5)0.254 (4)0.683 (4)0.070 (8)*
H510.630 (5)0.063 (5)0.832 (4)0.078 (9)*
H620.328 (4)0.602 (6)0.559 (9)0.14 (3)*0.50
H610.508 (15)0.57 (3)0.624 (19)0.38 (11)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0179 (4)0.0260 (5)0.0233 (4)0.0000 (4)0.0017 (3)0.0056 (4)
O30.0216 (5)0.0280 (5)0.0247 (5)0.0075 (4)0.0030 (4)0.0095 (4)
N20.0175 (5)0.0181 (5)0.0188 (5)0.0056 (4)0.0027 (3)0.0038 (4)
O40.0215 (5)0.0304 (5)0.0329 (5)0.0091 (4)0.0097 (4)0.0044 (4)
O20.0212 (5)0.0292 (5)0.0296 (5)0.0066 (4)0.0068 (4)0.0106 (4)
N10.0148 (5)0.0178 (5)0.0188 (5)0.0047 (4)0.0032 (3)0.0034 (4)
C50.0156 (5)0.0166 (5)0.0182 (5)0.0050 (4)0.0025 (4)0.0019 (4)
C40.0150 (5)0.0183 (5)0.0218 (5)0.0034 (4)0.0040 (4)0.0023 (4)
C30.0173 (5)0.0175 (5)0.0178 (5)0.0067 (4)0.0038 (4)0.0014 (4)
C70.0210 (6)0.0189 (5)0.0195 (5)0.0082 (4)0.0047 (4)0.0006 (4)
C60.0172 (5)0.0173 (5)0.0177 (5)0.0048 (4)0.0018 (4)0.0022 (4)
Li10.0219 (10)0.0268 (11)0.0278 (11)0.0074 (9)0.0077 (8)0.0006 (9)
O50.0173 (4)0.0320 (5)0.0309 (5)0.0070 (4)0.0031 (4)0.0012 (4)
O60.0359 (13)0.0414 (14)0.0517 (15)0.0200 (11)0.0027 (10)0.0030 (11)
Geometric parameters (Å, º) top
O1—C61.2578 (16)C5—C61.4816 (17)
O1—Li1i1.929 (3)C4—C31.3935 (17)
Li1—O11.948 (3)C4—H40.9300
O3—C71.2958 (17)C3—C71.4698 (16)
O3—H30.8200Li1—O4iii1.910 (3)
N2—N11.3298 (14)Li1—O1i1.930 (3)
N2—C31.3436 (16)Li1—O51.981 (3)
O4—C71.2240 (16)Li1—Li1i2.679 (5)
O4—Li1ii1.910 (3)O5—H520.89 (3)
O2—C61.2458 (15)O5—H510.93 (3)
N1—C51.3513 (16)O6—O6iv1.296 (6)
N1—H10.84 (2)O6—H620.87 (2)
C5—C41.3758 (16)O6—H610.86 (2)
C6—O1—Li1i141.01 (13)O3—C7—C3113.68 (11)
C6—O1—Li1128.30 (12)O2—C6—O1126.09 (12)
Li1i—O1—Li187.41 (12)O2—C6—C5116.69 (11)
C7—O3—H3109.5O1—C6—C5117.22 (12)
N1—N2—C3104.63 (10)O4iii—Li1—O1i114.50 (14)
C7—O4—Li1ii136.31 (12)O4iii—Li1—O1118.27 (14)
N2—N1—C5112.49 (10)O1i—Li1—O192.59 (12)
N2—N1—H1117.8 (16)O4iii—Li1—O5111.34 (13)
C5—N1—H1129.7 (16)O1i—Li1—O5114.31 (14)
N1—C5—C4106.99 (10)O1—Li1—O5104.38 (13)
N1—C5—C6120.84 (11)O4iii—Li1—Li1i130.02 (19)
C4—C5—C6132.17 (11)O1i—Li1—Li1i46.58 (9)
C5—C4—C3104.29 (10)O1—Li1—Li1i46.02 (8)
C5—C4—H4127.9O5—Li1—Li1i118.50 (16)
C3—C4—H4127.9Li1—O5—H52111.3 (17)
N2—C3—C4111.59 (11)Li1—O5—H51106.9 (16)
N2—C3—C7120.02 (11)H52—O5—H51101 (2)
C4—C3—C7128.37 (11)O6iv—O6—H62126 (6)
O4—C7—O3125.27 (12)O6iv—O6—H61133 (7)
O4—C7—C3121.04 (12)H62—O6—H61100 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z1; (iii) x, y1, z+1; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2ii0.821.732.5159 (16)160
N1—H1···O5v0.84 (2)2.02 (2)2.8233 (17)161 (2)
O5—H52···O60.89 (3)1.94 (3)2.749 (3)150 (3)
O5—H52···O6iv0.89 (3)2.01 (3)2.851 (3)157 (3)
O5—H51···N2vi0.93 (3)1.89 (3)2.810 (2)169 (3)
O5—H51···O3vi0.93 (3)2.60 (3)3.1235 (16)116 (2)
O6—H62···O2v0.87 (2)2.03 (3)2.886 (3)167 (7)
Symmetry codes: (ii) x, y+1, z1; (iv) x+1, y+1, z+1; (v) x, y+1, z+1; (vi) x+1, y1, z+1.
Selected bond lengths (Å) top
Li1—O11.948 (3)Li1—O1ii1.930 (3)
Li1—O4i1.910 (3)Li1—O51.981 (3)
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2iii0.821.732.5159 (16)159.5
N1—H1···O5iv0.84 (2)2.02 (2)2.8233 (17)161 (2)
O5—H52···O60.89 (3)1.94 (3)2.749 (3)150 (3)
O5—H52···O6v0.89 (3)2.01 (3)2.851 (3)157 (3)
O5—H51···N2vi0.93 (3)1.89 (3)2.810 (2)169 (3)
O5—H51···O3vi0.93 (3)2.60 (3)3.1235 (16)116 (2)
O6—H62···O2iv0.87 (2)2.03 (3)2.886 (3)167 (7)
Symmetry codes: (iii) x, y+1, z1; (iv) x, y+1, z+1; (v) x+1, y+1, z+1; (vi) x+1, y1, z+1.
 

References

First citationChing, N., Pan, L., Huang, X. & Li, J. (2000). Acta Cryst. C56, 1124–1125.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m593-m594
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds