Related literature
For the structure of the pyrazole-3,5-dicarboxylic acid hydrate, see: Ching et al. (2000).
Experimental
Data collection
Kuma KM-4 four-circle diffractometer Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) Tmin = 0.963, Tmax = 0.983 2319 measured reflections 2139 independent reflections 1631 reflections with I > 2σ(I) Rint = 0.051 3 standard reflections every 200 reflections intensity decay: 3.2%
|
Li1—O1 | 1.948 (3) | Li1—O4i | 1.910 (3) | Li1—O1ii | 1.930 (3) | Li1—O5 | 1.981 (3) | Symmetry codes: (i) x, y-1, z+1; (ii) -x+1, -y, -z+1. | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O3—H3⋯O2iii | 0.82 | 1.73 | 2.5159 (16) | 160 | N1—H1⋯O5iv | 0.84 (2) | 2.02 (2) | 2.8233 (17) | 161 (2) | O5—H52⋯O6 | 0.89 (3) | 1.94 (3) | 2.749 (3) | 150 (3) | O5—H52⋯O6v | 0.89 (3) | 2.01 (3) | 2.851 (3) | 157 (3) | O5—H51⋯N2vi | 0.93 (3) | 1.89 (3) | 2.810 (2) | 169 (3) | O5—H51⋯O3vi | 0.93 (3) | 2.60 (3) | 3.1235 (16) | 116 (2) | O6—H62⋯O2iv | 0.87 (2) | 2.03 (3) | 2.886 (3) | 167 (7) | Symmetry codes: (iii) x, y+1, z-1; (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z+1; (vi) x+1, y-1, z+1. | |
Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
1 mmol of pyrazole-3,5-dicarboxylic acid hydrate and ca2 mmol s of lithium hydroxide dissolved in 50 mL of hot, doubly distilled water were boiled under reflux with stirring for six hours and then left to crystallize at room temperature. Colourless single-crystal blocks with two differet shapes deposited after a week. One of the crystals was selected, washed with cold ethanol and dried in the air.
Hydrogen atoms belonging to water molecules, the carboxylate group and hetero-ring N atom were located in a difference map and refined isotropically.
Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
catena-Poly[[diaquabis(µ
3-5-carboxylato-1
H-pyrazole-3-carboxylic acid-
κ3O3:
O3;
O5)dilithium(I)] monohydrate]
top Crystal data top [Li2(C5H3N2O2)2(H2O)2]·H2O | Z = 1 |
Mr = 378.12 | F(000) = 194 |
Triclinic, P1 | Dx = 1.622 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2610 (15) Å | Cell parameters from 25 reflections |
b = 7.5835 (15) Å | θ = 6–15° |
c = 8.5751 (17) Å | µ = 0.15 mm−1 |
α = 68.38 (3)° | T = 293 K |
β = 89.07 (3)° | Blocks, colourless |
γ = 63.66 (3)° | 0.32 × 0.19 × 0.15 mm |
V = 387.19 (13) Å3 | |
Data collection top Kuma KM-4 four-circle diffractometer | 1631 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.051 |
Graphite monochromator | θmax = 30.1°, θmin = 2.6° |
profile data from ω/2θ scan | h = −9→9 |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | k = 0→9 |
Tmin = 0.963, Tmax = 0.983 | l = −11→11 |
2319 measured reflections | 3 standard reflections every 200 reflections |
2139 independent reflections | intensity decay: 3.2% |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.139 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0979P)2 + 0.0513P] where P = (Fo2 + 2Fc2)/3 |
2139 reflections | (Δ/σ)max < 0.001 |
148 parameters | Δρmax = 0.36 e Å−3 |
4 restraints | Δρmin = −0.43 e Å−3 |
Crystal data top [Li2(C5H3N2O2)2(H2O)2]·H2O | γ = 63.66 (3)° |
Mr = 378.12 | V = 387.19 (13) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.2610 (15) Å | Mo Kα radiation |
b = 7.5835 (15) Å | µ = 0.15 mm−1 |
c = 8.5751 (17) Å | T = 293 K |
α = 68.38 (3)° | 0.32 × 0.19 × 0.15 mm |
β = 89.07 (3)° | |
Data collection top Kuma KM-4 four-circle diffractometer | 1631 reflections with I > 2σ(I) |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | Rint = 0.051 |
Tmin = 0.963, Tmax = 0.983 | 3 standard reflections every 200 reflections |
2319 measured reflections | intensity decay: 3.2% |
2139 independent reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.048 | 4 restraints |
wR(F2) = 0.139 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.36 e Å−3 |
2139 reflections | Δρmin = −0.43 e Å−3 |
148 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
O1 | 0.31476 (15) | 0.19235 (16) | 0.41828 (13) | 0.0317 (3) | |
O3 | −0.04302 (15) | 1.06450 (16) | −0.29666 (13) | 0.0330 (3) | |
H3 | −0.0066 | 1.1326 | −0.3779 | 0.050* | |
N2 | −0.12574 (16) | 0.83399 (17) | −0.01238 (13) | 0.0229 (2) | |
O4 | 0.30113 (16) | 0.84618 (17) | −0.21398 (14) | 0.0352 (3) | |
O2 | −0.02499 (16) | 0.33302 (17) | 0.43139 (13) | 0.0361 (3) | |
N1 | −0.11472 (16) | 0.68180 (16) | 0.13403 (13) | 0.0219 (2) | |
C5 | 0.08191 (17) | 0.51952 (18) | 0.19965 (15) | 0.0208 (3) | |
C4 | 0.20777 (18) | 0.56837 (19) | 0.08850 (15) | 0.0236 (3) | |
H4 | 0.3512 | 0.4884 | 0.0977 | 0.028* | |
C3 | 0.07157 (18) | 0.76495 (18) | −0.04109 (14) | 0.0209 (3) | |
C7 | 0.12037 (19) | 0.8962 (2) | −0.19328 (15) | 0.0230 (3) | |
C6 | 0.12709 (19) | 0.33371 (19) | 0.36231 (15) | 0.0218 (3) | |
Li1 | 0.4462 (4) | −0.0115 (4) | 0.6522 (3) | 0.0310 (5) | |
O5 | 0.50246 (15) | 0.15574 (18) | 0.75835 (14) | 0.0331 (3) | |
O6 | 0.4576 (4) | 0.5520 (4) | 0.5472 (4) | 0.0493 (6) | 0.50 |
H1 | −0.225 (4) | 0.700 (4) | 0.173 (3) | 0.046 (6)* | |
H52 | 0.531 (5) | 0.254 (4) | 0.683 (4) | 0.070 (8)* | |
H51 | 0.630 (5) | 0.063 (5) | 0.832 (4) | 0.078 (9)* | |
H62 | 0.328 (4) | 0.602 (6) | 0.559 (9) | 0.14 (3)* | 0.50 |
H61 | 0.508 (15) | 0.57 (3) | 0.624 (19) | 0.38 (11)* | 0.50 |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0179 (4) | 0.0260 (5) | 0.0233 (4) | 0.0000 (4) | 0.0017 (3) | 0.0056 (4) |
O3 | 0.0216 (5) | 0.0280 (5) | 0.0247 (5) | −0.0075 (4) | 0.0030 (4) | 0.0095 (4) |
N2 | 0.0175 (5) | 0.0181 (5) | 0.0188 (5) | −0.0056 (4) | 0.0027 (3) | 0.0038 (4) |
O4 | 0.0215 (5) | 0.0304 (5) | 0.0329 (5) | −0.0091 (4) | 0.0097 (4) | 0.0044 (4) |
O2 | 0.0212 (5) | 0.0292 (5) | 0.0296 (5) | −0.0066 (4) | 0.0068 (4) | 0.0106 (4) |
N1 | 0.0148 (5) | 0.0178 (5) | 0.0188 (5) | −0.0047 (4) | 0.0032 (3) | 0.0034 (4) |
C5 | 0.0156 (5) | 0.0166 (5) | 0.0182 (5) | −0.0050 (4) | 0.0025 (4) | 0.0019 (4) |
C4 | 0.0150 (5) | 0.0183 (5) | 0.0218 (5) | −0.0034 (4) | 0.0040 (4) | 0.0023 (4) |
C3 | 0.0173 (5) | 0.0175 (5) | 0.0178 (5) | −0.0067 (4) | 0.0038 (4) | 0.0014 (4) |
C7 | 0.0210 (6) | 0.0189 (5) | 0.0195 (5) | −0.0082 (4) | 0.0047 (4) | 0.0006 (4) |
C6 | 0.0172 (5) | 0.0173 (5) | 0.0177 (5) | −0.0048 (4) | 0.0018 (4) | 0.0022 (4) |
Li1 | 0.0219 (10) | 0.0268 (11) | 0.0278 (11) | −0.0074 (9) | 0.0077 (8) | 0.0006 (9) |
O5 | 0.0173 (4) | 0.0320 (5) | 0.0309 (5) | −0.0070 (4) | 0.0031 (4) | 0.0012 (4) |
O6 | 0.0359 (13) | 0.0414 (14) | 0.0517 (15) | −0.0200 (11) | 0.0027 (10) | 0.0030 (11) |
Geometric parameters (Å, º) top O1—C6 | 1.2578 (16) | C5—C6 | 1.4816 (17) |
O1—Li1i | 1.929 (3) | C4—C3 | 1.3935 (17) |
Li1—O1 | 1.948 (3) | C4—H4 | 0.9300 |
O3—C7 | 1.2958 (17) | C3—C7 | 1.4698 (16) |
O3—H3 | 0.8200 | Li1—O4iii | 1.910 (3) |
N2—N1 | 1.3298 (14) | Li1—O1i | 1.930 (3) |
N2—C3 | 1.3436 (16) | Li1—O5 | 1.981 (3) |
O4—C7 | 1.2240 (16) | Li1—Li1i | 2.679 (5) |
O4—Li1ii | 1.910 (3) | O5—H52 | 0.89 (3) |
O2—C6 | 1.2458 (15) | O5—H51 | 0.93 (3) |
N1—C5 | 1.3513 (16) | O6—O6iv | 1.296 (6) |
N1—H1 | 0.84 (2) | O6—H62 | 0.87 (2) |
C5—C4 | 1.3758 (16) | O6—H61 | 0.86 (2) |
| | | |
C6—O1—Li1i | 141.01 (13) | O3—C7—C3 | 113.68 (11) |
C6—O1—Li1 | 128.30 (12) | O2—C6—O1 | 126.09 (12) |
Li1i—O1—Li1 | 87.41 (12) | O2—C6—C5 | 116.69 (11) |
C7—O3—H3 | 109.5 | O1—C6—C5 | 117.22 (12) |
N1—N2—C3 | 104.63 (10) | O4iii—Li1—O1i | 114.50 (14) |
C7—O4—Li1ii | 136.31 (12) | O4iii—Li1—O1 | 118.27 (14) |
N2—N1—C5 | 112.49 (10) | O1i—Li1—O1 | 92.59 (12) |
N2—N1—H1 | 117.8 (16) | O4iii—Li1—O5 | 111.34 (13) |
C5—N1—H1 | 129.7 (16) | O1i—Li1—O5 | 114.31 (14) |
N1—C5—C4 | 106.99 (10) | O1—Li1—O5 | 104.38 (13) |
N1—C5—C6 | 120.84 (11) | O4iii—Li1—Li1i | 130.02 (19) |
C4—C5—C6 | 132.17 (11) | O1i—Li1—Li1i | 46.58 (9) |
C5—C4—C3 | 104.29 (10) | O1—Li1—Li1i | 46.02 (8) |
C5—C4—H4 | 127.9 | O5—Li1—Li1i | 118.50 (16) |
C3—C4—H4 | 127.9 | Li1—O5—H52 | 111.3 (17) |
N2—C3—C4 | 111.59 (11) | Li1—O5—H51 | 106.9 (16) |
N2—C3—C7 | 120.02 (11) | H52—O5—H51 | 101 (2) |
C4—C3—C7 | 128.37 (11) | O6iv—O6—H62 | 126 (6) |
O4—C7—O3 | 125.27 (12) | O6iv—O6—H61 | 133 (7) |
O4—C7—C3 | 121.04 (12) | H62—O6—H61 | 100 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y+1, z−1; (iii) x, y−1, z+1; (iv) −x+1, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2ii | 0.82 | 1.73 | 2.5159 (16) | 160 |
N1—H1···O5v | 0.84 (2) | 2.02 (2) | 2.8233 (17) | 161 (2) |
O5—H52···O6 | 0.89 (3) | 1.94 (3) | 2.749 (3) | 150 (3) |
O5—H52···O6iv | 0.89 (3) | 2.01 (3) | 2.851 (3) | 157 (3) |
O5—H51···N2vi | 0.93 (3) | 1.89 (3) | 2.810 (2) | 169 (3) |
O5—H51···O3vi | 0.93 (3) | 2.60 (3) | 3.1235 (16) | 116 (2) |
O6—H62···O2v | 0.87 (2) | 2.03 (3) | 2.886 (3) | 167 (7) |
Symmetry codes: (ii) x, y+1, z−1; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1; (vi) x+1, y−1, z+1. |
Selected bond lengths (Å) topLi1—O1 | 1.948 (3) | Li1—O1ii | 1.930 (3) |
Li1—O4i | 1.910 (3) | Li1—O5 | 1.981 (3) |
Symmetry codes: (i) x, y−1, z+1; (ii) −x+1, −y, −z+1. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2iii | 0.82 | 1.73 | 2.5159 (16) | 159.5 |
N1—H1···O5iv | 0.84 (2) | 2.02 (2) | 2.8233 (17) | 161 (2) |
O5—H52···O6 | 0.89 (3) | 1.94 (3) | 2.749 (3) | 150 (3) |
O5—H52···O6v | 0.89 (3) | 2.01 (3) | 2.851 (3) | 157 (3) |
O5—H51···N2vi | 0.93 (3) | 1.89 (3) | 2.810 (2) | 169 (3) |
O5—H51···O3vi | 0.93 (3) | 2.60 (3) | 3.1235 (16) | 116 (2) |
O6—H62···O2iv | 0.87 (2) | 2.03 (3) | 2.886 (3) | 167 (7) |
Symmetry codes: (iii) x, y+1, z−1; (iv) −x, −y+1, −z+1; (v) −x+1, −y+1, −z+1; (vi) x+1, y−1, z+1. |
References
Ching, N., Pan, L., Huang, X. & Li, J. (2000). Acta Cryst. C56, 1124–1125. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland. Google Scholar
Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland. Google Scholar
Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access
The structural unit of the title complex is a centrosymmetric dinuclear moiety composed of two LiI ions bridged by two bidentate carboxylato O atoms, each donated by a symmetry related ligand (Fig. 1). The ligand acts in µ3 bridging mode since apart from the bidentate O1 atom, the O4 atom of its second carboxylate group is chelated to a Li(vi) ion in the adjacent dimer. In this way a LiI ion is coordinated by the bridging O1 and O1(ii) atoms, the O4(i) from the adjacent dimer and an aqua O5 atom resulting in a distorted tetrahedral geometry. The Li—O bond distances (Table 1) which fall in the range between 1.930 (2) Å and 1.980 (3) Å are typical of LiI complexes with carboxylate and water ligands. The pyrazole ring is planar with r.m.s. of 0.0009 (1) Å; the carboxylate group C6/O1/O2 and C7/O3/O4 make with it dihedral angles of 2.4 (1)° and 5.5 (1)°, respectively. The carboxylate O2 atom is chelating inactive, the O3 remains protonated and participates as a donor in the short hydrogen bond of 2.516 (2) Å to O2vi in an adjacent dimer. Bond distances and bond angles within the pyrazole ring do not differ from those reported in the structure of the parent acid (Ching et al., 2000). The plane of the Li1,O1,Li(ii),O1(ii) dimer core makes a dihedral angle of 36.1° with the ligand plane. The dimeric units linked by carboxylate O4 atoms form molecular ribbons . A solvate water molecule O6 with 50% site occupancy is present in the asymmetric cell resulting in one molecule per a dimer. Moreover, this water molecule shows 0.5/0.5 positional disorder. The ribbons are held together by a system of hydrogen bonds involving coordinated and crystal water molecules the carboxylate/carboxylato groups and pyrazole N ring atoms (Fig. 2, Table 2).