organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1657-o1658

(6S*)-6-[(1S*,2R*)-1,2-Di­hy­droxy­pent­yl]-4-meth­­oxy-5,6-di­hydro-2H-pyran-2-one

aDepartment of Chemistry, University of Central Florida, 4104 Libra Drive, Orlando, FL 32816, USA, bUniversity of Utah, Department of Chemistry, 315 S. 1400 E. Rm. 2020, Salt Lake City, UT 84112, USA, and cDepartment of Plant Sciences and Plant Pathology, Montana State University, 206 Plant Bioscience Building, Bozeman, MT 59717, USA
*Correspondence e-mail: James.Harper@ucf.edu

(Received 11 September 2013; accepted 1 October 2013; online 19 October 2013)

The title compound, C11H18O5, was isolated from a liquid culture of Pestalotiopsis sp. In the mol­ecule, the pyran-2-one ring assumes a half-chair conformation. The two terminal C atoms of the pentyl group were refined as disordered over two sets of sites, with refined occupancies of 0.881 (10) and 0.119 (10). In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds forming a three-dimensional network.

Related literature

For the first isolation of the title compound, see: McGahren et al. (1973[McGahren, W. J., Ellestad, G. A., Morton, G. O., Kunstmann, M. P. & Mullen, P. (1973). J. Org. Chem. 38, 3542-3544.]). For the natural and unnatural stereospecific synthesis, see: Kirihata et al. (1990[Kirihata, M., Ohta, K., Ichimoto, I. & Ueda, H. (1990). Agric. Biol. Chem. 54, 2401-2405.], 1992a[Kirihata, M., Kamihisa, Y., Ichimoto, I. & Ueda, H. (1992a). Chem. Express, 7, 837-840.],b[Kirihata, M., Ohe, M., Ichimoto, I. & Ueda, H. (1992b). Biosci. Biotechnol. Biochem. 56, 1825-1828.]); Masaki et al. (1994[Masaki, Y., Imaeda, T. & Kawai, M. (1994). Chem. Pharm. Bull. 42, 179-181.]). For closely related products from other fungi, see: Kimura et al. (1986[Kimura, Y., Hamasaki, T. & Nakajima, H. (1986). Agric. Biol. Chem. 50, 1649-1650.]); Kirihata et al. (1996[Kirihata, M., Ohe, M., Ichimoto, I. & Kinura, Y. (1996). Biosci. Biotechnol. Biochem. 60, 677-679.]); Lee et al. (1995[Lee, J. C., Yang, X., Schwartz, M., Strobel, G. & Clardy, J. (1995). Chem. Biol. 2, 721-727.]); Davies-Coleman & Rivett (1989[Davies-Coleman, M. T. & Rivett, D. E. A. (1989). Progress in the Chemistry of Organic Natural Products, Vol. 55, edited by W. Herz, H. Grise, G. W. Kirby & Ch. Tamm, pp. 1-35. Berlin: Springer-Verlag.]). For biological activity, see: Venkatasubbaiah & Van Dyke (1991[Venkatasubbaiah, P. & Van Dyke, C. G. (1991). Phytochemistry, 30, 1471-1474.]). For crystal structures of related compounds, see: Yoshino & Nowacki (1972[Yoshino, A. & Nowacki, W. (1972). Z. Kristallogr. 136, 66-80.]); Engel & Nowacki (1972a[Engel, P. & Nowacki, W. (1972a). Z. Kristallogr. 136, 437-452.],b[Engel, P. & Nowacki, W. (1972b). Z. Kristallogr. 136, 453-467.]).

[Scheme 1]

Experimental

Crystal data
  • C11H18O5

  • Mr = 230.25

  • Orthorhombic, P 21 21 21

  • a = 5.0375 (3) Å

  • b = 11.4515 (13) Å

  • c = 20.802 (2) Å

  • V = 1200.02 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.28 × 0.18 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.973, Tmax = 0.992

  • 2711 measured reflections

  • 1616 independent reflections

  • 1153 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.121

  • S = 1.06

  • 1616 reflections

  • 188 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1′—H1′O⋯O2i 0.85 (3) 1.93 (3) 2.778 (3) 177 (3)
O2′—H2′O⋯O2′ii 0.80 (4) 2.05 (4) 2.8178 (18) 163 (4)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was first isolated from an unidentified Penicillium sp. (McGahren et al., 1973). Multiple routes have been reported for the total synthesis (Kirihata et al., 1990; Kirihata et al., 1992a; Masaki et al., 1994) including syntheses creating unnatral stereoisomers (Kirihata et al., 1992b). Closely related products have been reported from other fungi (Kirihata et al., 1996; Lee et al., 1995). The 6-substituted 5,6-dihydropyran-2-one moiety present in the title compound is also found in natural products from several species of plants and fungi (Davies-Coleman & Rivett, 1989). Although many structures with this moiety exhibit bioactivity, it appears that the title compound displays none of the reported activities. Notably, the gibberellin synergistic activity of the very closely related compound pestalotin is not found (Kimura et al., 1986; Venkatasubbaiah & Van Dyke, 1991). In our lab we observed moderate antifungal activity. Crystal structures for the related natural products, kavain, dihydrokavain and methysticin have been reported (Yoshino & Nowacki, 1972; Engel & Nowacki, 1972a; Engel & Nowacki, 1972b). In the title compound, the atoms of the pyran-2-one assume a half-chair conformation. The conformations of the methoxy and dihydroxypentyl groups are shown in Fig. 1. Carbons 4' and 5' are disordered over two sites with occupancies of 0.881 (10):0.119 (10). In the crystal, molecules are linked via O—H···O hydrogen bonds forming a three-dimensional network (see Table 1 and Fig. 2).

Related literature top

For the first isolation of the title compound, see: McGahren et al. (1973). For the natural and unnatural stereospecific synthesis, see: Kirihata et al. (1990, 1992a,b); Masaki et al. (1994). For closely related products from other fungi, see: Kimura et al. (1986); Kirihata et al. (1996); Lee et al. (1995); Davies-Coleman & Rivett (1989). For biological activity, see: Venkatasubbaiah & Van Dyke (1991). For crystal structures of related compounds, see: Yoshino & Nowacki (1972); Engel & Nowacki (1972a,b).

Experimental top

The title compound was obtained by liquid-liquid extraction (CH2Cl2/H2O) of a culture of an endophytic Pestalotiopsis sp. The CH2Cl2 fraction was evaporated under reduced pressure then purified by chromatography on a silica column with CHCl3/CH3OH (8/2) as eluent. After pooling common fractions, a crystal was grown by slow evaporation of a MeOH solution.

Refinement top

The molecule exhibits orientational disorder at atoms C4 and C5. Hydrogen atoms were located and refined isotropically except those on C4 and C5 which were placed in calculated positions of C—H = 0.98 and 0.99Å and assigned isotropic displacement parameters of Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl), and their coordinates were allowed to ride on their respective carbons using SHELXL97 (Sheldrick, 2008). In the absence of anomalous dispersion effects the Friedel pairs were merged. The absolute configuration is not known.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 2012), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level on non-hydrogen atoms. The disorder is not shown.
[Figure 2] Fig. 2. A portion of the crystal structure viewed along the a axis. The dashed lines indicate O—H···O hydrogen bonds. The disorder is not shown.
(6S*)-6-[(1S*,2R*)-1,2-Dihydroxypentyl]-4-methoxy-5,6-dihydro-2H-pyran-2-one top
Crystal data top
C11H18O5F(000) = 496
Mr = 230.25Dx = 1.274 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 17230 reflections
a = 5.0375 (3) Åθ = 1.0–27.5°
b = 11.4515 (13) ŵ = 0.10 mm1
c = 20.802 (2) ÅT = 200 K
V = 1200.02 (19) Å3Plate, colorless
Z = 40.28 × 0.18 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
1616 independent reflections
Radiation source: fine-focus sealed tube1153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ plus ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 66
Tmin = 0.973, Tmax = 0.992k = 1414
2711 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.1236P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1616 reflectionsΔρmax = 0.16 e Å3
188 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (6)
Crystal data top
C11H18O5V = 1200.02 (19) Å3
Mr = 230.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.0375 (3) ŵ = 0.10 mm1
b = 11.4515 (13) ÅT = 200 K
c = 20.802 (2) Å0.28 × 0.18 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
1616 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
1153 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.992Rint = 0.043
2711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.16 e Å3
1616 reflectionsΔρmin = 0.18 e Å3
188 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm that effectively corrects for absorption effects. High redundancy data were used in the scaling program thus the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97<i/> input file.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 >σ(F2) is used only for calculating R-factors(gt) etc and is not relevant to the choice of reflections for refinement. R factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4082 (4)0.31378 (17)0.78556 (9)0.0429 (5)
O20.5372 (5)0.4250 (2)0.70604 (12)0.0678 (7)
O40.0742 (6)0.5734 (2)0.85714 (11)0.0685 (8)
O1'0.5361 (4)0.1294 (2)0.86362 (10)0.0451 (6)
H1'O0.516 (7)0.066 (3)0.8434 (15)0.050 (10)*
O2'0.2491 (5)0.21272 (19)0.97762 (9)0.0443 (5)
H2'O0.125 (8)0.238 (3)0.9970 (17)0.051 (10)*
C20.4146 (7)0.4194 (3)0.75666 (15)0.0481 (8)
C30.2702 (8)0.5156 (3)0.78511 (15)0.0541 (8)
H30.302 (8)0.590 (3)0.7637 (17)0.070 (11)*
C40.0890 (7)0.4946 (3)0.83017 (13)0.0520 (8)
C50.0460 (6)0.3748 (3)0.85552 (15)0.0454 (7)
H5A0.004 (7)0.381 (2)0.9013 (15)0.048 (8)*
H5B0.094 (8)0.335 (3)0.8314 (15)0.056 (9)*
C60.3007 (6)0.3053 (3)0.85045 (13)0.0395 (7)
H60.433 (6)0.340 (2)0.8789 (12)0.028 (6)*
C1'0.2742 (5)0.1766 (3)0.86336 (14)0.0376 (6)
H1'0.168 (5)0.146 (2)0.8299 (12)0.026 (7)*
C2'0.1275 (6)0.1490 (3)0.92562 (14)0.0421 (7)
H2'0.057 (6)0.174 (3)0.9211 (14)0.044 (8)*
C3'A0.1175 (9)0.0209 (3)0.94034 (14)0.0598 (9)0.881 (10)
H3'A0.30000.00790.94810.072*0.881 (10)
H3'B0.04540.02130.90270.072*0.881 (10)
C4'A0.0549 (13)0.0058 (5)0.99940 (18)0.0624 (14)0.881 (10)
H4'A0.02490.03151.03770.075*0.881 (10)
H4'B0.23350.02830.99300.075*0.881 (10)
C5'A0.0814 (18)0.1325 (4)1.0111 (3)0.118 (3)0.881 (10)
H5'A0.19050.14541.04950.177*0.881 (10)
H5'B0.09490.16661.01780.177*0.881 (10)
H5'C0.16600.16950.97390.177*0.881 (10)
C3'B0.1175 (9)0.0209 (3)0.94034 (14)0.0598 (9)0.119 (10)
H3'C0.29150.00940.92580.072*0.119 (10)
H3'D0.01470.01090.90980.072*0.119 (10)
C4'B0.064 (7)0.043 (3)1.0025 (13)0.036 (7)*0.119 (10)
H4'C0.11330.00351.04090.043*0.119 (10)
H4'D0.14840.12071.00410.043*0.119 (10)
C5'B0.244 (5)0.049 (2)0.9920 (11)0.038 (8)*0.119 (10)
H5'D0.32670.08871.02870.057*0.119 (10)
H5'E0.28190.09320.95260.057*0.119 (10)
H5'F0.31610.02990.98810.057*0.119 (10)
C70.0519 (12)0.6930 (3)0.83475 (18)0.0924 (17)
H7A0.18030.74200.85770.139*
H7B0.08840.69600.78850.139*
H7C0.12820.72180.84300.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0439 (11)0.0449 (12)0.0398 (10)0.0023 (9)0.0045 (9)0.0010 (9)
O20.0802 (18)0.0588 (15)0.0645 (14)0.0010 (13)0.0250 (14)0.0148 (12)
O40.0831 (18)0.0673 (15)0.0549 (13)0.0342 (14)0.0025 (13)0.0027 (11)
O1'0.0373 (11)0.0457 (13)0.0525 (12)0.0014 (9)0.0025 (9)0.0052 (11)
O2'0.0365 (11)0.0575 (13)0.0388 (10)0.0012 (11)0.0009 (9)0.0102 (9)
C20.0505 (18)0.0443 (17)0.0497 (17)0.0040 (15)0.0004 (15)0.0035 (15)
C30.071 (2)0.0453 (19)0.0460 (17)0.0060 (18)0.0063 (16)0.0010 (16)
C40.057 (2)0.058 (2)0.0406 (15)0.0203 (18)0.0105 (15)0.0035 (15)
C50.0386 (16)0.0567 (19)0.0408 (16)0.0048 (14)0.0013 (13)0.0036 (14)
C60.0356 (14)0.0472 (17)0.0356 (14)0.0013 (12)0.0022 (11)0.0066 (12)
C1'0.0315 (13)0.0438 (16)0.0375 (14)0.0017 (12)0.0029 (12)0.0064 (13)
C2'0.0328 (15)0.0548 (19)0.0388 (15)0.0060 (13)0.0019 (12)0.0054 (14)
C3'A0.078 (2)0.053 (2)0.0477 (17)0.0177 (19)0.0093 (16)0.0044 (16)
C4'A0.077 (4)0.058 (3)0.053 (2)0.004 (3)0.016 (2)0.002 (2)
C5'A0.197 (8)0.061 (3)0.097 (4)0.029 (4)0.070 (5)0.002 (3)
C70.152 (5)0.067 (3)0.059 (2)0.053 (3)0.006 (3)0.0042 (19)
Geometric parameters (Å, º) top
O1—C21.351 (3)C2'—C3'A1.499 (5)
O1—C61.458 (3)C2'—H2'0.98 (3)
O2—C21.222 (4)C3'A—C4'A1.536 (5)
O4—C41.343 (4)C3'A—H3'A0.9900
O4—C71.451 (4)C3'A—H3'B0.9900
O1'—C1'1.426 (3)C4'A—C5'A1.477 (7)
O1'—H1'O0.85 (3)C4'A—H4'A0.9900
O2'—C2'1.442 (3)C4'A—H4'B0.9900
O2'—H2'O0.80 (4)C5'A—H5'A0.9800
C2—C31.447 (5)C5'A—H5'B0.9800
C3—C41.330 (5)C5'A—H5'C0.9800
C3—H30.98 (4)C4'B—C5'B1.57 (4)
C4—C51.486 (5)C4'B—H4'C0.9900
C5—C61.513 (4)C4'B—H4'D0.9900
C5—H5A0.99 (3)C5'B—H5'D0.9800
C5—H5B0.97 (4)C5'B—H5'E0.9800
C6—C1'1.504 (4)C5'B—H5'F0.9800
C6—H60.98 (3)C7—H7A0.9800
C1'—C2'1.524 (4)C7—H7B0.9800
C1'—H1'0.94 (3)C7—H7C0.9800
C2—O1—C6118.7 (2)C3'A—C2'—H2'105.9 (18)
C4—O4—C7116.9 (3)C1'—C2'—H2'108.6 (17)
C1'—O1'—H1'O102 (3)C2'—C3'A—C4'A112.2 (3)
C2'—O2'—H2'O103 (3)C2'—C3'A—H3'A109.2
O2—C2—O1116.3 (3)C4'A—C3'A—H3'A109.2
O2—C2—C3124.5 (3)C2'—C3'A—H3'B109.2
O1—C2—C3119.2 (3)C4'A—C3'A—H3'B109.2
C4—C3—C2119.7 (3)H3'A—C3'A—H3'B107.9
C4—C3—H3126 (2)C5'A—C4'A—C3'A112.3 (4)
C2—C3—H3113 (2)C5'A—C4'A—H4'A109.1
C3—C4—O4126.4 (3)C3'A—C4'A—H4'A109.1
C3—C4—C5121.1 (3)C5'A—C4'A—H4'B109.1
O4—C4—C5112.5 (3)C3'A—C4'A—H4'B109.1
C4—C5—C6109.7 (3)H4'A—C4'A—H4'B107.9
C4—C5—H5A108.2 (17)C4'A—C5'A—H5'A109.5
C6—C5—H5A108.9 (19)C4'A—C5'A—H5'B109.5
C4—C5—H5B110.5 (19)H5'A—C5'A—H5'B109.5
C6—C5—H5B109 (2)C4'A—C5'A—H5'C109.5
H5A—C5—H5B110 (3)H5'A—C5'A—H5'C109.5
O1—C6—C1'105.3 (2)H5'B—C5'A—H5'C109.5
O1—C6—C5110.2 (2)C5'B—C4'B—H4'C112.8
C1'—C6—C5115.3 (2)C5'B—C4'B—H4'D112.8
O1—C6—H6106.3 (15)H4'C—C4'B—H4'D110.3
C1'—C6—H6110.7 (15)C4'B—C5'B—H5'D109.5
C5—C6—H6108.7 (15)C4'B—C5'B—H5'E109.5
O1'—C1'—C6106.9 (2)H5'D—C5'B—H5'E109.5
O1'—C1'—C2'111.5 (2)C4'B—C5'B—H5'F109.5
C6—C1'—C2'113.4 (2)H5'D—C5'B—H5'F109.5
O1'—C1'—H1'112.6 (16)H5'E—C5'B—H5'F109.5
C6—C1'—H1'106.5 (15)O4—C7—H7A109.5
C2'—C1'—H1'106.0 (16)O4—C7—H7B109.5
O2'—C2'—C3'A110.9 (3)H7A—C7—H7B109.5
O2'—C2'—C1'109.1 (2)O4—C7—H7C109.5
C3'A—C2'—C1'113.1 (3)H7A—C7—H7C109.5
O2'—C2'—H2'109.1 (18)H7B—C7—H7C109.5
C6—O1—C2—O2170.8 (3)C4—C5—C6—C1'169.6 (2)
C6—O1—C2—C311.9 (4)O1—C6—C1'—O1'64.9 (3)
O2—C2—C3—C4162.4 (3)C5—C6—C1'—O1'173.5 (2)
O1—C2—C3—C414.7 (5)O1—C6—C1'—C2'171.8 (2)
C2—C3—C4—O4174.4 (3)C5—C6—C1'—C2'50.2 (3)
C2—C3—C4—C54.7 (5)O1'—C1'—C2'—O2'68.4 (3)
C7—O4—C4—C30.3 (5)C6—C1'—C2'—O2'52.4 (3)
C7—O4—C4—C5178.8 (3)O1'—C1'—C2'—C3'A55.5 (3)
C3—C4—C5—C628.2 (4)C6—C1'—C2'—C3'A176.2 (3)
O4—C4—C5—C6152.6 (3)O2'—C2'—C3'A—C4'A63.0 (4)
C2—O1—C6—C1'169.7 (2)C1'—C2'—C3'A—C4'A174.2 (3)
C2—O1—C6—C544.8 (3)C2'—C3'A—C4'A—C5'A175.7 (5)
C4—C5—C6—O150.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.85 (3)1.93 (3)2.778 (3)177 (3)
O2—H2O···O2ii0.80 (4)2.05 (4)2.8178 (18)163 (4)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1'—H1'O···O2i0.85 (3)1.93 (3)2.778 (3)177 (3)
O2'—H2'O···O2'ii0.80 (4)2.05 (4)2.8178 (18)163 (4)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1/2, y+1/2, z+2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDavies-Coleman, M. T. & Rivett, D. E. A. (1989). Progress in the Chemistry of Organic Natural Products, Vol. 55, edited by W. Herz, H. Grise, G. W. Kirby & Ch. Tamm, pp. 1–35. Berlin: Springer-Verlag.  Google Scholar
First citationEngel, P. & Nowacki, W. (1972a). Z. Kristallogr. 136, 437–452.  CrossRef CAS Web of Science Google Scholar
First citationEngel, P. & Nowacki, W. (1972b). Z. Kristallogr. 136, 453–467.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKimura, Y., Hamasaki, T. & Nakajima, H. (1986). Agric. Biol. Chem. 50, 1649–1650.  CrossRef CAS Google Scholar
First citationKirihata, M., Kamihisa, Y., Ichimoto, I. & Ueda, H. (1992a). Chem. Express, 7, 837–840.  CAS Google Scholar
First citationKirihata, M., Ohe, M., Ichimoto, I. & Kinura, Y. (1996). Biosci. Biotechnol. Biochem. 60, 677–679.  CrossRef CAS Google Scholar
First citationKirihata, M., Ohe, M., Ichimoto, I. & Ueda, H. (1992b). Biosci. Biotechnol. Biochem. 56, 1825–1828.  CrossRef CAS Google Scholar
First citationKirihata, M., Ohta, K., Ichimoto, I. & Ueda, H. (1990). Agric. Biol. Chem. 54, 2401–2405.  CrossRef CAS Google Scholar
First citationLee, J. C., Yang, X., Schwartz, M., Strobel, G. & Clardy, J. (1995). Chem. Biol. 2, 721–727.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMasaki, Y., Imaeda, T. & Kawai, M. (1994). Chem. Pharm. Bull. 42, 179–181.  CrossRef CAS PubMed Google Scholar
First citationMcGahren, W. J., Ellestad, G. A., Morton, G. O., Kunstmann, M. P. & Mullen, P. (1973). J. Org. Chem. 38, 3542–3544.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatasubbaiah, P. & Van Dyke, C. G. (1991). Phytochemistry, 30, 1471–1474.  CrossRef CAS Web of Science Google Scholar
First citationYoshino, A. & Nowacki, W. (1972). Z. Kristallogr. 136, 66–80.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1657-o1658
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds