metal-organic compounds
Bis(2-methoxybenzylammonium) diaquabis(dihydrogen diphosphato-κ2O,O′)manganate(II) dihydrate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: mohamedrzaigui@yahoo.fr
The 8H12NO)2[Mn(H2P2O7)2(H2O)2]·2H2O, consists of half an MnII complex anion, a 2-methoxybenylammonium cation and a solvent water molecule. The MnII complex anion lies across an inversion center, and has a slightly distorted octahedral coordination environment for the MnII ion, formed by two bidentate dihydrogendiphosphate ligands and two water molecules. In the crystal, the components are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming layers parallel to (100). An intramolecular N—H⋯O hydrogen bond is also observed.
of the title compound, (CCCDC reference: 962829
Related literature
For related structures, see: Alaoui Tahiri et al. (2003); Selmi et al. (2006, 2009); Ahmed et al. (2006); Gharbi et al. (1994); Gharbi & Jouini (2004); Elboulali et al. (2013). For valence-sum calculations, see: Brown & Altermatt (1985).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 962829
10.1107/S1600536813026366/lh5654sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813026366/lh5654Isup2.hkl
Crystals of the title compound were synthesized by the reaction of diphosphoric acid H4P2O7 (2 mmol), MnCl2·4H2O (0.2 g; 1 mmol) and 2-methoxybenzylamine (0.138 g; 1 mmol) carried out in an acidic medium. The diphosphoric acid, H4P2O7, was obtained from Na4P2O7 by using an ion-exchange resin (Amberlite IR 120).
All H atoms attached to C, O and N atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) for the aromatic ring and C—H = 0.97 and 0.96 Å and N—H = 0.89 Å respectively for CH2, CH3, NH3 cation groups and O—H = 0.82 Å for the diphosphoric anion with Uiso(H) = 1.5Ueq(C, O or N). The water H atoms were refined using restraints [O—H = 0.85 (1) Å, H···H = 1.44 (2) Å and Uiso(H) = 1.5Ueq(O)].
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dotted lines [Symmetry code: (i) 1 - x, 1 - y, 1 - z]. Only the symmetry unique cation and solvent water molecule are shown. | |
Fig. 2. Crystal packing of (I) viewed along the b-axis. The H-atoms not involved in H-bonding are omitted. |
(C8H12NO)2[Mn(H2P2O7)2(H2O)2]·2H2O | F(000) = 782 |
Mr = 755.29 | Dx = 1.615 Mg m−3 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56087 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 13.971 (2) Å | θ = 9–11° |
b = 12.150 (3) Å | µ = 0.37 mm−1 |
c = 9.169 (2) Å | T = 293 K |
β = 93.80 (4)° | Prism, colorless |
V = 1553.0 (6) Å3 | 0.3 × 0.2 × 0.1 mm |
Z = 2 |
Enraf–Nonius CAD-4 diffractometer | 4417 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.028 |
Graphite monochromator | θmax = 28.0°, θmin = 2.2° |
non–profiled ω scans | h = −2→23 |
Absorption correction: multi-scan (Blessing, 1995) | k = −20→2 |
Tmin = 0.920, Tmax = 0.933 | l = −15→15 |
9935 measured reflections | 2 standard reflections every 120 min |
7513 independent reflections | intensity decay: −1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | w = 1/[σ2(Fo2) + (0.051P)2] where P = (Fo2 + 2Fc2)/3 |
7513 reflections | (Δ/σ)max = 0.001 |
212 parameters | Δρmax = 0.98 e Å−3 |
6 restraints | Δρmin = −0.45 e Å−3 |
(C8H12NO)2[Mn(H2P2O7)2(H2O)2]·2H2O | V = 1553.0 (6) Å3 |
Mr = 755.29 | Z = 2 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56087 Å |
a = 13.971 (2) Å | µ = 0.37 mm−1 |
b = 12.150 (3) Å | T = 293 K |
c = 9.169 (2) Å | 0.3 × 0.2 × 0.1 mm |
β = 93.80 (4)° |
Enraf–Nonius CAD-4 diffractometer | 4417 reflections with I > 2σ(I) |
Absorption correction: multi-scan (Blessing, 1995) | Rint = 0.028 |
Tmin = 0.920, Tmax = 0.933 | 2 standard reflections every 120 min |
9935 measured reflections | intensity decay: −1% |
7513 independent reflections |
R[F2 > 2σ(F2)] = 0.047 | 6 restraints |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | Δρmax = 0.98 e Å−3 |
7513 reflections | Δρmin = −0.45 e Å−3 |
212 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.5000 | 0.5000 | 0.5000 | 0.01975 (7) | |
P1 | 0.40929 (3) | 0.24580 (3) | 0.52770 (4) | 0.01970 (8) | |
P2 | 0.61630 (3) | 0.25518 (3) | 0.48651 (4) | 0.02071 (8) | |
O1 | 0.36950 (13) | 0.19825 (11) | 0.38021 (12) | 0.0416 (4) | |
H1O1 | 0.3705 | 0.2459 | 0.3170 | 0.062* | |
O2 | 0.40268 (9) | 0.36785 (9) | 0.53325 (13) | 0.0254 (2) | |
O3 | 0.36529 (9) | 0.18355 (9) | 0.64756 (11) | 0.0265 (2) | |
O4 | 0.51947 (10) | 0.20876 (11) | 0.54427 (18) | 0.0434 (4) | |
O5 | 0.68873 (10) | 0.23523 (12) | 0.61998 (13) | 0.0372 (3) | |
H5O5 | 0.6689 | 0.2648 | 0.6925 | 0.056* | |
O6 | 0.60365 (9) | 0.37401 (9) | 0.45084 (14) | 0.0281 (2) | |
O7 | 0.64655 (11) | 0.18277 (10) | 0.36615 (12) | 0.0328 (3) | |
O8 | 0.15813 (12) | 0.37510 (16) | 0.4909 (2) | 0.0591 (5) | |
O1W | 0.53579 (13) | 0.49630 (11) | 0.73711 (14) | 0.0397 (3) | |
H1W1 | 0.5620 (17) | 0.5541 (11) | 0.775 (3) | 0.060* | |
H2W1 | 0.5603 (18) | 0.4381 (11) | 0.776 (3) | 0.060* | |
O2W | 0.24876 (11) | 0.49273 (11) | 1.02182 (16) | 0.0372 (3) | |
H1W2 | 0.2768 (17) | 0.5511 (12) | 1.057 (3) | 0.056* | |
H2W2 | 0.2729 (17) | 0.4349 (11) | 1.062 (2) | 0.056* | |
N1 | 0.27883 (11) | 0.49595 (12) | 0.72005 (17) | 0.0308 (3) | |
H1N1 | 0.2782 | 0.4801 | 0.8148 | 0.046* | |
H2N1 | 0.3274 | 0.5412 | 0.7059 | 0.046* | |
H3N1 | 0.2859 | 0.4342 | 0.6696 | 0.046* | |
C1 | 0.18760 (15) | 0.54946 (17) | 0.6701 (3) | 0.0406 (5) | |
H1A | 0.1913 | 0.5724 | 0.5692 | 0.049* | |
H1B | 0.1793 | 0.6150 | 0.7282 | 0.049* | |
C2 | 0.10154 (15) | 0.47695 (17) | 0.6805 (2) | 0.0378 (4) | |
C3 | 0.0334 (2) | 0.4970 (2) | 0.7795 (3) | 0.0602 (7) | |
H3 | 0.0429 | 0.5533 | 0.8477 | 0.072* | |
C4 | −0.0495 (2) | 0.4331 (4) | 0.7777 (4) | 0.0810 (11) | |
H4 | −0.0955 | 0.4468 | 0.8443 | 0.097* | |
C5 | −0.0629 (2) | 0.3510 (3) | 0.6785 (4) | 0.0788 (10) | |
H5 | −0.1188 | 0.3094 | 0.6769 | 0.095* | |
C6 | 0.00385 (19) | 0.3278 (2) | 0.5809 (4) | 0.0623 (7) | |
H6 | −0.0061 | 0.2705 | 0.5144 | 0.075* | |
C7 | 0.08660 (15) | 0.39064 (18) | 0.5820 (2) | 0.0423 (5) | |
C8 | 0.1448 (3) | 0.2977 (3) | 0.3750 (4) | 0.0961 (13) | |
H8A | 0.1356 | 0.2257 | 0.4147 | 0.144* | |
H8B | 0.2004 | 0.2974 | 0.3188 | 0.144* | |
H8C | 0.0894 | 0.3178 | 0.3132 | 0.144* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.02626 (17) | 0.01297 (12) | 0.02024 (13) | −0.00102 (13) | 0.00333 (11) | −0.00008 (12) |
P1 | 0.02775 (18) | 0.01485 (17) | 0.01671 (15) | −0.00373 (16) | 0.00300 (13) | 0.00009 (13) |
P2 | 0.02652 (19) | 0.01738 (17) | 0.01837 (16) | 0.00336 (16) | 0.00264 (13) | 0.00126 (14) |
O1 | 0.0818 (11) | 0.0257 (6) | 0.0167 (5) | −0.0164 (7) | −0.0012 (6) | −0.0003 (5) |
O2 | 0.0296 (6) | 0.0157 (5) | 0.0311 (6) | −0.0023 (4) | 0.0044 (5) | −0.0019 (4) |
O3 | 0.0400 (7) | 0.0221 (5) | 0.0178 (5) | −0.0083 (5) | 0.0045 (5) | 0.0020 (4) |
O4 | 0.0319 (7) | 0.0262 (6) | 0.0733 (10) | 0.0032 (5) | 0.0135 (7) | 0.0195 (7) |
O5 | 0.0430 (7) | 0.0460 (8) | 0.0218 (5) | 0.0175 (6) | −0.0033 (5) | −0.0051 (5) |
O6 | 0.0313 (6) | 0.0170 (5) | 0.0370 (6) | 0.0015 (4) | 0.0111 (5) | 0.0024 (4) |
O7 | 0.0538 (8) | 0.0244 (6) | 0.0205 (5) | 0.0076 (6) | 0.0038 (5) | −0.0016 (4) |
O8 | 0.0425 (9) | 0.0722 (12) | 0.0618 (10) | 0.0020 (9) | −0.0021 (8) | −0.0262 (9) |
O1W | 0.0682 (10) | 0.0235 (6) | 0.0254 (6) | −0.0043 (7) | −0.0122 (6) | 0.0004 (5) |
O2W | 0.0397 (7) | 0.0319 (7) | 0.0395 (7) | 0.0032 (6) | −0.0020 (6) | 0.0002 (6) |
N1 | 0.0305 (7) | 0.0275 (7) | 0.0346 (7) | −0.0001 (6) | 0.0043 (6) | 0.0013 (6) |
C1 | 0.0389 (11) | 0.0283 (9) | 0.0535 (12) | 0.0026 (8) | −0.0065 (9) | 0.0057 (8) |
C2 | 0.0314 (9) | 0.0397 (11) | 0.0417 (10) | 0.0038 (8) | −0.0019 (8) | 0.0058 (8) |
C3 | 0.0462 (13) | 0.0774 (19) | 0.0575 (14) | 0.0148 (14) | 0.0077 (11) | 0.0006 (13) |
C4 | 0.0421 (15) | 0.125 (3) | 0.078 (2) | 0.0154 (18) | 0.0190 (14) | 0.037 (2) |
C5 | 0.0373 (14) | 0.093 (2) | 0.105 (3) | −0.0157 (15) | −0.0083 (15) | 0.049 (2) |
C6 | 0.0424 (13) | 0.0519 (15) | 0.089 (2) | −0.0130 (11) | −0.0224 (13) | 0.0182 (14) |
C7 | 0.0328 (10) | 0.0407 (11) | 0.0515 (12) | −0.0007 (9) | −0.0107 (9) | 0.0063 (9) |
C8 | 0.079 (2) | 0.114 (3) | 0.092 (2) | 0.026 (2) | −0.0193 (19) | −0.062 (2) |
Mn1—O2i | 2.1389 (12) | O2W—H2W2 | 0.854 (9) |
Mn1—O2 | 2.1389 (12) | N1—C1 | 1.476 (3) |
Mn1—O6i | 2.1749 (12) | N1—H1N1 | 0.8900 |
Mn1—O6 | 2.1749 (12) | N1—H2N1 | 0.8900 |
Mn1—O1Wi | 2.1987 (14) | N1—H3N1 | 0.8900 |
Mn1—O1W | 2.1987 (14) | C1—C2 | 1.499 (3) |
P1—O2 | 1.4868 (12) | C1—H1A | 0.9700 |
P1—O3 | 1.4991 (12) | C1—H1B | 0.9700 |
P1—O1 | 1.5400 (13) | C2—C3 | 1.380 (4) |
P1—O4 | 1.6013 (15) | C2—C7 | 1.390 (3) |
P2—O6 | 1.4883 (13) | C3—C4 | 1.393 (5) |
P2—O7 | 1.4941 (13) | C3—H3 | 0.9300 |
P2—O5 | 1.5545 (14) | C4—C5 | 1.355 (5) |
P2—O4 | 1.5886 (15) | C4—H4 | 0.9300 |
O1—H1O1 | 0.8200 | C5—C6 | 1.363 (5) |
O5—H5O5 | 0.8200 | C5—H5 | 0.9300 |
O8—C7 | 1.357 (3) | C6—C7 | 1.385 (3) |
O8—C8 | 1.422 (3) | C6—H6 | 0.9300 |
O1W—H1W1 | 0.855 (9) | C8—H8A | 0.9600 |
O1W—H2W1 | 0.852 (9) | C8—H8B | 0.9600 |
O2W—H1W2 | 0.861 (9) | C8—H8C | 0.9600 |
O2i—Mn1—O2 | 180.0 | C1—N1—H1N1 | 109.5 |
O2i—Mn1—O6i | 86.53 (5) | C1—N1—H2N1 | 109.5 |
O2—Mn1—O6i | 93.47 (5) | H1N1—N1—H2N1 | 109.5 |
O2i—Mn1—O6 | 93.47 (5) | C1—N1—H3N1 | 109.5 |
O2—Mn1—O6 | 86.53 (5) | H1N1—N1—H3N1 | 109.5 |
O6i—Mn1—O6 | 180.00 (7) | H2N1—N1—H3N1 | 109.5 |
O2i—Mn1—O1Wi | 87.07 (6) | N1—C1—C2 | 113.65 (16) |
O2—Mn1—O1Wi | 92.93 (6) | N1—C1—H1A | 108.8 |
O6i—Mn1—O1Wi | 94.56 (6) | C2—C1—H1A | 108.8 |
O6—Mn1—O1Wi | 85.44 (6) | N1—C1—H1B | 108.8 |
O2i—Mn1—O1W | 92.93 (6) | C2—C1—H1B | 108.8 |
O2—Mn1—O1W | 87.07 (6) | H1A—C1—H1B | 107.7 |
O6i—Mn1—O1W | 85.44 (6) | C3—C2—C7 | 118.7 (2) |
O6—Mn1—O1W | 94.56 (6) | C3—C2—C1 | 122.0 (2) |
O1Wi—Mn1—O1W | 180.0 | C7—C2—C1 | 119.3 (2) |
O2—P1—O3 | 116.66 (7) | C2—C3—C4 | 120.2 (3) |
O2—P1—O1 | 112.62 (7) | C2—C3—H3 | 119.9 |
O3—P1—O1 | 108.22 (7) | C4—C3—H3 | 119.9 |
O2—P1—O4 | 109.79 (7) | C5—C4—C3 | 119.7 (3) |
O3—P1—O4 | 103.12 (8) | C5—C4—H4 | 120.1 |
O1—P1—O4 | 105.47 (10) | C3—C4—H4 | 120.1 |
O6—P2—O7 | 116.38 (7) | C4—C5—C6 | 121.5 (3) |
O6—P2—O5 | 112.70 (8) | C4—C5—H5 | 119.2 |
O7—P2—O5 | 106.76 (7) | C6—C5—H5 | 119.2 |
O6—P2—O4 | 109.04 (7) | C5—C6—C7 | 119.2 (3) |
O7—P2—O4 | 109.02 (9) | C5—C6—H6 | 120.4 |
O5—P2—O4 | 101.92 (9) | C7—C6—H6 | 120.4 |
P1—O1—H1O1 | 109.5 | O8—C7—C6 | 124.5 (2) |
P1—O2—Mn1 | 134.61 (8) | O8—C7—C2 | 114.79 (19) |
P2—O4—P1 | 134.68 (9) | C6—C7—C2 | 120.7 (3) |
P2—O5—H5O5 | 109.5 | O8—C8—H8A | 109.5 |
P2—O6—Mn1 | 135.10 (8) | O8—C8—H8B | 109.5 |
C7—O8—C8 | 119.1 (2) | H8A—C8—H8B | 109.5 |
Mn1—O1W—H1W1 | 116.6 (16) | O8—C8—H8C | 109.5 |
Mn1—O1W—H2W1 | 119.0 (16) | H8A—C8—H8C | 109.5 |
H1W1—O1W—H2W1 | 111.4 (19) | H8B—C8—H8C | 109.5 |
H1W2—O2W—H2W2 | 111 (2) | ||
O3—P1—O2—Mn1 | 136.77 (10) | O1Wi—Mn1—O6—P2 | −116.08 (12) |
O1—P1—O2—Mn1 | −97.20 (12) | O1W—Mn1—O6—P2 | 63.92 (12) |
O4—P1—O2—Mn1 | 19.99 (13) | N1—C1—C2—C3 | 111.1 (2) |
O6i—Mn1—O2—P1 | −178.37 (10) | N1—C1—C2—C7 | −72.7 (2) |
O6—Mn1—O2—P1 | 1.63 (10) | C7—C2—C3—C4 | −1.5 (4) |
O1Wi—Mn1—O2—P1 | 86.87 (11) | C1—C2—C3—C4 | 174.7 (2) |
O1W—Mn1—O2—P1 | −93.13 (11) | C2—C3—C4—C5 | 0.2 (4) |
O6—P2—O4—P1 | 22.20 (18) | C3—C4—C5—C6 | 1.0 (5) |
O7—P2—O4—P1 | −105.83 (15) | C4—C5—C6—C7 | −0.8 (4) |
O5—P2—O4—P1 | 141.55 (15) | C8—O8—C7—C6 | 7.3 (4) |
O2—P1—O4—P2 | −38.38 (18) | C8—O8—C7—C2 | −172.6 (2) |
O3—P1—O4—P2 | −163.37 (14) | C5—C6—C7—O8 | 179.7 (2) |
O1—P1—O4—P2 | 83.20 (16) | C5—C6—C7—C2 | −0.5 (4) |
O7—P2—O6—Mn1 | 139.06 (11) | C3—C2—C7—O8 | −178.5 (2) |
O5—P2—O6—Mn1 | −97.14 (12) | C1—C2—C7—O8 | 5.2 (3) |
O4—P2—O6—Mn1 | 15.27 (14) | C3—C2—C7—C6 | 1.6 (3) |
O2i—Mn1—O6—P2 | 157.14 (11) | C1—C2—C7—C6 | −174.7 (2) |
O2—Mn1—O6—P2 | −22.86 (11) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O3ii | 0.82 | 1.77 | 2.5689 (17) | 164 |
O5—H5O5···O7iii | 0.82 | 1.76 | 2.5711 (18) | 169 |
O1W—H1W1···O3iv | 0.86 (1) | 1.98 (1) | 2.8304 (19) | 174 (3) |
O1W—H2W1···O7iii | 0.85 (1) | 2.04 (1) | 2.879 (2) | 167 (2) |
O2W—H1W2···O7iv | 0.86 (1) | 2.03 (1) | 2.886 (2) | 175 (3) |
O2W—H2W2···O3iii | 0.85 (1) | 2.05 (1) | 2.8842 (19) | 164 (2) |
N1—H1N1···O2W | 0.89 | 1.97 | 2.826 (2) | 160 |
N1—H2N1···O6i | 0.89 | 2.06 | 2.826 (2) | 144 |
N1—H3N1···O8 | 0.89 | 2.45 | 2.991 (2) | 120 |
N1—H3N1···O2 | 0.89 | 2.27 | 2.957 (2) | 134 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−1/2; (iii) x, −y+1/2, z+1/2; (iv) −x+1, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O3i | 0.82 | 1.77 | 2.5689 (17) | 163.7 |
O5—H5O5···O7ii | 0.82 | 1.76 | 2.5711 (18) | 168.8 |
O1W—H1W1···O3iii | 0.855 (9) | 1.979 (10) | 2.8304 (19) | 174 (3) |
O1W—H2W1···O7ii | 0.852 (9) | 2.041 (11) | 2.879 (2) | 167 (2) |
O2W—H1W2···O7iii | 0.861 (9) | 2.027 (10) | 2.886 (2) | 175 (3) |
O2W—H2W2···O3ii | 0.854 (9) | 2.053 (12) | 2.8842 (19) | 164 (2) |
N1—H1N1···O2W | 0.89 | 1.97 | 2.826 (2) | 159.6 |
N1—H2N1···O6iv | 0.89 | 2.06 | 2.826 (2) | 143.9 |
N1—H3N1···O8 | 0.89 | 2.45 | 2.991 (2) | 119.6 |
N1—H3N1···O2 | 0.89 | 2.27 | 2.957 (2) | 134.0 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, −y+1, −z+1. |
References
Ahmed, S., Samah, A. & Mohamed, R. (2006). Acta Cryst. E62, m1796–m1798. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Alaoui Tahiri, A., Ouarsal, R., Lachkar, M., Zavalij, P. Y. & El Bali, B. (2003). Acta Cryst. E59, i68–i69. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Elboulali, A., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, o213–o214. CSD CrossRef CAS IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gharbi, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 11–13. Web of Science CSD CrossRef Google Scholar
Gharbi, A., Jouini, A., Averbuch-Pouchot, M. T. & Durif, A. (1994). J. Solid State Chem. 111, 330–337. CSD CrossRef CAS Web of Science Google Scholar
Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Google Scholar
Selmi, A., Akriche, S. & Rzaigui, M. (2006). Anal. Sci. 22, x135–x136. CAS Google Scholar
Selmi, A., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m1487. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a part of our study of crystal packing in diphosphate materials, a new hybrid compound of mixed organic-metal cations have been synthesized: (C8H12NO)2[Mn(H2P2O7)2(H2O)2]·2H2O (I).
The asymmetric unit of (I) is made up of a half of mononuclear [Mn(H2P2O7)2(H2O)2]2- moiety, one of organic cation and one water of crystallization. As the MnII ion lies on inversion centre, the complete formula unit is generated by this element of symmetry (Fig. 1).
In the crystal packing, each MnII ion is coordinated by two bidentate diphosphate ligands and two coordinated O1W water molecules to form a slightly distorted MnO6 octahedron. The valence bond calculation (Brown & Altermatt, 1985) gives an effective bond valence of 1.9417 consistent with the cationic charge of +2.
The Mn—O bond distances around the MnII ion are in the range 2.1389 (12)–2.1987 (14) Å which is close to those reported for Mn metal in K2Mn(H2P2O7)2·2(H2O) framework (mean Mn—O = 2.173 Å) (Alaoui Tahiri et al., 2003), and slightly longer compared to those around Co in related structures (Selmi et al., 2006,2009; Ahmed et al., 2006). The P2O7 ligand has a quasi-eclipsed conformation with O—P—P—O torsion angles averaging 19.5 ° and it bridges the MnII ion through O2—P1 and O6—P2 linkages thus producing a bent P2O7 group, with a P1—O4—P2 angle of 134.68 (9)° as observed in other M(II)–organic diphosphate frameworks (Selmi et al., 2006, 2009; Ahmed et al., 2006; Gharbi et al., 2004;1994). On the other hand the main bond lenghts of organic cations, are comparable to those observed in the 4-methoxybenzylammonium cations in the (C8H12NO)2(H2P2O7) structure reported earlier (Elboulali et al., 2013).
The MnO6 octahedra are arranged into anionic layers spreading along a-axis at x = 1/2 (Fig.2) via O—H···O hydrogen bonding interactions involving the hydroxyl groups of [H2P2O7]2- and OW1 water molecules. The remaining uncoordinated O2W water molecules and 2-methoxybenzylammonium cations further link these so as to contribute to their cohesion with O···O and N···O separations ranging from 2.826 (2)to 2.991 (2) Å (Table 1) and build a two-dimensionnal network parallel to (100).